Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,211)

Search Parameters:
Keywords = anti-proliferation assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2559 KiB  
Article
Anticancer Activity of Vitex agnus-castus Seed Extract on Gastric Cancer Cells
by Özlem Türksoy-Terzioğlu, Feyza Tosya, Ayşe Büşranur Çelik, Sibel Bölek, Levent Gülüm, Gökhan Terzioğlu and Yusuf Tutar
Nutrients 2025, 17(15), 2564; https://doi.org/10.3390/nu17152564 - 6 Aug 2025
Abstract
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus [...] Read more.
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus seed extract in gastric cancer cells. Antioxidant capacity (DPPH, ABTS) and total phenolic and flavonoid contents were analyzed. Cytotoxicity was assessed using the MTT assay in HGC27, MKN45, and AGS gastric cancer cell lines and CCD-1072Sk fibroblasts. Apoptosis, mitochondrial membrane potential (MMP), and cell cycle changes were evaluated via Annexin V-FITC/PI, Rhodamine 123, and PI staining, respectively. RT-qPCR and gene enrichment analyses were conducted to investigate the molecular mechanisms. Apoptosis-related protein expression was analyzed through enzyme-linked immunosorbent assay (ELISA). Results: The extract exhibited high antioxidant activity and a significant phenolic content. It reduced cell viability in a dose-dependent manner in gastric cancer cells, while exerting low toxicity in fibroblasts. It significantly increased apoptosis, induced G0/G1-phase cell cycle arrest, upregulated pro-apoptotic genes (CASP3, CASP7, TP53, BCL2L11), and downregulated anti-apoptotic genes (XIAP, NOL3). Gene enrichment analysis highlighted pathways like apoptosis, necrosis, and cysteine endopeptidase activity. The extract also disrupted MMP, inhibited migration and spheroid formation, suppressed EMT markers (SNAIL, SLUG, TWIST1, N-CADHERIN), and upregulated E-CADHERIN. The expression of Caspase 3 and Bax proteins increased and Bcl2 protein decreased. Conclusions: These findings suggest that Vitex agnus-castus seed extract exerts strong anticancer effects in gastric cancer cells by promoting apoptosis, reducing proliferation, and inhibiting migration. Further studies are warranted to explore its clinical relevance. Full article
(This article belongs to the Section Phytochemicals and Human Health)
22 pages, 9750 KiB  
Article
SIK2 Drives Pulmonary Fibrosis by Enhancing Fibroblast Glycolysis and Activation
by Jianhan He, Ruihan Dong, Huihui Yue, Fengqin Zhang, Xinran Dou, Xuan Li, Hui Li and Huilan Zhang
Biomedicines 2025, 13(8), 1919; https://doi.org/10.3390/biomedicines13081919 - 6 Aug 2025
Abstract
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates [...] Read more.
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates glycolytic pathways in oncogenesis, its specific contributions to fibroblast activation and therapeutic potential in PF pathogenesis remain undefined. This study elucidates the functional role of SIK2 in PF and assesses its viability as a therapeutic target. Methods: SIK2 expression/localization in fibrosis was assessed by Western blot and immunofluorescence. Fibroblast-specific Sik2 KO mice evaluated effects on bleomycin-induced fibrosis. SIK2’s role in fibroblast activation and glucose metabolism impact (enzyme expression, metabolism assays, metabolites) were tested. SIK2 inhibitors were screened and evaluated therapeutically in fibrosis models. Results: It demonstrated significant SIK2 upregulation, specifically within activated fibroblasts of fibrotic lungs from both PF patients and murine models. Functional assays demonstrated that SIK2 is crucial for fibroblast activation, proliferation, and migration. Mechanistically, SIK2 enhances fibroblast glucose metabolism by increasing the expression of glycolysis-related enzymes. Additionally, this study demonstrated that the SIK2 inhibitor YKL06-061 effectively inhibited PF in both bleomycin and FITC-induced PF mouse models with the preliminary safety profile. Furthermore, we identified a novel therapeutic application for the clinically approved drug fostamatinib, demonstrating it inhibits fibroblast activation via SIK2 targeting and alleviates PF in mice. Conclusions: Our findings highlight SIK2 as a promising therapeutic target and provide compelling preclinical evidence for two distinct anti-fibrotic strategies with significant potential for future PF treatment. Full article
(This article belongs to the Special Issue New Insights in Respiratory Diseases)
Show Figures

Figure 1

25 pages, 3642 KiB  
Article
A Novel Steroidogenic Action of Anti-Müllerian Hormone in Teleosts: Evidence from the European Sea Bass Male (Dicentrarchus labrax)
by Alessia Mascoli, Cinta Zapater, Soledad Ibañez, Mateus Contar Adolfi, Manfred Schartl and Ana Gómez
Int. J. Mol. Sci. 2025, 26(15), 7554; https://doi.org/10.3390/ijms26157554 - 5 Aug 2025
Viewed by 29
Abstract
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, [...] Read more.
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, testis differentiation, and germ cell proliferation. In adult fish, Amh supports gonad development and spermatogenesis, but its role in teleost gonadal physiology remains largely underexplored. This study reveals a novel steroidogenic function in the European sea bass (Dicentrarchus labrax) using in vitro testis culture, in vivo plasmid injection, and cell-based transactivation assays. The Amh-induced significant increase in androgen levels was also confirmed in Japanese medaka (Oryzias latipes) treated with recombinant sea bass Amh. Beyond activating the canonical Smad pathway, Amh also triggered the cAMP/PKA signalling pathway via its cognate type II receptor, Amhr2. Inhibitors of these pathways independently and synergistically counteracted Amh-induced CRE-Luc activity, indicating pathway crosstalk. Moreover, inhibition of the cAMP pathway suppressed Amh-induced androgen production in testis cultures, emphasizing the crucial role of protein kinase A in mediating Amh steroidogenic action. These findings uncover a novel steroidogenic function of Amh in teleosts and highlight its broader role in male reproductive physiology. Full article
(This article belongs to the Special Issue Molecular Research in Animal Reproduction)
Show Figures

Figure 1

18 pages, 2207 KiB  
Article
CSF1R-Dependent Microglial Repopulation and Contact-Dependent Inhibition of Proliferation In Vitro
by Rie Nakai, Kuniko Kohyama, Yasumasa Nishito and Hiroshi Sakuma
Brain Sci. 2025, 15(8), 825; https://doi.org/10.3390/brainsci15080825 - 31 Jul 2025
Viewed by 209
Abstract
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 [...] Read more.
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 weeks to monitor their repopulation ability in vitro. Flow cytometry and immunocytochemistry revealed that anti-CD11b bead treatment effectively eliminated >95% of microglia in mixed glial cultures. Following removal, the number of CX3CR1-positive microglia gradually increased; when a specific threshold was reached, repopulation ceased without any discernable rise in cell death. Cell cycle and 5-ethynyl-2′-deoxyuridine incorporation assays suggested the active proliferation of repopulating microglia at d7. Time-lapse imaging demonstrated post-removal division of microglia. Colony-stimulating factor 1 receptor-phosphoinositide 3-kinase-protein kinase B signaling was identified as crucial for microglial repopulation, as pharmacological inhibition or neutralization of the pathway significantly abrogated repopulation. Transwell cocultures revealed that resident microglia competitively inhibited microglial proliferation probably through contact inhibition. This in vitro microglial removal system provides valuable insights into the mechanisms underlying microglial proliferation. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Graphical abstract

19 pages, 4058 KiB  
Article
Antitumor Activity of Ruditapes philippinarum Polysaccharides Through Mitochondrial Apoptosis in Cellular and Zebrafish Models
by Mengyue Liu, Weixia Wang, Haoran Wang, Shuang Zhao, Dongli Yin, Haijun Zhang, Chunze Zou, Shengcan Zou, Jia Yu and Yuxi Wei
Mar. Drugs 2025, 23(8), 304; https://doi.org/10.3390/md23080304 - 29 Jul 2025
Viewed by 211
Abstract
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this [...] Read more.
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this study, we enzymatically extracted a polysaccharide, named ERPP, from Ruditapes philippinarum and comprehensively evaluated its anti-colorectal cancer activity. We conducted in vitro assays, including CCK-8 proliferation, clonogenic survival, scratch wound healing, and Annexin V-FITC/PI apoptosis staining, and the results demonstrated that ERPP significantly inhibited HT-29 cell proliferation, suppressed colony formation, impaired migratory capacity, and induced apoptosis. JC-1 fluorescence assays provided further evidence of mitochondrial membrane potential (MMP) depolarization, as manifested by a substantial reduction in the red/green fluorescence ratio (from 10.87 to 0.35). These antitumor effects were further validated in vivo using a zebrafish HT-29 xenograft model. Furthermore, ERPP treatment significantly attenuated tumor angiogenesis and downregulated the expression of the vascular endothelial growth factor A (Vegfaa) gene in the zebrafish xenograft model. Mechanistic investigations revealed that ERPP primarily activated the mitochondrial apoptosis pathway. RT-qPCR analysis showed an upregulation of the pro-apoptotic gene Bax and a downregulation of the anti-apoptotic gene Bcl-2, leading to cytochrome c (CYCS) release and caspase-3 (CASP-3) activation. Additionally, ERPP exhibited potent antioxidant capacity, achieving an 80.2% hydroxyl radical scavenging rate at 4 mg/mL. ERPP also decreased reactive oxygen species (ROS) levels within the tumor cells, thereby augmenting anticancer efficacy through its antioxidant activity. Collectively, these findings provide mechanistic insights into the properties of ERPP, underscoring its potential as a functional food component or adjuvant therapy for colorectal cancer management. Full article
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 485
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

25 pages, 7428 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Viewed by 323
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 5945 KiB  
Article
Immunogenicity Risk Assessment of Biotherapeutics Using an Ex Vivo B Cell Assay
by Kevin M. Budge, Ross Blankenship, Patricia Brown-Augsburger and Lukasz K. Chlewicki
Antibodies 2025, 14(3), 62; https://doi.org/10.3390/antib14030062 - 22 Jul 2025
Viewed by 378
Abstract
Background/Objectives: Anti-drug antibody (ADA) formation can impact the safety, pharmacokinetics, and/or efficacy of biotherapeutics, including monoclonal antibodies (mAbs). Current strategies for ADA/immunogenicity risk prediction of mAbs include in silico algorithms, T cell proliferation assays, MHC-associated peptide proteomics assays (MAPPs), and dendritic cell internalization [...] Read more.
Background/Objectives: Anti-drug antibody (ADA) formation can impact the safety, pharmacokinetics, and/or efficacy of biotherapeutics, including monoclonal antibodies (mAbs). Current strategies for ADA/immunogenicity risk prediction of mAbs include in silico algorithms, T cell proliferation assays, MHC-associated peptide proteomics assays (MAPPs), and dendritic cell internalization assays. However, B cell-mediated responses are not assessed in these assays. B cells are professional antigen-presenting cells (APCs) and secrete antibodies toward immunogenic mAbs. Therefore, methods to determine B cell responses would be beneficial for immunogenicity risk prediction and may provide a more comprehensive assessment of risk. Methods: We used a PBMC culture method with the addition of IL-4, IL-21, B cell activating factor (BAFF), and an anti-CD40 agonist mAb to support B cell survival and activation. Results: B cells in this assay format become activated, proliferate, and secrete IgG. A panel of 51 antibodies with varying clinical immunogenicity rates were screened in this assay with IgG secretion used as a readout for immunogenicity risk. IgG secretion differed among test articles but did not correlate with the clinical immunogenicity rating. Conclusions: This dataset highlights the challenges of developing a B cell assay for immunogenicity risk prediction and provides a framework for further refinement of a B cell-based assay for immunogenicity risk prediction of mAbs. Full article
Show Figures

Graphical abstract

18 pages, 2563 KiB  
Article
The Potential Anti-Cancer Effects of Polish Ethanolic Extract of Propolis and Quercetin on Glioma Cells Under Hypoxic Conditions
by Małgorzata Kłósek, Anna Kurek-Górecka, Radosław Balwierz, Grażyna Pietsz and Zenon P. Czuba
Molecules 2025, 30(14), 3008; https://doi.org/10.3390/molecules30143008 - 17 Jul 2025
Viewed by 658
Abstract
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation [...] Read more.
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation and aggressive growth. Recent studies have indicated that natural products may hold potential as components of cancer therapy. Among these, Polish propolis and its active compound, quercetin, have demonstrated promising anti-cancer properties. The aim of this study was to evaluate the concentrations of selected cytokines—specifically IL-6, IL-9, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), interferon gamma-induced protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1)—produced by astrocytes of the CCF-STTG1 cell line. The cytotoxic effects of ethanolic extract of propolis (EEP) and quercetin were assessed using the MTT assay. Astrocytes were stimulated with lipopolysaccharide (LPS, 200 ng/mL) and/or IFN-α (100 U/mL), followed by treatment with EEP or quercetin (25–50 µg/mL) under hypoxic conditions for two hours. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine Kit. Our study demonstrated that Polish propolis and its component quercetin modulate the tumour microenvironment in vitro, primarily by altering the levels of specific cytokines. The HCA analysis revealed that IL-6 and MCP-1 formed a distinct cluster at the highest linkage distance (approximately 100% of Dmax), suggesting that their expression patterns are significantly different from those of the other cytokines and that they are more similar to each other than to the rest. PCA analysis showed that EEP-PL (50 μg/mL) with IFN-α and EEP-PL (50 μg/mL) with LPS exert similar activities on cytokine secretion by astrocytes. Similar effects were demonstrated for EEP-PL 50 μg/mL + LPS + IFN-α, EEP-PL 25 μg/mL + IFN-α and EEP-PL 25 μg/mL + LPS + IFN-α. Our findings suggest that Polish propolis and quercetin may serve as promising natural agents to support the treatment of stage IV malignant astrocytoma. Nonetheless, further research is needed to confirm these results. Full article
Show Figures

Figure 1

16 pages, 3132 KiB  
Article
Role of Renin–Angiotensin System and Macrophages in Breast Cancer Microenvironment
by Abir Abdullah Alamro, Moudhi Abdullah Almutlaq, Amani Ahmed Alghamdi, Atekah Hazzaa Alshammari, Eman Alshehri and Saba Abdi
Diseases 2025, 13(7), 216; https://doi.org/10.3390/diseases13070216 - 10 Jul 2025
Viewed by 327
Abstract
Background/Objectives: The renin–angiotensin system (RAS) is well-established as a moderator of cardiovascular equilibrium and blood pressure. Nevertheless, growing evidence indicates that angiotensin II (Ang II), the principal RAS effector peptide, together with additional constituents, is involved in various malignancies. Since the immune system [...] Read more.
Background/Objectives: The renin–angiotensin system (RAS) is well-established as a moderator of cardiovascular equilibrium and blood pressure. Nevertheless, growing evidence indicates that angiotensin II (Ang II), the principal RAS effector peptide, together with additional constituents, is involved in various malignancies. Since the immune system is an important aspect in tumor development, this study sought to investigate the role of Ang II in the crosstalk between tumor-associated macrophages (TAMs) and breast cancer cells in the tumor microenvironment (TME). Methods: We treated THP-1-like macrophages with 100 nM Ang II for 24 h. The culture media thus obtained was used as conditioned media and applied at 50% on MCF-7 and MDA-MB-231 breast cancer cell lines. The effects of the conditioned media on cancer cell lines were then investigated by various methods such as a cell proliferation assay, migration assay, polarization assay, and by the detection of apoptosis and reactive oxygen species (ROS) generation. Results: We demonstrated that in vitro Ang II promotes macrophage polarization toward proinflammatory M1-like macrophages and anti-inflammatory M2-like macrophages. Interestingly, Ang II, through macrophages, showed varied effects on different breast cancer cell lines, promoting tumor growth and progression in MCF-7 while inhibiting tumor growth and progression in MDA-MB-23. Conclusions: This study has provided clear evidence that Ang II in the TME modulates TAM polarization and secretions, leading to different effects based on the type of breast cancer. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 6229 KiB  
Article
Integrating Network Pharmacology and Experimental Validation to Explore the Effect and Mechanism of Inonotus obliquus Polysaccharide in the Treatment of Rheumatoid Arthritis
by Yuan Fu, Tianyi Jiang, Xizhu Fang, Yifang Chen, Jiawei Li, Shengnan Huang, Fangfang Li and Dan Jin
Pharmaceuticals 2025, 18(7), 1017; https://doi.org/10.3390/ph18071017 - 8 Jul 2025
Viewed by 515
Abstract
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect [...] Read more.
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect on RA is still unclear. Thus, this study aimed to reveal the effect of IOP on MH7A cells and collagen-induced arthritis (CIA) rats and to investigate the molecular mechanism of IOP in RA. Methods: In this study, network pharmacology was used to identify the key signaling pathways in IOP treatment of RA. The effect of IOP was verified in rats with CIA. We performed CCK-8, EdU, colony formation assay, cell apoptosis, cell migration and invasion, Western blot analysis, and immunofluorescence to elucidate the effect of IOP on the proliferation, apoptosis, migration and invasion of MH7A cells and revealed its modulation of the NF-κB and NLRP3 inflammasome signaling pathways. Results: IOP treatment of CIA rats significantly alleviated joint swelling, synovial tissue proliferation and erosion, and reduced the expression of inflammatory factors TNF-α, IL-6, IL-1β and IL-18. In vitro, IOP significantly inhibited the proliferation, migration, and invasion abilities of TNF-α-stimulated MH7A cells and promoted their apoptosis. Mechanistically, IOP inhibited the NF-κB and NLRP3 inflammasome activation. Conclusions: This study revealed that IOP exerts anti-RA effects by downregulating the NF-κB and NLRP3 inflammasome signaling pathways, promoting cell apoptosis, and inhibiting the expression of inflammatory cytokines, representing a promising therapeutic option for RA. Full article
(This article belongs to the Special Issue Natural Products Derived from Fungi and Their Biological Activities)
Show Figures

Graphical abstract

13 pages, 3320 KiB  
Article
Regulation of Human Lung Adenocarcinoma Cell Proliferation by LncRNA AFAP-AS1 Through the miR-508/ZWINT Axis
by Sultan F. Kadasah and Abdulaziz M. S. Alqahtani
Int. J. Mol. Sci. 2025, 26(13), 6532; https://doi.org/10.3390/ijms26136532 - 7 Jul 2025
Viewed by 368
Abstract
Lung adenocarcinoma is a prevalent, aggressive cancer with a poor prognosis due to early metastasis and resistance to treatment. LncRNA AFAP1-AS1 has been shown to be associated with the development of multiple carcinomas. This study investigates the functional role of AFAP1-AS1 in lung [...] Read more.
Lung adenocarcinoma is a prevalent, aggressive cancer with a poor prognosis due to early metastasis and resistance to treatment. LncRNA AFAP1-AS1 has been shown to be associated with the development of multiple carcinomas. This study investigates the functional role of AFAP1-AS1 in lung adenocarcinoma cell proliferation via miR-508-3p and ZWINT. Human lung adenocarcinoma A549 cells were transfected with siRNA constructs against AFAP1-AS1 (si-AFAP1-AS1) to silence its expression. Cell proliferation was evaluated via CCK-8 and colony-forming assays. Apoptosis was assessed using AO/EB staining, and invasion was determined via Transwell assay. The interaction between AFAP1-AS1, miR-508-3p, and ZWINT was confirmed via dual luciferase reporter assay and qRT-PCR analysis. Data were analysed using appropriate statistical tests. AFAP1-AS1 was significantly upregulated in lung adenocarcinoma cells compared to normal BEAS-2B cells. Silencing of AFAP1-AS1 resulted in a marked reduction in A549 cell proliferation and colony development, as observed in CCK-8 and colony formation assays. The AO/EB assay showed a significant increase in apoptosis (30 ± 4.4%) in si-AFAP1-AS1 transfected cells compared to control si-NC (3 ± 1.2%). In addition, knockdown of AFAP1-AS1 led to an upsurge of pro-apoptotic Bax and decline of anti-apoptotic Bcl-2 expression. The dual luciferase assay established the interaction between AFAP1-AS1 and miR-508-3p. Furthermore, ZWINT, identified as a target of miR-508-3p, was significantly upregulated in lung adenocarcinoma tissues. Overexpression of ZWINT rescued the inhibitory effects of AFAP1-AS1 silencing on cell proliferation, colony formation, and apoptosis, while also reversing the reduction in cell invasion. AFAP1-AS1 accelerates the development of lung adenocarcinoma by cell proliferation, apoptosis, and invasion via the miR-508-3p/ZWINT axis. Thus, targeting AFAP1-AS1 or its downstream regulatory axis could offer novel therapeutic approaches in lung adenocarcinoma treatment. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology, 3rd Edition)
Show Figures

Figure 1

24 pages, 3627 KiB  
Article
Andrographolide Mitigates Inflammation and Reverses UVB-Induced Metabolic Reprogramming in HaCaT Cells
by Carolina Manosalva, Pablo Alarcón, Lucas Grassau, Carmen Cortés, Juan L. Hancke and Rafael A. Burgos
Int. J. Mol. Sci. 2025, 26(13), 6508; https://doi.org/10.3390/ijms26136508 - 6 Jul 2025
Viewed by 516
Abstract
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored [...] Read more.
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored AP’s multitarget therapeutic effects on wound healing under photoaging conditions (PhA/WH) using network pharmacology and experimental validation. Scratch wound assays showed that AP promoted keratinocyte migration in UVB-exposed HaCaT cells. Bioinformatic analysis identified 10 key targets in PhA/WH, including TNF-α, IL-1β, JUN, PPARγ, MAPK3, TP53, TGFB1, HIF-1α, PTGS2, and CTNNB1. AP suppressed UVB-induced pro-inflammatory gene expression (IL-1β, IL-6, IL-8, and COX-2) and inhibited the phosphorylation of ERK1/2 and P38, while enhancing Hypoxia-Inducible Factor-1alpha (HIF-1α) and peroxisome proliferator-activated receptors (PPARγ) expression. GC/MS-based metabolomics revealed that AP reversed UVB-induced disruptions in fatty acid metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid (TCA) cycle, indicating its role in restoring the metabolic balance necessary for tissue regeneration. In conclusion, andrographolide modulates key inflammatory and metabolic pathways involved in wound repair and photoaging. These mechanistic insights contribute to a better understanding of the molecular processes underlying skin regeneration under photodamage and may inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 4132 KiB  
Article
Crotoxin-Loaded Silica Nanoparticles: A Nanovenom Approach
by Florencia Silvina Conti, Exequiel Giorgi, Laura Montaldo, Juan Pablo Rodríguez, Mauricio Cesar De Marzi and Federico Gastón Baudou
Pharmaceutics 2025, 17(7), 879; https://doi.org/10.3390/pharmaceutics17070879 - 4 Jul 2025
Viewed by 410
Abstract
Background: Ophidism is a globally neglected health problem. In Argentina, Crotalus durissus terrificus (C.d.t., South American rattlesnake) is one of the species of greatest medical importance since its venom contains mainly crotoxin (CTX), a potent enzyme–toxin with PLA2 activity, [...] Read more.
Background: Ophidism is a globally neglected health problem. In Argentina, Crotalus durissus terrificus (C.d.t., South American rattlesnake) is one of the species of greatest medical importance since its venom contains mainly crotoxin (CTX), a potent enzyme–toxin with PLA2 activity, which is responsible for its high lethality. Objective: In this work, we aimed to generate nanovenoms (NVs), complexes formed by CTX adsorbed onto 150 nm silica nanoparticles (SiNPs), and to study their physicochemical, biological, and immunomodulatory activities for potential use as adjuvants (ADJs) in antivenom (AV) production. Methods: CTX was isolated and corroborated by SDS-PAGE. Then, CTX was adsorbed on the synthetized Stöber SiNPs’ surfaces, forming a monolayer and retaining its biological activity (as observed by the MTT cell proliferation assay using the THP-1 cell line). Results: Immunomodulatory activity revealed a high pro-inflammatory (IL-1β) response induced by SiNPs followed by NVs. In the case of the anti-inflammatory response, NVs presented significant differences for TGF-β only after cell activation with LPS. No significant differences were observed in IL-10 levels. Conclusions: Thus, these results suggest that NVs together with SiNPs could increase immunogenicity and enhance immune response, turning them into potential tools for the generation of new antivenoms. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

22 pages, 2732 KiB  
Article
Anticancer Activity of Roburic Acid: In Vitro and In Silico Investigation
by Adrianna Gielecińska, Mateusz Kciuk, Somdutt Mujwar, Johannes A. Schmid and Renata Kontek
Int. J. Mol. Sci. 2025, 26(13), 6420; https://doi.org/10.3390/ijms26136420 - 3 Jul 2025
Viewed by 432
Abstract
Natural compounds remain a valuable source of anticancer agents due to their structural diversity and multi-targeted mechanisms of action. Roburic acid (RA), a tetracyclic triterpenoid, has been identified as a substance capable of inhibiting key NF-κB and MAPK signaling pathways through direct interaction [...] Read more.
Natural compounds remain a valuable source of anticancer agents due to their structural diversity and multi-targeted mechanisms of action. Roburic acid (RA), a tetracyclic triterpenoid, has been identified as a substance capable of inhibiting key NF-κB and MAPK signaling pathways through direct interaction with TNF-α, as well as preventing the production of inflammatory mediators and cancer progression. In this study, we evaluated the biological activity of RA against a panel of human cancer cell lines—DLD-1, HT-29, and HCT-116 (colorectal), PC-3 (prostate), and BxPC-3 (pancreatic)—as well as two non-malignant lines: WI-38 (fibroblasts) and CCD-841 CoN (colon epithelium). RA exhibited a concentration-dependent inhibitory effect on cancer cell metabolic activity, with colorectal cancer cells showing relatively higher sensitivity, particularly at shorter incubation times. To distinguish between cytotoxic and cytostatic effects, we performed trypan blue exclusion combined with a cell density assessment, clonogenic assay, and BrdU incorporation assay. The results from these complementary assays confirmed that RA acts primarily through an antiproliferative mechanism rather than by inducing cytotoxicity. In addition, NF-κB reporter assays demonstrated that RA attenuates TNF-α-induced transcriptional activation at higher concentrations, supporting its proposed anti-inflammatory properties and potential to modulate pro-tumorigenic signaling. Finally, our in silico studies predicted that RA may interact with proteins such as CAII, CES1, EGFR, and PLA2G2A, implicating it in the modulation of pathways related to proliferation and cell survival. Collectively, these findings suggest that RA may serve as a promising scaffold for the development of future anticancer agents, particularly in the context of colorectal cancer. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

Back to TopTop