Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (708)

Search Parameters:
Keywords = antimicrobial drugs susceptibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1033 KiB  
Systematic Review
Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review
by Matthew E. Falagas, Laura T. Romanos, Dimitrios S. Kontogiannis, Katerina Tsiara and Stylianos A. Kakoullis
Pathogens 2025, 14(8), 777; https://doi.org/10.3390/pathogens14080777 - 6 Aug 2025
Abstract
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four [...] Read more.
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four databases (Embase, PubMed, Scopus, and Web of Science), as well as backward citation searching, to identify studies containing data on resistance to cefepime-enmetazobactam. The data were extracted and analyzed according to the breakpoints established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Food and Drug Administration (FDA), or the specific breakpoints reported by the authors of the respective studies. Analysis based on the type of lactamases produced by the isolates was also performed. Ten studies reported in vitro susceptibility testing and mechanisms of antimicrobial resistance. The total number of isolates was 15,408. The activity of cefepime-enmetazobactam against β-lactamase-producing isolates was variable. The resistance of the studied extended-spectrum β-lactamase (ESBL)-producing and ampicillin C β-lactamase (AmpC)-producing isolates was low (0–2.8% and 0%, respectively). The resistance was higher among oxacillinase-48 β-lactamase (OXA-48)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing isolates (3.4–13.2% and 36.7–57.8%, respectively). High resistance was noted among metallo-β-lactamase (MBL)-producing isolates (reaching 87.5% in one study), especially those producing New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM), which had the highest rates of resistance. The high activity of cefepime-enmetazobactam against Enterobacterales and selected lactose non-fermenting Gram-negative pathogens, including ESBL-producing and AmpC-producing isolates, makes it a potential carbapenem-sparing agent. The drug should be used after in vitro antimicrobial susceptibility testing in patients with infections caused by OXA-48, KPC, and MBL-producing isolates. Full article
Show Figures

Figure 1

12 pages, 388 KiB  
Article
Evolution of Respiratory Pathogens and Antimicrobial Resistance over the COVID-19 Timeline: A Study of Hospitalized and Ambulatory Patient Populations
by Luigi Regenburgh De La Motte, Loredana Deflorio, Erika Stefano, Matteo Covi, Angela Uslenghi, Carmen Sommese and Lorenzo Drago
Antibiotics 2025, 14(8), 796; https://doi.org/10.3390/antibiotics14080796 - 5 Aug 2025
Viewed by 38
Abstract
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial [...] Read more.
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial pathogens, antimicrobial resistance, and polymicrobial infections across three pandemic phases—pre-COVID (2018–2019), COVID (2020–2022), and post-COVID (2022–2024)—in hospitalized and ambulatory patients. Methods: We retrospectively analyzed 1827 respiratory bacterial isolates (hospitalized patients, n = 1032; ambulatory patients, n = 795) collected at a tertiary care center in Northern Italy. Data were stratified by care setting, anatomical site, and pandemic phase. Species identification and susceptibility testing followed EUCAST guidelines. Statistical analysis included chi-square and Fisher’s exact tests. Results: In hospitalized patients, a significant increase in Pseudomonas aeruginosa (from 45.5% pre-COVID to 58.6% post-COVID, p < 0.0001) and Acinetobacter baumannii (from 1.2% to 11.1% during COVID, p < 0.0001) was observed, with 100% extensively drug-resistant (XDR) rates for A. baumannii during the pandemic. Conversely, Staphylococcus aureus significantly declined from 23.6% pre-COVID to 13.7% post-COVID (p = 0.0012). In ambulatory patients, polymicrobial infections peaked at 41.2% during COVID, frequently involving co-isolation of Candida spp. Notably, resistance to benzylpenicillin in Streptococcus pneumoniae reached 80% (4/5 isolates) in hospitalized patients during COVID, and carbapenem-resistant P. aeruginosa (CRPA) significantly increased post-pandemic in ambulatory patients (0% pre-COVID vs. 23.5% post-COVID, p = 0.0014). Conclusions: The pandemic markedly shifted respiratory pathogen dynamics and resistance profiles, with distinct trends observed in hospital and community settings. Persistent resistance phenotypes and frequent polymicrobial infections, particularly involving Candida spp. in outpatients, underscore the need for targeted surveillance and antimicrobial stewardship strategies. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

12 pages, 2639 KiB  
Article
Interspecies Interactions of Single- and Mixed-Species Biofilms of Candida albicans and Aggregatibacter actinomycetemcomitans
by Adèle Huc, Andreia S. Azevedo, José Carlos Andrade and Célia Fortuna Rodrigues
Biomedicines 2025, 13(8), 1890; https://doi.org/10.3390/biomedicines13081890 - 3 Aug 2025
Viewed by 328
Abstract
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: [...] Read more.
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: This study aimed to assess the interaction dynamics between these two microorganisms and to evaluate their susceptibility to fluconazole and azithromycin in single- and mixed-species forms. Methods: Biofilm biomass was quantified using crystal violet assays, while biofilm cell viability was assessed through CFU enumeration (biofilm viability assay). To assess the resistance properties of single versus mixed-species coincubations, we applied the antimicrobial susceptibility test (AST) to each drug, and analysed spatial organization with confocal laser scanning microscopy, using PNA-FISH. Results: The results indicated that both species can coexist without significant mutual inhibition. However, a non-reciprocal synergism was also observed, whereby mixed-species biofilm conditions promoted the growth of A. actinomycetemcomitans, while C. albicans growth remained stable. As expected, antimicrobial tolerance was elevated in mixed cultures, likely due to enhanced extracellular matrix production and potential quorum-sensing interactions, contributing to increased resistance against azithromycin and fluconazole. Conclusions: This study provides novel insights into previously rarely explored interactions between C. albicans and A. actinomycetemcomitans. These findings underscore the importance of investigating interspecies interactions within polymicrobial biofilms, as understanding their mechanisms, such as quorum-sensing molecules and metabolic cooperation, can contribute to improved diagnostics and more effective targeted therapeutic strategies against polymicrobial infections. Full article
Show Figures

Graphical abstract

25 pages, 9193 KiB  
Article
Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance
by Humera Sarwar, Richard A. Martin, Heather M. Coleman, Aaron Courtenay and Deborah Lowry
Pathogens 2025, 14(8), 760; https://doi.org/10.3390/pathogens14080760 - 1 Aug 2025
Viewed by 291
Abstract
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded [...] Read more.
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded BG45S5 formulations, assessing parameters such as drug loading efficiency, release kinetics, antimicrobial efficacy, and dissolution behaviour. Key findings indicate that the F2l-BG45S5-T-T-1.5 and F2l-BG45S5-T-V-1.5 formulations demonstrated controlled antibiotic release for up to seven days, with size distributions of D(10): 7.11 ± 0.806 µm, 4.96 ± 0.007 µm; D(50): 25.34 ± 1.730 µm, 25.20.7 ± 0.425 µm; and D(90): 53.7 ± 7.95 µm, 56.10 ± 0.579 µm, respectively. These formulations facilitated hydroxyapatite formation on their surfaces, indicative of osteogenic potential. The antimicrobial assessments revealed zones of inhibition against methicillin-susceptible Staphylococcus aureus (MSSA, ATCC-6538) measuring 20.3 ± 1.44 mm and 24.6 ± 1.32 mm, while for methicillin-resistant Staphylococcus aureus (MRSA, ATCC-43300), the inhibition zones were 21.6 ± 1.89 mm and 22 ± 0.28 mm, respectively. Time-kill assay results showed complete bacterial eradication within eight hours. Additionally, biocompatibility testing via MTT assay confirmed cell viability of >75%. In conclusion, these findings highlight the promise of antibiotic-loaded BG45S5 as a multifunctional biomaterial capable of both combating bone infections and supporting bone regeneration. These promising results suggest that in vivo studies should be undertaken to expedite these materials into clinical applications. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in the Post-COVID Era: A Silent Pandemic)
Show Figures

Figure 1

20 pages, 15855 KiB  
Article
Resistance Response and Regulatory Mechanisms of Ciprofloxacin-Induced Resistant Salmonella Typhimurium Based on Comprehensive Transcriptomic and Metabolomic Analysis
by Xiaohan Yang, Jinhua Chu, Lulu Huang, Muhammad Haris Raza Farhan, Mengyao Feng, Jiapeng Bai, Bangjuan Wang and Guyue Cheng
Antibiotics 2025, 14(8), 767; https://doi.org/10.3390/antibiotics14080767 - 29 Jul 2025
Viewed by 325
Abstract
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, [...] Read more.
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1. Changes in the minimum inhibitory concentrations (MICs) of various antimicrobial agents were determined using the broth microdilution method. Transcriptomic and metabolomic analyses were conducted to investigate alterations in gene and metabolite expression. A combined drug susceptibility test was performed to evaluate the potential of exogenous metabolites to restore antibiotic susceptibility. Results: The MICs of strain H1 for ofloxacin and enrofloxacin increased by 128- and 256-fold, respectively, and the strain also exhibited resistance to ceftriaxone, ampicillin, and tetracycline. A single-point mutation of Glu469Asp in the GyrB was detected in strain H1. Integrated multi-omics analysis showed significant differences in gene and metabolite expression across multiple pathways, including two-component systems, ABC transporters, pentose phosphate pathway, purine metabolism, glyoxylate and dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, arginine and proline biosynthesis, and glutathione metabolism. Notably, the addition of exogenous glutamine, in combination with tetracycline, significantly reduced the resistance of strain H1 to tetracycline. Conclusion: Ciprofloxacin-induced Salmonella resistance involves both target site mutations and extensive reprogramming of the metabolic network. Exogenous metabolite supplementation presents a promising strategy for reversing resistance and enhancing antibiotic efficacy. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

13 pages, 748 KiB  
Article
Characterization of Antimicrobial Resistance in Campylobacter Species from Broiler Chicken Litter
by Tam T. Tran, Sylvia Checkley, Niamh Caffrey, Chunu Mainali, Sheryl Gow, Agnes Agunos and Karen Liljebjelke
Antibiotics 2025, 14(8), 759; https://doi.org/10.3390/antibiotics14080759 - 28 Jul 2025
Viewed by 319
Abstract
Background/Objectives: Campylobacteriosis in human populations is an ongoing issue in both developed and developing countries. Poultry production is recognized as a reservoir for antimicrobial resistance and main source of human Campylobacter infection. Methods: In this study, sixty-five Campylobacter isolates were cultured from [...] Read more.
Background/Objectives: Campylobacteriosis in human populations is an ongoing issue in both developed and developing countries. Poultry production is recognized as a reservoir for antimicrobial resistance and main source of human Campylobacter infection. Methods: In this study, sixty-five Campylobacter isolates were cultured from fecal samples collected from 17 flocks of broiler chickens in Alberta, Canada over two years (2015–2016). Susceptibility assays and PCR assays were performed to characterize resistance phenotypes and resistance genes. Conjugation assays were used to examine the mobility of AMR phenotypes. Results: Campylobacter jejuni was the predominant species recovered during both years of sampling. There were no Campylobacter coli isolates found in 2015; however, approximately 33% (8/24) of isolates collected in 2016 were Campylobacter coli. The two most frequent antimicrobial resistance patterns in C. jejuni collected in 2015 were tetracycline (39%) and azithromycin/clindamycin/erythromycin/telithromycin resistance (29%). One isolate collected in 2015 has resistance pattern ciprofloxacin/nalidixic acid/tetracycline. The tetO gene was detected in all tetracycline resistant isolates from 2015. The cmeB gene was detected in all species isolates with resistance to azithromycin/clindamycin/erythromycin/telithromycin, and from two isolates with tetracycline resistance. Alignment of the nucleotide sequences of the cmeB gene from C. jejuni isolates with different resistance patterns revealed several single nucleotide polymorphisms. A variety of multi-drug resistance patterns were observed through conjugation experiments. Conclusions: These data suggest that poultry production may serve as a potential reservoir for and source of transmission of multi-drug resistant Campylobacter jejuni and supports the need for continued surveillance. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

18 pages, 2151 KiB  
Article
Polyphenol Profile and Biological Activity of the Extracts from Sideritis scardica Griseb. (Lamiaceae) Herb
by Magdalena Walasek-Janusz, Krzysztof Kamil Wojtanowski, Rafał Papliński, Agnieszka Grzegorczyk and Renata Nurzyńska-Wierdak
Pharmaceuticals 2025, 18(8), 1121; https://doi.org/10.3390/ph18081121 - 27 Jul 2025
Viewed by 255
Abstract
Background/Objectives: The beneficial and multifaceted effects of Sideritis scardica Griseb. extracts are attributed to the presence of polyphenolic compounds, particularly phenolic acids. Methods: The research was carried out for S. scardica herb of different origins (Albania, Bulgaria, North Macedonia, and Türkiye). Identification of [...] Read more.
Background/Objectives: The beneficial and multifaceted effects of Sideritis scardica Griseb. extracts are attributed to the presence of polyphenolic compounds, particularly phenolic acids. Methods: The research was carried out for S. scardica herb of different origins (Albania, Bulgaria, North Macedonia, and Türkiye). Identification of compounds was performed using the HPLC/ESI-QTOF-MS method; phenolic acids and flavonoids were determined spectrophotometrically. The antioxidant activity of methanol extracts from studied herbs was determined using the Folin–Ciocalteu, DPPH, and FRAP methods, and the antimicrobial activity was evaluated using the broth microdilution method in accordance with the guidelines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Results: We demonstrated the presence 18–20 active compounds, depending on the origin of the raw material, with verbascoside being the predominant compound in all samples. The raw material was characterized by significant polyphenol content and high antioxidant activity. DPPH tests revealed the highest antioxidant activity, ranging from 86.5% to 87.9%, in samples from Bulgaria, North Macedonia, and Türkiye, and the latter showed the strongest antimicrobial activity, particularly against Gram-positive pathogens and Candida spp. Conclusions: This research is the first report comparing the chemical composition and biological activity of S. scardica raw material of different origins. Our findings indicate that S. scardica herb extracts have significant phytotherapeutic potential, although this varies depending on the origin of the raw material, and point to the need for further research on this plant material, particularly in terms of the level of active compounds and their possible synergistic effects with conventional drugs, as well as the need for standardization. Full article
Show Figures

Graphical abstract

23 pages, 6061 KiB  
Article
Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand
by Orathai Yinsai, Sastra Yuantrakul, Punnaporn Srisithan, Wenting Zhou, Sorawit Chittaprapan, Natthawat Intajak, Thanakorn Kruayoo, Phadungkiat Khamnoi, Siripong Tongjai and Kwanjit Daungsonk
Antibiotics 2025, 14(8), 746; https://doi.org/10.3390/antibiotics14080746 - 24 Jul 2025
Viewed by 400
Abstract
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj [...] Read more.
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand, to understand their mechanisms of multidrug resistance, virulence factors, and mobile genetic elements (MGEs). Methods: Twelve C. indologenes isolates were identified, and their antibiotic susceptibility profiles were determined. Whole genome sequencing (WGS) was performed using a hybrid approach combining Illumina short-reads and Oxford Nanopore long-reads to generate complete bacterial genomes. The hybrid assembled genomes were subsequently analyzed to detect antimicrobial resistance (AMR) genes, virulence factors, and MGEs. Results: C. indologenes isolates were primarily recovered from urine samples of hospitalized elderly male patients with underlying conditions. These isolates generally exhibited extensive drug resistance, which was subsequently explored and correlated with genomic determinants. With one exception, CMCI13 showed a lower resistance profile (Multidrug resistance, MDR). Genomic analysis revealed isolates with genome sizes of 4.83–5.00 Mb and GC content of 37.15–37.35%. Genomic characterization identified conserved resistance genes (blaIND-2, blaCIA-4, adeF, vanT, and qacG) and various virulence factors. Phylogenetic and pangenome analysis showed 11 isolates clustering closely with Chinese strain 3125, while one isolate (CMCI13) formed a distinct branch. Importantly, each isolate, except CMCI13, harbored a large genomic island (approximately 94–100 kb) carrying significant resistance genes (blaOXA-347, tetX, aadS, and ermF). The absence of this genomic island in CMCI13 correlated with its less resistant phenotype. No plasmids, integrons, or CRISPR-Cas systems were detected in any isolate. Conclusions: This study highlights the alarming emergence of multidrug-resistant C. indologenes in a hospital setting in Thailand. The genomic insights into specific resistance mechanisms, virulence factors, and potential horizontal gene transfer (HGT) events, particularly the association of a large genomic island with the XDR phenotype, underscore the critical need for continuous genomic surveillance to monitor transmission patterns and develop effective treatment strategies for this emerging pathogen. Full article
Show Figures

Figure 1

13 pages, 482 KiB  
Article
In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis
by Moshe Heching, Moshe Cohen-Kutner, Haim Ben-Zvi, Liora Slomianksy, Elital Chass Maurice, Noa Nur Maymon, Shira Mandel, Michal Oholy, Rony Moses, Michal Lavon, Katherine Kaufman, Orel Mayost Lev-Ari, Tamar Shachar, Joel Weinberg, Mordechai R. Kramer and Niv Bachnoff
J. Clin. Med. 2025, 14(15), 5208; https://doi.org/10.3390/jcm14155208 - 23 Jul 2025
Viewed by 338
Abstract
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as [...] Read more.
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their unique membrane-targeting mechanisms. OMN51, a novel bioengineered AMP derived from capitellacin, was evaluated for antimicrobial activity against P. aeruginosa in sputum samples from pwCF. This study aimed to compare the bactericidal effects of OMN51 with those of a range of conventional antibiotics known to have activity against P. aeruginosa clinical isolates derived from pwCF. Methods:P. aeruginosa clinical isolates were obtained from fifty-six unique sputum cultures of pwCF at a tertiary-university-affiliated hospital. Minimum inhibitory concentrations (MICs) of OMN51 and comparator antibiotics were determined using broth microdilution. Antimicrobial susceptibility was evaluated using the Kirby–Bauer disc diffusion method. Results: OMN51 demonstrated in vitro bactericidal activity across all P. aeruginosa isolates, including MDR strains. MIC values for OMN51 ranged from 4 to 16 µg/mL, with no observed resistance or cross-resistance. Comparative analysis revealed the superior efficacy of OMN51 compared with conventional antibiotics. Conclusions: OMN51 exhibits robust in vitro activity against MDR P. aeruginosa, supporting its candidacy as a therapeutic agent for MDR P. aeruginosa- associated infections. Further studies are warranted to assess pharmacokinetics and in vivo safety and efficacy. OMN51 represents a first-in-class, membrane-targeting therapeutic showing promise against MDR P. aeruginosa. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Novel Strategies of Diagnosis and Treatments)
Show Figures

Figure 1

19 pages, 2160 KiB  
Article
Genetic Diversity and Phylogenetic Analysis Among Multidrug-Resistant Pseudomonas spp. Isolated from Solid Waste Dump Sites and Dairy Farms
by Tuhina Das, Arkaprava Das, Neha Das, Rittika Mukherjee, Mousumi Saha, Dipanwita Das and Agniswar Sarkar
Acta Microbiol. Hell. 2025, 70(3), 30; https://doi.org/10.3390/amh70030030 - 16 Jul 2025
Viewed by 375
Abstract
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public [...] Read more.
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public health and environmental sustainability, particularly in ecosystems affected by human activities. Characterizing MDR Pseudomonas spp. is crucial for developing effective diagnostic tools and biosecurity protocols, with broader implications for managing other pathogenic bacteria. Strains were diagnosed through 16S rRNA PCR and sequencing, complemented by phylogenetic analysis to evaluate local and global evolutionary connections. Antibiotic susceptibility tests revealed extensive resistance across multiple classes, with MIC values surpassing clinical breakpoints. This study examined the genetic diversity, resistance potential, and phylogenetic relationships among Pseudomonas aeruginosa strain DG2 and Pseudomonas fluorescens strain FM3, which were isolated from solid waste dump sites (n = 30) and dairy farms (n = 22) in West Bengal, India. Phylogenetic analysis reveals distinct clusters that highlight significant geographic linkages and genetic variability among the strains. Significant biofilm production under antibiotic exposure markedly increased resistance levels. RAPD-PCR profiling revealed substantial genetic diversity among the isolates, indicating variations in their genetic makeup. In contrast, SDS-PAGE analysis provided insights into the protein expression patterns that are activated by stress, which are closely linked to MDR. This dual approach offers a clearer perspective on their adaptive responses to environmental stressors. This study underscores the need for vigilant monitoring of MDR Pseudomonas spp. in anthropogenically impacted environments to mitigate risks to human and animal health. Surveillance strategies combining phenotypic and molecular approaches are essential to assess the risks posed by resilient pathogens. Solid waste and dairy farm ecosystems emerge as critical reservoirs for the evolution and dissemination of MDR Pseudomonas spp. Full article
Show Figures

Figure 1

12 pages, 1380 KiB  
Article
Halicin: A New Approach to Antibacterial Therapy, a Promising Avenue for the Post-Antibiotic Era
by Imane El Belghiti, Omayma Hammani, Fatima Moustaoui, Mohamed Aghrouch, Zohra Lemkhente, Fatima Boubrik and Ahmed Belmouden
Antibiotics 2025, 14(7), 698; https://doi.org/10.3390/antibiotics14070698 - 11 Jul 2025
Viewed by 761
Abstract
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an [...] Read more.
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an anti-diabetic molecule, has been identified through AI screening as a promising antibiotic candidate due to its broad-spectrum activity, including efficacy against multidrug-resistant pathogens. Methods: In this study, the antibacterial activity of halicin was evaluated against a range of clinically relevant multidrug-resistant bacterial strains. Bacterial isolates were first characterized using the agar disk diffusion method with a panel of 22 conventional antibiotics to confirm resistance profiles. The minimum inhibitory concentration (MIC) of halicin was then determined for selected isolates, including Escherichia coli ATCC® 25922™ and Staphylococcus aureus ATCC® 29213™, using broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Halicin demonstrated notable antibacterial activity, with MIC values of 16 μg/mL and 32 μg/mL against E. coli ATCC® 25922™ and S. aureus ATCC® 29213™, respectively. A dose-dependent inhibition of bacterial growth was observed for the majority of tested isolates, except for Pseudomonas aeruginosa, which exhibited intrinsic resistance. This lack of susceptibility is likely related to reduced outer membrane permeability, limiting the intracellular accumulation of halicin. Conclusions: Our findings support the potential of halicin as a novel antimicrobial agent for the treatment of infections caused by antibiotic-resistant bacteria. However, further investigations, including pharmacokinetic, pharmacodynamic, and toxicity studies, are essential to assess its clinical safety and therapeutic applicability. Full article
Show Figures

Figure 1

17 pages, 4168 KiB  
Article
Levamisole as a Strategy Against Bacteria from Canine Otitis Externa: An In Vitro Evaluation
by Rodrigo F. M. Guedes, Ana C. C. F. Soares, Francisco I. F. Gomes, Alyne S. Freitas, Vinicius C. Pereira, Rossana A. Cordeiro, Marcos F. G. Rocha, José J. C. Sidrim, Giovanna R. Barbosa, Glaucia M. M. Guedes and Debora S. C. M. Castelo-Branco
Vet. Sci. 2025, 12(7), 640; https://doi.org/10.3390/vetsci12070640 - 4 Jul 2025
Viewed by 440
Abstract
Canine otitis externa is a prevalent condition, and inadequate treatment may favor the emergence of multidrug-resistant microorganisms. Drug repurposing provides an alternative approach for the management of this disease. Thus, this study aimed at assessing the antimicrobial and antibiofilm properties of levamisole against [...] Read more.
Canine otitis externa is a prevalent condition, and inadequate treatment may favor the emergence of multidrug-resistant microorganisms. Drug repurposing provides an alternative approach for the management of this disease. Thus, this study aimed at assessing the antimicrobial and antibiofilm properties of levamisole against bacterial strains recovered from dogs with otitis externa as well as its influence on biofilm growth dynamics during 120 h. A total of 50 clinical bacterial isolates were subjected to analysis. Planktonic bacterial susceptibility to levamisole was assessed by broth microdilution to determine the minimum inhibitory concentration (MIC), the lowest concentration that completely inhibits bacterial growth. The activity against mature biofilms was assessed by determining the minimum biofilm eradication concentration (MBEC). The effect of levamisole on biofilm formation was evaluated at the MIC and at two subinhibitory concentrations, with daily readings recorded at 48, 72, 96, and 120 h. MICs of levamisole ranged from 0.58 to 2.34 mg/mL. Levamisole reduced the biomass of mature biofilms (p < 0.05), with MBEC values ranging from 1.17 to 18.75 mg/mL, and biofilm formation was significantly reduced at the MIC concentration (1.17 mg/mL) for all isolates for 120 h (p < 0.05). Levamisole demonstrated potential as a preventive approach against biofilm-associated bacterial otitis. Full article
(This article belongs to the Special Issue Bacterial Infectious Diseases of Companion Animals—2nd Edition)
Show Figures

Figure 1

11 pages, 694 KiB  
Article
In Vitro Therapeutic Efficacy of Furazolidone for Antimicrobial Susceptibility Testing on Campylobacter
by Jeel Moya-Salazar, Alfonso Terán-Vásquez, Richard Salazar-Hernandez, Víctor Rojas-Zumaran, Eliane A. Goicochea-Palomino, Marcia M. Moya-Salazar and Hans Contreras-Pulache
Antibiotics 2025, 14(7), 636; https://doi.org/10.3390/antibiotics14070636 - 22 Jun 2025
Viewed by 481
Abstract
Background: Campylobacter causes gastroenteritis worldwide with increasing antimicrobial resistance. Furazolidone (FZD) shows potential in resource-poor areas but needs further study. We aimed to assess the in vitro susceptibility of Campylobacter spp. to FZD, ciprofloxacin (CIP), and erythromycin (ERY) in a high-risk pediatric [...] Read more.
Background: Campylobacter causes gastroenteritis worldwide with increasing antimicrobial resistance. Furazolidone (FZD) shows potential in resource-poor areas but needs further study. We aimed to assess the in vitro susceptibility of Campylobacter spp. to FZD, ciprofloxacin (CIP), and erythromycin (ERY) in a high-risk pediatric cohort and to evaluate the clinical relevance of resistance patterns using inhibitory quotient (IQ) pharmacodynamics. Methods: A two-phase prospective study (2012–2013, 2014–2015) was conducted at a tertiary pediatric hospital in Lima, Peru. Stool samples from children ≤24 months were cultured on selective media, with Campylobacter isolates identified via conventional bacteriological methods. Antimicrobial susceptibility was determined using Kirby–Bauer disk diffusion and regression-derived minimum inhibitory concentrations (MICs). IQ analysis correlated inhibition zones with therapeutic outcomes. Results: Among 194 Campylobacter isolates (C. jejuni: 28%; C. coli: 72%), resistance to CIP declined from 97.7% (2012–2013) to 83% (2014–2015), while ERY resistance rose from 2.3% to 9.4% (p= 0.002). No FZD resistance was observed, with mean inhibition zones of 52 ± 8 mm (2012–2013) and 43 ± 10.5 mm (2014–2015). MICs for FZD were predominantly <0.125 μg/mL, and all susceptible isolates demonstrated favorable IQ outcomes. Multidrug resistance (≥2 drugs) increased to 6.2% (2014–2015), though all MDR strains retained FZD susceptibility. CLSI and EUCAST breakpoints showed concordance for ERY (p = 0.724) but discordance for CIP (p = 0.022 vs. 0.008). Conclusions: FZD exhibits sustained in vitro efficacy against Campylobacter spp., even among MDR strains, contrasting with escalating fluoroquinolone and macrolide resistance. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

13 pages, 950 KiB  
Article
Surveillance of Multidrug-Resistant Genes in Clinically Significant Gram-Negative Bacteria Isolated from Hospital Wastewater
by Shriya C. Shetty, Lakshya S. Gowda, Ankeeta Menona Jacob, Kalidas Shetty and A. Veena Shetty
Antibiotics 2025, 14(6), 607; https://doi.org/10.3390/antibiotics14060607 - 15 Jun 2025
Viewed by 664
Abstract
Background/Objectives: Antimicrobial resistance (AMR) has become a serious public health threat worldwide. Among the various surveillance domains, hospital wastewater (HWW) has been overlooked, and it is the major reason for the threats posed by AMR. Therefore, the HWW domain is of paramount importance [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) has become a serious public health threat worldwide. Among the various surveillance domains, hospital wastewater (HWW) has been overlooked, and it is the major reason for the threats posed by AMR. Therefore, the HWW domain is of paramount importance for tackling the AMR. In this regard, the present study investigated the occurrence of Gram-negative bacteria from HWW and evaluated the isolates’ multi-drug-resistant (MDR) pattern in the study environment. Methods: This descriptive study involves HWW samples (n = 24) consecutively collected across 6 months. The samples were cultured for bacteria, identified, and subjected to antimicrobial susceptibility testing via Kirby–Bauer. PCR confirmed the presence of drug-resistance genes in Gram-negative bacterial isolates. Results: High rates of Enterobacterales resistant to carbapenems and cephalosporins observed in isolates from final treated effluent. The molecular screening showed tetD, tetE, tetG, catA1, catA2, blaNDM-1, quinolones, qnrA, qnrB, qnrS, and qepa. Conclusions: Overall, our results suggest that microbiological surveillance and identification of resistance genes of clinically important pathogens in HWW can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections. Full article
(This article belongs to the Special Issue Tracking Reservoirs of Antimicrobial Resistance Genes in Environment)
Show Figures

Graphical abstract

14 pages, 525 KiB  
Article
A Retrospective Study on the Prevalence and Antimicrobial Susceptibility of Gram-Positive Cocci in a Pediatric Department: A Single-Center Report from Egypt
by Mona Moheyeldin AbdelHalim, Shimaa A. Abdel Salam, Marwa O. Elgendy, Ahmed M. Abdel Hamied, Sultan M. Alshahrani, Ahmed R. N. Ibrahim and Heba Sherif Abdel Aziz
Medicina 2025, 61(6), 1089; https://doi.org/10.3390/medicina61061089 - 14 Jun 2025
Viewed by 640
Abstract
Background and Objectives: The rising prevalence of drug-resistant organisms presents a significant challenge to healthcare, underscoring the importance of implementing effective antimicrobial stewardship programs. The success of these programs depends on access to accurate, evidence-based data reflecting local patterns of antibiotic resistance. [...] Read more.
Background and Objectives: The rising prevalence of drug-resistant organisms presents a significant challenge to healthcare, underscoring the importance of implementing effective antimicrobial stewardship programs. The success of these programs depends on access to accurate, evidence-based data reflecting local patterns of antibiotic resistance. This study aims to assess the antimicrobial susceptibility profiles of gram-positive bacteria isolated from pediatric patients in a tertiary care hospital in Egypt. Materials and Methods: We carried out a retrospective study over a five-year period, from January 2018 to December 2022, using microbiology laboratory records. Clinical samples included blood, urine, respiratory secretions, pus, wound, cerebrospinal fluid (CSF), and pleural fluid. The analysis focused on the resistance patterns of gram-positive pathogens identified through routine culture procedures. Antimicrobial susceptibility testing was performed using the Kirby–Bauer disc diffusion method, and vancomycin MIC was confirmed using the VITEK 2 system. Results: A total of 3223 gram-positive bacterial isolates were identified. Staphylococcus aureus, including 82.5% methicillin-resistant strains (MRSA), exhibited high resistance to erythromycin (47.3%) and gentamicin (low potency) (32.1%). Coagulase-negative staphylococci (CoNS) showed the highest erythromycin resistance (up to 88.3%), while Enterococcus spp. demonstrated declining susceptibility to vancomycin, levofloxacin, and erythromycin. Across all isolates, vancomycin and gentamicin (high potency) showed the highest overall susceptibility. Resistance to cotrimoxazole and doxycycline declined over the five-year period. Conclusions: While a decline in resistance was noted for some agents, persistent resistance to key antibiotics (particularly erythromycin and gentamicin) among MRSA and CoNS remains concerning. These findings underscore the importance of targeted antimicrobial stewardship interventions and continuous surveillance to inform empirical therapy in pediatric settings. Full article
(This article belongs to the Special Issue Emerging Trends in Infectious Disease Prevention and Control)
Show Figures

Figure 1

Back to TopTop