Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (617)

Search Parameters:
Keywords = anti-infectious effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 688 KiB  
Review
The Evolving Treatment Landscape for the Elderly Multiple Myeloma Patient: From Quad Regimens to T-Cell Engagers and CAR-T
by Matthew James Rees and Hang Quach
Cancers 2025, 17(15), 2579; https://doi.org/10.3390/cancers17152579 - 5 Aug 2025
Abstract
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, [...] Read more.
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, the treatment of newly diagnosed elderly patients has centered on doublet or triplet combinations composed of immunomodulators (IMIDs), proteasome inhibitors (PIs), anti-CD38 monoclonal antibodies (mAbs), and corticosteroids producing median progression-free survival (PFS) rates between 34 and 62 months. However, recently, a series of large phase III clinical trials examining quadruplet regimens of PIs, IMIDs, corticosteroids, and anti-CD38 mAbs have shown exceptional outcomes, with median PFS exceeding 60 months, albeit with higher rates of peripheral neuropathy (≥Grade 2: 27% vs. 10%) when PIs and IMIDs are combined, and infections (≥Grade 3: 40% vs. 29–41%) with the addition of anti-CD38mAbs. The development of T-cell redirecting therapies including T-cell engagers (TCEs) and CAR-T cells has further expanded the therapeutic arsenal. TCEs have shown exceptional activity in relapsed disease and are being explored in the newly diagnosed setting with promising early results. However, concerns remain regarding the logistical challenges of step-up dosing, which often necessitates inpatient admission, the infectious risks, and the financial burden associated with TCEs in elderly patients. CAR-T, the most potent commercially available therapy for MM, offers the potential of a ‘one and done’ approach. However, its application to elderly patients has been tempered by significant concerns of cytokine release syndrome, early and delayed neurological toxicity, and its overall tolerability in frail patients. Robust data in frail patients are still needed. How CAR-T and TCEs will be sequenced among the growing therapeutic armamentarium for elderly MM patients remains to be determined. This review explores the safety, efficacy, cost, and logistical barriers associated with the above treatments in elderly MM patients. Full article
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

23 pages, 1139 KiB  
Article
A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis
by Anna Artner, Irem Diler, Balázs Hankó, Szilvia Sebők and Romána Zelkó
J. Clin. Med. 2025, 14(15), 5436; https://doi.org/10.3390/jcm14155436 - 1 Aug 2025
Viewed by 216
Abstract
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to [...] Read more.
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to assess Hungarian regulatory practices regarding off-label statin use. Methods: A systematic literature search (PubMed, Web of Science, Scopus, ScienceDirect; 2010–May 2025) was conducted using the terms “drug repositioning” OR “off-label prescription” AND “statin” NOT “cardiovascular,” following PRISMA guidelines. Hungarian off-label usage data from the NNGYK (2008–2025) were also analyzed. Results: Out of 205 publications, 12 met the inclusion criteria—75% were oncology-focused, and 25% focused on infectious diseases. Most were preclinical (58%); only 25% offered strong clinical evidence. Applications included hematologic malignancies, solid tumors, Cryptococcus neoformans, SARS-CoV-2, and dengue virus. Mechanisms involved mevalonate pathway inhibition and modulation of host immune responses. Hungarian data revealed five approved off-label statin uses—three dermatologic and two pediatric metabolic—supported by the literature and requiring post-treatment reporting. Conclusions: While preclinical findings are promising, clinical validation of off-label statin use remains limited. Statins should be continued in cancer patients with cardiovascular indications, but initiation for other purposes should be trial-based. Future directions include biomarker-based personalization, regulatory harmonization, and cost-effectiveness studies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

15 pages, 271 KiB  
Review
The Number Needed to Immunize (NNI) to Assess the Benefit of a Prophylaxis Intervention with Monoclonal Antibodies Against RSV
by Sara Boccalini, Veronica Gironi, Primo Buscemi, Paolo Bonanni, Barbara Muzii, Salvatore Parisi, Marta Borchiellini and Angela Bechini
Vaccines 2025, 13(8), 791; https://doi.org/10.3390/vaccines13080791 - 25 Jul 2025
Viewed by 353
Abstract
Introduction: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections in infants and children, as well as hospitalizations for respiratory infections in the pediatric population, representing a significant public health concern. Nirsevimab, a long-acting anti-RSV monoclonal antibody, has recently [...] Read more.
Introduction: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections in infants and children, as well as hospitalizations for respiratory infections in the pediatric population, representing a significant public health concern. Nirsevimab, a long-acting anti-RSV monoclonal antibody, has recently been approved by the European Medicines Agency (EMA). The aim of this study is to assess the utility of certain parameters, such as the Number Needed to Immunize (NNI), in supporting decision-makers regarding the introduction of nirsevimab as a universal prophylactic measure. Methods: A literature review was conducted to identify the definition and application of the NNI in the context of infectious disease prevention. The following online databases were consulted: Scopus, MEDLINE, Google Scholar, Web of Science, and Cochrane Library. The search was restricted to English-language texts published between 1 January 2000 and 30 January 2025. Results: The NNI represents the number of individuals who need to be immunized to prevent clinical outcomes such as medical visits and hospitalizations caused by infectious diseases. Six studies were identified that utilized this parameter to outline the benefits of immunization and describe the advantages of using monoclonal antibodies for RSV disease. Finelli and colleagues report that to prevent one RSV-related hospitalization, 37–85 infants aged 0–5 months and 107–280 infants aged 6–11 months would need to be immunized with long-acting anti-RSV antibodies. A recent study by Mallah et al. on the efficacy of nirsevimab estimates that the NNI required to prevent one RSV-related hospitalization is 25 infants. Studies by Francisco and O’Leary report NNI values of 82 and 128 infants, respectively, to prevent one RSV-related hospitalization with nirsevimab. Mallah et al. describe NNI as a metric useful to quantify the immunization effort needed to prevent a single RSV hospitalization. A recent Italian study reports that 35 infants need to be immunized to prevent one hospitalization due to RSV-LRTI and 3 infants need to be immunized to prevent one primary care visit due to RSV-LRTI. The studies indicate that the NNI for anti-RSV monoclonal antibodies is lower than the corresponding Number Needed to Vaccinate (NNV) for vaccines already included in national immunization programs. The main limitations of using this parameter include the absence of a shared threshold for interpreting results and the lack of consideration for the indirect effects of immunization on the population. Conclusions: The NNI is an easily understandable tool that can be used to convey the value of an immunization intervention to a variety of stakeholders, thereby supporting public health decision-making processes when considered in association with the uptake of the preventative strategy. At the current status, the estimated NNI of monoclonal antibodies against RSV results favourable and confirms the use in the first year of life for the prevention of RSV disease. Full article
25 pages, 2588 KiB  
Article
Phytochemical Analysis and Therapeutic Potential of Tuberaria lignosa (Sweet) Samp. Aqueous Extract in Skin Injuries
by Manuel González-Vázquez, Ana Quílez Guerrero, Mónica Zuzarte, Lígia Salgueiro, Jorge Alves-Silva, María Luisa González-Rodríguez and Rocío De la Puerta
Plants 2025, 14(15), 2299; https://doi.org/10.3390/plants14152299 - 25 Jul 2025
Viewed by 326
Abstract
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in [...] Read more.
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several Candida and dermatophyte species, while antibiofilm activity was tested against Epidermophyton floccosum. The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of T. lignosa as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy. Full article
Show Figures

Graphical abstract

19 pages, 1204 KiB  
Review
Immunomodulatory Effects of RAAS Inhibitors: Beyond Hypertension and Heart Failure
by Raluca Ecaterina Haliga, Elena Cojocaru, Oana Sîrbu, Ilinca Hrițcu, Raluca Elena Alexa, Ioana Bianca Haliga, Victorița Șorodoc and Adorata Elena Coman
Biomedicines 2025, 13(7), 1779; https://doi.org/10.3390/biomedicines13071779 - 21 Jul 2025
Viewed by 466
Abstract
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use [...] Read more.
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use in hypertension and heart failure, extending to autoimmune, infectious, oncologic, and neurodegenerative conditions. ACEIs and ARBs modulate both innate and adaptive immune responses through Ang II-dependent and -independent mechanisms, influencing macrophage polarization, T-cell differentiation, cytokine expression, and antigen presentation. Notably, ACEIs exhibit Ang II-independent effects by enhancing antigen processing and regulating amyloid-β metabolism, offering potential neuroprotective benefits in Alzheimer’s disease. ARBs, particularly telmisartan and candesartan, provide additional anti-inflammatory effects via PPARγ activation. In cancer, RAAS inhibition affects tumor growth, angiogenesis, and immune surveillance, with ACEIs and ARBs showing distinct yet complementary impacts on tumor microenvironment modulation and chemotherapy cardioprotection. Moreover, ACEIs have shown promise in autoimmune myocarditis, colitis, and diabetic nephropathy by attenuating inflammatory cytokines. While clinical evidence supports the use of centrally acting ACEIs to treat early cognitive decline, further investigation is warranted to determine the long-term outcomes across disease contexts. These findings highlight the evolving role of RAAS inhibitors as immunomodulatory agents with promising implications across multiple systemic pathologies. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology, 2nd Edition)
Show Figures

Figure 1

28 pages, 1369 KiB  
Review
Expanding Horizons: Opportunities for Diclofenac Beyond Traditional Use—A Review
by Mykhailo Dronik and Maryna Stasevych
Sci. Pharm. 2025, 93(3), 31; https://doi.org/10.3390/scipharm93030031 - 16 Jul 2025
Viewed by 379
Abstract
This study systematically reviews the non-traditional pharmacological effects of diclofenac, a well-known nonsteroidal anti-inflammatory drug, to explore its potential for drug repositioning beyond its established analgesic and anti-inflammatory applications. A comprehensive literature search was conducted using the PubMed, Scopus and Web of [...] Read more.
This study systematically reviews the non-traditional pharmacological effects of diclofenac, a well-known nonsteroidal anti-inflammatory drug, to explore its potential for drug repositioning beyond its established analgesic and anti-inflammatory applications. A comprehensive literature search was conducted using the PubMed, Scopus and Web of Science databases, covering studies from 1981 to 2025. It was revealed that over 94% of records in Scopus and Web of Science are duplicated in PubMed, so the latter was used for the search in our study. After duplicate removal and independent screening, 89 from 1123 retrieved studies were selected for the search. The analysis revealed a broad spectrum of diclofenac’s non-traditional pharmacological activities, including neuroprotective, antiamyloid, anticancer, antiviral, immunomodulatory, antibacterial, antifungal, anticonvulsant, radioprotective, and antioxidant properties, primarily identified through preclinical In vitro and In vivo studies. These effects are mediated through diverse molecular pathways beyond cyclooxygenase inhibition, such as modulation of neurotransmitter release, apoptosis, and cellular proliferation. Diclofenac showed potential for repositioning in oncology, neurodegenerative disorders, infectious diseases, and immune-mediated conditions. Its hepatotoxicity and cardiovascular risks necessitate strategies like advanced drug formulations, dose optimization, and personalized medicine to enhance safety. Large-scale randomized clinical trials are essential to validate these findings and ensure safe therapeutic expansion. Full article
Show Figures

Graphical abstract

18 pages, 3292 KiB  
Article
Berberine Reveals Anticoccidial Activity by Influencing Immune Responses in Eimeria acervulina-Infected Chickens
by Binh T. Nguyen, Bujinlkham Altanzul, Rochelle A. Flores, Honghee Chang, Woo H. Kim, Suk Kim and Wongi Min
Biomolecules 2025, 15(7), 985; https://doi.org/10.3390/biom15070985 - 10 Jul 2025
Viewed by 349
Abstract
Serious enteric disease caused by seven species of Eimeira continues to cause significant economic damage to the poultry industry. E. acervulina is one of the most widespread strains in farms and has a significant impact on chicken weight loss. Currently, the use of [...] Read more.
Serious enteric disease caused by seven species of Eimeira continues to cause significant economic damage to the poultry industry. E. acervulina is one of the most widespread strains in farms and has a significant impact on chicken weight loss. Currently, the use of anticoccidial agents to suppress the occurrence of coccidiosis in farms is considerably restricted due to public health and environmental pollution issues. It is important to understand the protective immunity of the host against Eimeria infections with regard to natural products that could be used as alternatives to anticoccidial agents. Berberine chloride is known for its various biological functions, including its anti-parasite activity. However, its impact on intestinal morphology and immune-related activity in broilers infected with Eimeria still remains unclear. The aim of this study is to evaluate the anticoccidial effects of a berberine-based diet in broilers infected with E. acervulina and to monitor the host immune phenomenon using transcriptomic analysis. Administration of berberine to chickens infected with E. acervulina significantly reduced fecal oocyst production and intestinal lesion scores, and increased duodenal villus height, indicating anticoccidial activity and positive effects on intestinal morphology. Transcriptomic analysis of chickens infected with E. acervulina generally observed the down-regulation of metabolism-related genes and the up-regulation of cell integrity-related genes at day 4 post-infection. At day 6 post-infection, an increase in immune-related genes and cellular-homeostasis-related genes was generally observed. Berberine-treated and E. acervulina-infected chickens showed cytokine-cytokine receptor interaction in the second term in a Kyoto Encyclopedia of Genes and Genomes pathway analysis at day 4 post-infection, but not in chickens infected with E. acervulina alone, suggesting host immune changes induced by berberine. These results suggest that berberine, which exhibits anticoccidial effects, may have therapeutic and/or prophylactic potential in protecting the host from infectious and economic-loss-causing diseases, such as Eimeria infection. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

18 pages, 2761 KiB  
Article
Transcriptomic Profiling of Misgurnus anguillicaudatus Reveals the Anti-Inflammatory Action of Lonicera japonica Extract in Response to Lipopolysaccharide Challenge
by Yue Zhao, Chen Wang and Qiuning Liu
Fishes 2025, 10(7), 333; https://doi.org/10.3390/fishes10070333 - 7 Jul 2025
Viewed by 276
Abstract
Honeysuckle, derived from the dried flower buds or blossoms of Lonicera japonica Thunb, is a traditional Chinese medicine known for its properties in eliminating heat and toxins, reducing inflammation, and alleviating swelling. In this study, we investigated the potential therapeutic and preventive benefits [...] Read more.
Honeysuckle, derived from the dried flower buds or blossoms of Lonicera japonica Thunb, is a traditional Chinese medicine known for its properties in eliminating heat and toxins, reducing inflammation, and alleviating swelling. In this study, we investigated the potential therapeutic and preventive benefits of L. japonica extract on inflammatory diseases induced by lipopolysaccharide (LPS) using Misgurnus anguillicaudatus as a model organism. The fish were fed a diet supplemented with L. japonica extract, followed by LPS injection to induce inflammation. We then analyzed the transcriptional profile to identify differentially expressed genes (DEGs). A total of 6611 DEGs were identified through comprehensive analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Our results revealed significant enrichment of DEGs in pathways associated with proteasome function, immune system regulation, and infectious disease response. These findings suggest a strong correlation between L. japonica and immune defense mechanisms, providing valuable insights into the potential anti-inflammatory effects of this plant, particularly in the context of LPS-induced inflammation. This study highlights the potential use of L. japonica in treating inflammatory diseases and underscores its role in immune regulation. Full article
(This article belongs to the Special Issue Molecular Mechanism of Fish Immune Response to Pathogens)
Show Figures

Figure 1

10 pages, 1483 KiB  
Article
Antimicrobial and Anti-Inflammatory Potentials of Silver Tungstate Nanoparticles, Cytotoxicity and Interference on the Activity of Antimicrobial Drugs
by Washington de Souza Leal, Juliane Zacour Marinho, Isabela Penna Ceravolo, Lucas Leão Nascimento, Antonio Otávio de Toledo Patrocínio and Marcus Vinícius Dias-Souza
Drugs Drug Candidates 2025, 4(3), 30; https://doi.org/10.3390/ddc4030030 - 23 Jun 2025
Viewed by 315
Abstract
Background: Bacterial resistance to antimicrobial drugs is a critical phenomenon that is hampering clinical treatments, raising the need for promising compounds that can be explored as pharmaceutical products. This study investigated the antimicrobial potential of α-Ag2WO4–alpha phase, orthorhombic structure [...] Read more.
Background: Bacterial resistance to antimicrobial drugs is a critical phenomenon that is hampering clinical treatments, raising the need for promising compounds that can be explored as pharmaceutical products. This study investigated the antimicrobial potential of α-Ag2WO4–alpha phase, orthorhombic structure silver tungstate nanoparticles (STN), against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, alone and combined to clinically relevant antimicrobial drugs. Methods: We used classical methods (MIC/checkerboard) to investigate the antimicrobial activity of STN. We characterized STN using X-ray diffraction, photoluminescence and scanning electron microscopy. We also performed cytotoxicity tests on BGM cells and anti-inflammatory tests in vitro. Results: STN was effective at 128 µg/mL for S. aureus and at 256 µg/mL for E. coli, but was not effective against P. aeruginosa. When combined with antimicrobials, STN decreased their MIC values, and its anti-inflammatory potential was confirmed. CC50 of STN was of 16.23 ± 1.09 μg/mL against BGM cells. Conclusions: Our data open doors for further studies in animal models to investigate the effects on STN in infectious diseases. Full article
(This article belongs to the Section Medicinal Chemistry and Preliminary Screening)
Show Figures

Figure 1

14 pages, 651 KiB  
Article
Safety and Efficacy of Simultaneous Vaccination with Polysaccharide Conjugate Vaccines Against Pneumococcal (13-Valent Vaccine) and Haemophilus Type B Infections in Children with Systemic Juvenile Idiopathic Arthritis: Prospective Cohort Study
by Ekaterina Alexeeva, Tatyana Dvoryakovskaya, Dmitry Kudlay, Anna Fetisova, Ivan Kriulin, Elizaveta Krekhova, Anna Kabanova, Vladimir Labinov, Elizaveta Labinova and Mikhail Kostik
Vaccines 2025, 13(6), 644; https://doi.org/10.3390/vaccines13060644 - 15 Jun 2025
Viewed by 635
Abstract
Background: The introduction of biological drugs into clinical practice for the treatment of children with systemic juvenile idiopathic arthritis (sJIA) allows disease control but increases the risk of infectious events. Infectious events cause immunosuppressive therapy interruptions, leading to disease flare and life-threatening [...] Read more.
Background: The introduction of biological drugs into clinical practice for the treatment of children with systemic juvenile idiopathic arthritis (sJIA) allows disease control but increases the risk of infectious events. Infectious events cause immunosuppressive therapy interruptions, leading to disease flare and life-threatening complications, namely macrophage activation syndrome. Our study aimed to evaluate the efficacy and safety of simultaneous vaccination against pneumococcal and Haemophilus influenzae type b (Hib) in children with sJIA. Methods: This study included 100 sJIA patients receiving immunosuppressive therapy who were simultaneously vaccinated against pneumococcal and Haemophilus influenzae type b (Hib) infections. The mean age of disease onset was 5.5 years. The median age at vaccination was 10 ± 4.5 years. Clinical and laboratory parameters of sJIA activity, immunization efficacy, and safety, including anti-SP and anti-Hib IgG antibodies, as well as all vaccination-related adverse events (AEs), were recorded in every patient before, 3 weeks after, and 6 months after vaccination. Results: At the time of vaccination, 29% of patients did not meet the criteria for the inactive disease stage, as defined by C. Wallace: active joints were present in 34.5% of patients, systemic manifestations (rash and/or fever) were present in 41.3%, and 24.2% of patients had solely inflammatory laboratory activity. The protective titer of anti-SP and anti-Hib IgG antibodies was detected in the majority of patients 3 weeks after vaccination (100% and 93%, respectively). The results remained unchanged (99% and 92%, respectively) for 6 months of follow-up, compared to the baseline (91% and 37%, p = 0.000001). Anti-SP IgG and anti-Hib titers raised from 48.3 (18.2; 76.5) and 0.64 (0.3; 3.2) U/mL at the baseline to 103.5 (47.3; 185.4) and 4 (3.5; 4.2) U/mL at D22 and 105 (48.7; 171.8) and 4 (3.8; 4) U/mL (EOS), respectively. Immunosuppressive therapy regimens (combined therapy or biological disease-modifying antirheumatic drug monotherapy) did not influence the immunogenic efficacy of vaccination. The incidence of infectious complications (p = 0.0000001) and antibiotic prescriptions (p = 0.0000001) decreased by more than two times, to 29.9 and 13.8 events per 100 patient months, respectively, within 6 months after vaccination—the average duration of acute infectious events was reduced by five times after immunization (p = 0.0000001). Vaccination did not lead to disease flare: the number of patients with active joints decreased by half compared to the baseline, and the number of patients with systemic manifestations decreased by six times. All vaccine-associated adverse events were considered mild and resolved within 1–2 days. Conclusions: Simultaneous vaccination against pneumococcal and Hib infections in sJIA children is an effective and safe tool that reduces the number and duration of infectious events and does not cause disease flare-ups. Full article
(This article belongs to the Special Issue Pneumococcal Vaccines: Current Status and Future Prospects)
Show Figures

Graphical abstract

19 pages, 1445 KiB  
Review
Understanding the Immune System’s Intricate Balance: Activation, Tolerance, and Self-Protection
by Jui-Yun Chen, Li-Jane Shih, Min-Tser Liao, Kuo-Wang Tsai, Kuo-Cheng Lu and Wan-Chung Hu
Int. J. Mol. Sci. 2025, 26(12), 5503; https://doi.org/10.3390/ijms26125503 - 8 Jun 2025
Viewed by 858
Abstract
Understanding the mechanisms of immune activation and deactivation is paramount. A host must initiate effective immunity against pathogenic infections while avoiding triggering immunity against self-antigens, which can lead to detrimental autoimmune disorders. Host immunological pathways can be categorized as Immunoglobulin (Ig)G-dominant eradicable immune [...] Read more.
Understanding the mechanisms of immune activation and deactivation is paramount. A host must initiate effective immunity against pathogenic infections while avoiding triggering immunity against self-antigens, which can lead to detrimental autoimmune disorders. Host immunological pathways can be categorized as Immunoglobulin (Ig)G-dominant eradicable immune reactions and IgA-dominant tolerable immune reactions. Eradicable immune reactions include Th1, Th2, Th22, and Thαβ immune responses against four different types of pathogens. Tolerable immune reactions include Th1-like, Th9, Th17, and Th3 immune responses against four different types of pathogens. Here, we try to determine the mechanisms of activation and deactivation of host immune reactions. The spleen and liver play contrasting roles in mediating immune responses: the spleen is primarily involved in immune activation, whereas the liver is responsible for immune deactivation. Similarly, the sympathetic and parasympathetic nervous systems have opposing functions in immune modulation, with the sympathetic system promoting pro-inflammatory responses and the parasympathetic system facilitating anti-inflammatory processes. Furthermore, adrenocorticotropic hormone (ACTH) and glucocorticosteroids exhibit contrasting effects on immune regulation: ACTH is involved in activating adaptive immunity while inhibiting innate immunity, whereas glucocorticosteroids activate natural IgM antibody associated with innate immunity while inhibiting adaptive immunity. Heat shock proteins, particularly molecular chaperones induced by fever, play pivotal roles in immune activation. Conversely, IgD B cells and gamma/delta T cells contribute to immune deactivation through mechanisms such as clonal anergy. Understanding these mechanisms provides insights into immunological pathways, aiding in the better management of infectious diseases and autoimmune disorders. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Diseases)
Show Figures

Figure 1

22 pages, 1321 KiB  
Article
Assessment of Innovative Dry Powders for Inhalation of a Synergistic Combination Against Mycobacterium tuberculosis in Infected Macrophages and Mice
by Faustine Ravon, Emilie Berns, Isaline Lambert, Céline Rens, Pierre-Yves Adnet, Mehdi Kiass, Véronique Megalizzi, Cédric Delporte, Alain Baulard, Vanessa Mathys, Samira Boarbi, Nathalie Wauthoz and Véronique Fontaine
Pharmaceutics 2025, 17(6), 705; https://doi.org/10.3390/pharmaceutics17060705 - 27 May 2025
Viewed by 560
Abstract
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages [...] Read more.
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages make pulmonary administration highly attractive. This study aimed to develop and assess the efficacy of dry powders for inhalation of VAN microparticles embedded with THL. Methods: The dry powders produced by spray-drying, with or without hydrogenated castor oil (HCO), were characterized for their physicochemical properties among others by HPLC-DAD. The fast-screening impactor was used to determine powder aerodynamic properties, and VAN and THL releases were established from the paddle over disk method. Biological activities were assessed in a new M. bovis-infected macrophage model and in Mtb-infected mice. Results and Discussion: The addition of 25% HCO enables co-deposition (fine particle dose) at the desired weight ratio and co-releasing of VAN and THL in aqueous media. Microparticles with 0% to 50% HCO drastically reduced cytoplasmic Mycobacterium bovis survival (99.9% to 62.5%, respectively), with higher efficacy at low HCO concentration. Consequently, VAN/THL with or without 25% HCO was evaluated in Mtb-infected mice. Although no decrease in Mtb lung burden was observed after two weeks of administration, the endotracheal administration of VAN 500 mg/kg and THL 50 mg/kg with 25% HCO administrated three times during five days concomitantly with daily oral rifampicin (10 mg/kg) demonstrated 2-fold bacterial burden reduction compared to the group treated with RIF alone. Conclusions: HCO was crucial for obtaining a fine particle dose at the synergistic weight ratio (VAN/THL 10:1) and for releasing both drugs in aqueous media. With oral administration of the first-line rifampicin, the dry powder VAN/THL/25% HCO was able to exert a potential anti-tubercular effect in vivo in Mtb-infected mice after five days. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

18 pages, 3675 KiB  
Article
Virtual Screening of Novel Benzothiozinone Derivatives to Predict Potential Inhibitors of Mycobacterium Tuberculosis Kinases 2D-QSAR, Molecular Docking, MM-PBSA Dynamics Simulations, and ADMET Properties
by Abdelmadjid Guendouzi, Lotfi Belkhiri, Zakaria Slimani, Abdelkrim Guendouzi and Gautier Moroy
Int. J. Mol. Sci. 2025, 26(11), 5129; https://doi.org/10.3390/ijms26115129 - 27 May 2025
Viewed by 556
Abstract
Mycobacterium tuberculosis, the infectious agent behind tuberculosis (TB), underscores the significance of targeting enzymes such as arabinosyltransferases in drug development efforts. Benzothiozinone derivatives, which have been assessed for their effectiveness against TB, present a promising avenue for treatment. Utilizing a high virtual screening [...] Read more.
Mycobacterium tuberculosis, the infectious agent behind tuberculosis (TB), underscores the significance of targeting enzymes such as arabinosyltransferases in drug development efforts. Benzothiozinone derivatives, which have been assessed for their effectiveness against TB, present a promising avenue for treatment. Utilizing a high virtual screening quantitative structure–activity relationship (QSAR-VS), a set of forty Benzothiozinone (C1–C40) compounds were investigated to build a robust model with satisfactory performance metrics (R2 = 0.82, R2adj = 0.78, Ntest = 10, R2test = 0.70). This model enabled the creation of databases containing new derivatives for screening drug-like properties and predicting MIC activity in TB treatment. The best-scoring compounds were screened by molecular docking with Mycobacterium tuberculosis kinases A and B (PDB code: 6B2P) and validated by molecular dynamics simulations to elucidate the most stable drug–protein interactions. Additionally, the MM-PBSA analysis shows that the strongest binding occurs in complexes X3, X4, and X6 with ΔGbind values of −8.2, −15.3, and −12.0 kcal/mol, respectively. Our in silico study aims to prospect these new anti-tubercular drugs and their potential development through perspective in vitro and in vivo assays. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

21 pages, 5818 KiB  
Article
Azvudine Suppresses Epithelial–Mesenchymal Transition in Hepatocellular Carcinoma by Targeting the Notch–HEY Signalling Pathway
by Yao Meng, Peiyi Sun, Yixin Ren, Guoqing Li, Xiujun Liu, Chunjie Xu, Luyao Dong, Hanhan Li, Zhonghui Zheng, Xuefu You and Xinyi Yang
Int. J. Mol. Sci. 2025, 26(11), 5127; https://doi.org/10.3390/ijms26115127 - 27 May 2025
Viewed by 470
Abstract
Azvudine (FNC) is a novel cytidine analogue that is widely used in the treatment of infectious diseases such as AIDS and COVID-19. Previous studies have demonstrated its anticancer activity in various cancer cell lines, including non-Hodgkin’s lymphomas and lung adenocarcinoma cell lines. However, [...] Read more.
Azvudine (FNC) is a novel cytidine analogue that is widely used in the treatment of infectious diseases such as AIDS and COVID-19. Previous studies have demonstrated its anticancer activity in various cancer cell lines, including non-Hodgkin’s lymphomas and lung adenocarcinoma cell lines. However, its effects on hepatocellular carcinoma (HCC) and the underlying mechanisms remain unclear. This study aimed to investigate the anti-epithelial–mesenchymal transition (anti-EMT) activity of FNC and evaluate its potential application in HCC treatment. We found that FNC significantly inhibits the migration of the liver cancer cell line Huh7 by downregulating key EMT markers, such as matrix metalloproteinases (MMPs) and E-cadherin, at both the transcriptional and protein expression levels. Notably, we found that FNC inhibits HEY proteins, particularly HEY1, a transcriptional regulator of the Notch signalling pathway that is overexpressed in approximately 50% of HCC patients. To identify the primary target of FNC, microscale thermophoresis (MST) and molecular dynamics (MD) simulations were performed, revealing that FNC directly binds to Jagged1. This study provides valuable insights into the therapeutic potential of FNC in HCC treatment and elucidates its underlying mechanisms. Full article
(This article belongs to the Special Issue Development of Anti-Cancer Agents: Advances in Chemistry and Analysis)
Show Figures

Figure 1

Back to TopTop