Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (523)

Search Parameters:
Keywords = anti-IL 5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7421 KiB  
Article
Pristimerin Dampens Acetaminophen-Induced Hepatotoxicity; The Role of NF-κB/iNOS/COX-II/Cytokines, PI3K/AKT, and BAX/BCL-2/Caspase-3 Signaling Pathways
by Mohammed A. Altowijri, Marwa E. Abdelmageed, Randa El-Gamal, Tahani Saeedi and Dina S. El-Agamy
Pharmaceutics 2025, 17(8), 1003; https://doi.org/10.3390/pharmaceutics17081003 - 31 Jul 2025
Viewed by 349
Abstract
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. [...] Read more.
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. Our goal was to explore the protective effects of Prist against APAP-induced acute liver damage. Method: Mice were divided into six groups: control, Prist control, N-acetylcysteine (NAC) + APAP, APAP, and two Prist + APAP groups. Prist (0.4 and 0.8 mg/kg) was given for five days and APAP on day 5. Liver and blood samples were taken 24 h after APAP administration and submitted for different biochemical and molecular assessments. Results: Prist counteracted APAP-induced acute liver damage, as it decreased general liver dysfunction biomarkers, and attenuated APAP-induced histopathological lesions. Prist decreased oxidative stress and enforced hepatic antioxidants. Notably, Prist significantly reduced the genetic and protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-II), p-phosphatidylinositol-3-kinase (p-PI3K), p-protein kinase B (p-AKT), and the inflammatory cytokines: nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins-(IL-6 and IL-1β) in hepatic tissues. Additionally, the m-RNA and protein levels of the apoptotic Bcl2-associated X protein (BAX) and caspase-3 were lowered and the anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) was increased upon Prist administration. Conclusion: Prist ameliorated APAP-induced liver injury in mice via its potent anti-inflammatory/antioxidative and anti-apoptotic activities. These effects were mediated through modulation of NF-κB/iNOS/COX-II/cytokines, PI3K/AKT, and BAX/BCL-2/caspase-3 signaling pathways. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

26 pages, 3200 KiB  
Article
The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing
by Olga-Maria Iova, Gheorghe-Eduard Marin, Ana-Maria Vlase, Marcela Achim, Dana Muntean, Ioan Tomuţă, Remus Moldovan, Nicoleta Decea, Bogdan Alexandru Gheban, Sebastian Romeo Pintilie, Oana-Alina Hoteiuc, Roxana Denisa Capras and Adriana Gabriela Filip
Appl. Sci. 2025, 15(15), 8388; https://doi.org/10.3390/app15158388 - 29 Jul 2025
Viewed by 282
Abstract
Anthyllis vulneraria is a traditional medicinal plant with confirmed anti-inflammatory properties, attributed to its high polyphenolic content. This study aimed to evaluate the wound-healing potential of A. vulneraria leaf extract in a rat burn model. Four groups of eight Wistar rats each received [...] Read more.
Anthyllis vulneraria is a traditional medicinal plant with confirmed anti-inflammatory properties, attributed to its high polyphenolic content. This study aimed to evaluate the wound-healing potential of A. vulneraria leaf extract in a rat burn model. Four groups of eight Wistar rats each received the following daily topical applications for 14 days: vehicle cream (negative control); silver sulfadiazine (positive control); or plant-based creams containing either 1 mg/cm2 or 2 mg/cm2 of polyphenols (experimental groups 1 and 2, respectively). On days 7 and 14, four animals per group were euthanized for histological and oxidative stress evaluations. LC-MS/MS analysis of the leaf extract identified hyperoside, ferulic acid, and p-coumaric acid as major constituents. Experimental group 1 showed significantly enhanced wound closure on days 5 and 7, while group 2 exhibited a significant effect on day 5. All oxidative stress markers, except catalase activity, differed significantly among the groups, with the most favorable results observed in group 2. IL-8 levels decreased after the extract treatment, while no significant microscopic changes were observed. These results indicate that A. vulneraria leaf extract may serve as a valuable adjuvant in burn wound healing. Full article
Show Figures

Figure 1

21 pages, 2393 KiB  
Article
Antioxidant and Anti-Inflammatory Activities of Latilactobacillus curvatus and L. sakei Isolated from Green Tripe
by Ga Hun Lee, Sung Hyun Choi, Yong Hyun Lee and Jae Kweon Park
Nutrients 2025, 17(15), 2464; https://doi.org/10.3390/nu17152464 - 28 Jul 2025
Viewed by 412
Abstract
Background/Objectives: Green tripe (GRET) is rich in essential fatty acids, vitamins, calcium, phosphorus, and other nutrients and contains various beneficial microorganisms, including lactobacillus, along with feed components consumed by ruminants. Methods: In this study, Latilactobacillus sakei and L. curvatus were isolated from GRET [...] Read more.
Background/Objectives: Green tripe (GRET) is rich in essential fatty acids, vitamins, calcium, phosphorus, and other nutrients and contains various beneficial microorganisms, including lactobacillus, along with feed components consumed by ruminants. Methods: In this study, Latilactobacillus sakei and L. curvatus were isolated from GRET and evaluated for their potential as probiotics, focusing on their anti-inflammatory properties and ability to modulate inflammatory responses. Results: When heat-killed L. sakei or L. curvatus (108 CFU/mL) and their metabolites (0.5 mg/mL) were applied to RAW 264.7 macrophages stimulated with LPS, nitric oxide (NO) production was reduced by approximately 10–35% and 2–11%, respectively. Furthermore, the expression levels of key anti-inflammatory cytokines, TNF-α and IL-6, were suppressed by more than 5%. These effects were not due to cytotoxicity but instead due to genuine anti-inflammatory activity. In addition, both strains exhibited antioxidant activity, as demonstrated by their performance in ABTS and FRAP assays. Conclusions: These findings suggest that L. sakei and L. curvatus have significant antioxidant and anti-inflammatory properties, highlighting their potential as probiotics and prebiotics. Moreover, these newly isolated strains from GRET are expected to serve as valuable functional ingredients for developing health-promoting foods and dietary supplements. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

22 pages, 3942 KiB  
Article
The Therapeutic Potential of Galium verum for Psoriasis: A Combined Phytochemical, In Silico, and Experimental Approach
by Branislava Daskalovic, Vladimir Jakovljevic, Sergej Bolevic, Marijana Andjic, Jovana Bradic, Aleksandar Kocovic, Milos Nikolic, Nikola Nedeljkovic, Jovan Milosavljevic, Jovan Baljak, Milos Krivokapic, Svetlana Trifunovic and Jasmina Sretenovic
Int. J. Mol. Sci. 2025, 26(15), 7290; https://doi.org/10.3390/ijms26157290 - 28 Jul 2025
Viewed by 226
Abstract
Psoriasis is a chronic inflammatory skin disorder involving oxidative stress and immune dysregulation. Given the limitations and adverse effects of conventional therapies, interest in natural treatments with anti-oxidant and immunomodulatory properties is increasing. This study aimed to comprehensively evaluate the therapeutic potential of [...] Read more.
Psoriasis is a chronic inflammatory skin disorder involving oxidative stress and immune dysregulation. Given the limitations and adverse effects of conventional therapies, interest in natural treatments with anti-oxidant and immunomodulatory properties is increasing. This study aimed to comprehensively evaluate the therapeutic potential of Galium verum extract in an imiquimod-induced rat model of psoriasis. The extract was chemically characterized by HPLC and evaluated for anti-oxidant activity using DPPH, ABTS, and FRAP assays. Molecular docking studies targeted psoriasis-related proteins (IL-17, IL-22, IL-23, JAK2, MAPK2, NF-κB, STAT3), revealing strong binding affinities for rutin and quercetin, the extract’s dominant bioactives. In vivo, 18 Wistar albino male rats were divided into control (CTRL), psoriasis (PSORI), and psoriasis treated with Galium verum (PSORI + GV) groups. A seven-day topical application of 5% imiquimod cream was used for the induction of psoriasis. The PSORI + GV group received 250 mg/kg Galium verum extract orally for 7 days. Morphometric and redox analyses were performed. Histological and morphometric analyses showed reduced epidermal thickness, inflammation, and collagen content. Redox analysis revealed lowered oxidative stress biomarkers and enhanced anti-oxidant defenses. These findings suggest that Galium verum extract exerts anti-psoriatic effects through antioxidative and immunomodulatory mechanisms, supporting its potential as a natural adjunct therapy for psoriasis. Full article
Show Figures

Figure 1

17 pages, 896 KiB  
Review
Analysis of Phosphodiesterase-5 (PDE5) Inhibitors in Modulating Inflammatory Markers in Humans: A Systematic Review and Meta-Analysis
by Cassandra Cianciarulo, Trang H. Nguyen, Anita Zacharias, Nick Standen, Joseph Tucci and Helen Irving
Int. J. Mol. Sci. 2025, 26(15), 7155; https://doi.org/10.3390/ijms26157155 - 24 Jul 2025
Viewed by 444
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. [...] Read more.
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. A systematic review and meta-analysis were conducted to evaluate the impact of PDE5 inhibitors on inflammatory and endothelial markers in adult humans. Randomized controlled trials comparing PDE5 inhibition to placebo were identified through electronic database searches. Outcomes included pro-inflammatory markers (TNF-α, IL-6, IL-8, CRP, VCAM-1, ICAM-1, P-selectin) and anti-inflammatory or signalling markers (IL-10, NO, cGMP), assessed at short-term (≤1 week), intermediate-term (4–6 weeks), or long-term (≥12 weeks) follow-up. Risk of bias was assessed using the Cochrane RoB 2 tool. A total of 20 studies comprising 1549 participants were included. Meta-analyses showed no significant short-term effects of PDE5 inhibition on TNF-α, IL-6, or CRP. Long-term treatment was associated with reduced IL-6 (SMD = −0.64, p = 0.002) and P-selectin (SMD = −0.57, p = 0.02), and increased cGMP (SMD = 0.87, p = 0.0003). Effects on IL-10 and nitric oxide were inconsistent across studies. Most trials had low risk of bias. PDE5 inhibitors may exert anti-inflammatory effects in long-term use by reducing vascular inflammation and enhancing cGMP signalling. These findings support further investigation of PDE5 in chronic inflammatory conditions. Full article
(This article belongs to the Special Issue cGMP Signaling: From Bench to Bedside)
Show Figures

Figure 1

14 pages, 659 KiB  
Article
Effects of Ursolic Acid on Immune Function and Antioxidative Capacity in Weaned Rabbits
by Yanhua Liu, Saijuan Chen, Fengyang Wu, Baojiang Chen, Chong Li, Xinyu Yang, Gang Zhang and Man Hu
Animals 2025, 15(15), 2159; https://doi.org/10.3390/ani15152159 - 22 Jul 2025
Viewed by 331
Abstract
This study aimed to investigate the effects of dietary supplementation with different levels of ursolic acid (UA) on the growth performance, immune function, intestinal antioxidant capacity, and anti-inflammatory responses of weaned rabbits. A total of 160 Hyla meat rabbits aged 35 days were [...] Read more.
This study aimed to investigate the effects of dietary supplementation with different levels of ursolic acid (UA) on the growth performance, immune function, intestinal antioxidant capacity, and anti-inflammatory responses of weaned rabbits. A total of 160 Hyla meat rabbits aged 35 days were randomly assigned to four groups. Each treatment group consisted of 8 replicates, with 5 rabbits per replicate. The rabbits were fed a basal diet (control group, CON) or experimental diets supplemented with 50, 100, or 200 mg/kg UA for 28 days. Dietary supplementation with 50 mg/kg UA significantly increased (p < 0.05) the average daily gain and average daily feed intake. The villus height, crypt depth, and villus height to crypt depth ratio exhibited quadratic responses (p < 0.05) to increasing dietary UA levels, with rabbits fed 50 mg/kg UA showing optimal ileal morphology. Compared with the CON group, dietary supplementation with 50 mg/kg UA significantly enhanced (p < 0.05) cecal catalase activity, secretory immunoglobulin A, and interleukin-10 (IL-10) levels, while the addition of 200 mg/kg UA increased (p < 0.05) serum catalase activity. The concentrations of serum tumor necrosis factor-α (TNF-α) and cecal IL-10 responded quadratically (p < 0.01 and p = 0.01, respectively) as the dietary UA level increased. With increasing UA supplementation, cecal Kelch-like ECH-associated protein 1 and IL-10 mRNA expression showed linear upregulation (p < 0.05), whereas nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1 (SOD1), quinone oxidoreductase 1 (NQO1), TNF-α, interleukin-6, and interleukin-8 displayed quadratic responses (p < 0.05). Dietary UA at 50 mg/kg significantly downregulated cecal TNF-α and interleukin-1β mRNA expression while upregulating Nrf2, NQO1, and SOD1 mRNA levels (p < 0.05). In conclusion, dietary supplementation with 50 mg/kg UA significantly improved the growth performance of weaned rabbits by improving intestinal morphology, immune function, and antioxidant and anti-inflammatory capacities, demonstrating its efficacy as a natural phytogenic feed additive. Full article
(This article belongs to the Special Issue Use of Agro-Industrial Co-Products in Animal Nutrition)
Show Figures

Figure 1

19 pages, 13952 KiB  
Article
Antioxidant and Anti-Inflammatory Effects of Crude Gastrodia elata Polysaccharides in UVB-Induced Acute Skin Damage
by Jiajia Liu, Xiaoqi Yang, Xing Huang, Yuan Luo, Qilin Zhang, Feng Wang, Yicen Lin and Lianbing Lin
Antioxidants 2025, 14(7), 894; https://doi.org/10.3390/antiox14070894 - 21 Jul 2025
Viewed by 518
Abstract
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol [...] Read more.
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol precipitation. It is a homogeneous polysaccharide with a weight-average molecular weight of 808.863 kDa, comprising Ara, Glc, Fru, and GalA. Histopathological analysis revealed that topical application of GP on the dorsal skin of mice effectively restored normal physiological structure, suppressing epidermal hyperplasia and collagen degradation. Biochemical assays showed that GP significantly reduced the activities of MPO and MDA following UVB exposure while restoring the enzymatic activities of SOD and GSH, thereby mitigating oxidative stress. Moreover, GP treatment markedly upregulated the anti-inflammatory cytokines TGF-β and IL-10 and downregulated the pro-inflammatory mediators IL-6, IL-1β, and TNF-α, suggesting robust anti-inflammatory effects. Transcriptomics revealed dual-phase mechanisms: Early repair (day 5) involved GP-mediated suppression of hyper inflammation and accelerated necrotic tissue clearance via pathway network modulation. Late phase (day 18) featured enhanced anti-inflammatory, antioxidant, and tissue regeneration processes through energy-sufficient, low-inflammatory pathway networks. Through a synergistic response involving antioxidation, anti-inflammation, promotion of collagen synthesis, and acceleration of skin barrier repair, GP achieves comprehensive repair of UVB-induced acute skin damage. Our findings not only establish GP as a potent natural alternative to synthetic photoprotective agents but also reveal novel pathway network interactions governing polysaccharide-mediated skin regeneration. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

20 pages, 1092 KiB  
Article
Design and Synthesis of Boronic Chalcones with Dual Anticancer and Anti-Inflammatory Activity
by Juliana Romano Lopes, Freddy Humberto Marin-Dett, Rita Alexandra Machado Silva, Rafael Consolin Chelucci, Lucília Saraiva, Maria Emília Sousa, Leonardo Luiz Gomes Ferreira, Adriano Defini Andricopulo, Paula Aboud Barbugli and Jean Leandro Dos Santos
Molecules 2025, 30(14), 3032; https://doi.org/10.3390/molecules30143032 - 19 Jul 2025
Viewed by 435
Abstract
Head and neck cancer (HNC) is a highly aggressive malignancy with limited treatment options and poor prognosis. Inflammation plays a critical role in HNC progression, with elevated levels of pro-inflammatory cytokines such as TNF, IL-6, IL-8, and IL-1β contributing to tumor development. In [...] Read more.
Head and neck cancer (HNC) is a highly aggressive malignancy with limited treatment options and poor prognosis. Inflammation plays a critical role in HNC progression, with elevated levels of pro-inflammatory cytokines such as TNF, IL-6, IL-8, and IL-1β contributing to tumor development. In this study, a novel series of boronic chalcones was designed and synthesized as potential dual-action anticancer and anti-inflammatory agents. The most potent compounds were evaluated for their cytotoxicity against Squamous Cell Carcinoma (SCC-25), and their selectivity index (SI) was determined. Compound 5 emerged as the most promising, displaying cytotoxicity against cancer cells, with IC50 values of 17.9 µM and a favorable SI (>3). Mechanistic studies revealed that its anticancer activity was independent of p53 status, and annexin V/PI staining indicated cell death via necrosis. Interestingly, compound 5 also significantly reduced pro-inflammatory cytokine levels, as TNF and IL-6. Furthermore, drug metabolism and pharmacokinetics (DMPK) studies demonstrated that compound 5 exhibited moderate solubility and high permeability. These findings underscore the crucial role of the boronic acid moiety in enhancing both anticancer and anti-inflammatory properties. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

29 pages, 6133 KiB  
Article
Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis
by Yujin Shen, Xi Ma, Zhenzhen Du, Yang Li, Zhinan Mei and Ling Zhao
Pharmaceuticals 2025, 18(7), 1059; https://doi.org/10.3390/ph18071059 - 18 Jul 2025
Viewed by 356
Abstract
Background: Allergic rhinitis (AR) is a prevalent allergic disorder characterized by a complex pathogenesis. Drawing on traditional Chinese medicine theory and contemporary pharmacological principles, this study developed an inhalation-based herbal formulation, ZHW, to explore a novel non-invasive therapeutic approach. Objective: To investigate the [...] Read more.
Background: Allergic rhinitis (AR) is a prevalent allergic disorder characterized by a complex pathogenesis. Drawing on traditional Chinese medicine theory and contemporary pharmacological principles, this study developed an inhalation-based herbal formulation, ZHW, to explore a novel non-invasive therapeutic approach. Objective: To investigate the therapeutic effects of ZHW on AR and elucidate its underlying mechanisms and potential targets through an integrated analysis of network pharmacology and proteomics. Materials and Methods: The volatile components of ZHW were analyzed by gas chromatography–mass spectrometry (GC-MS). The mouse model of AR was induced by OVA sensitization. The therapeutic efficacy of ZHW was assessed based on nasal symptom scores, histopathological examination, and inflammatory cytokine levels. Furthermore, the underlying mechanisms and potential targets of ZHW were investigated through integrated network pharmacology and proteomics analyses. Results: GC-MS analysis identified 39 bioactive compounds in ZHW. Inhalation treatment with ZHW demonstrated significant anti-allergic effects in OVA-sensitized mice, as evidenced by (1) reduced sneezing frequency and nasal rubbing behaviors; (2) decreased serum levels of IL-4, histamine, and OVA-specific IgE; (3) attenuated IL-4 concentrations in both nasal lavage fluid and lung tissue; (4) diminished nasal mucosal thickening; and (5) suppression of inflammatory cell infiltration. Integrated network pharmacology and proteomics analyses indicated that ZHW’s therapeutic effects were mediated through the modulation of multiple pathways, including the PI3K-Akt signaling pathway, the B cell receptor signaling pathway, oxidative phosphorylation, and the FcεRI signaling pathway. Key molecular targets involved Rac1, MAPK1, and SYK. Molecular docking simulations revealed strong binding affinities between ZHW’s primary bioactive constituents (linalool, levomenthol, linoleic acid, Linoelaidic acid, and n-Valeric acid cis-3-hexenyl ester) and these target proteins. Conclusions: The herbal formulation ZHW demonstrates significant efficacy in alleviating allergic rhinitis symptoms through multi-target modulation of key signaling pathways, including PI3K-Akt- and FcεRI-mediated inflammatory responses. These findings substantiate ZHW’s therapeutic potential as a novel, non-invasive treatment for AR and provide a strong basis for the development of new AR therapies. Future clinical development will require systematic safety evaluation to ensure optimal therapeutic outcomes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 1978 KiB  
Article
Comparative Analysis of Anti-Inflammatory Flavones in Chrysanthemum indicum Capitula Using Primary Cultured Rat Hepatocytes
by Keita Minamisaka, Airi Fujii, Cheng Li, Yuto Nishidono, Saki Shirako, Teruhisa Kawamura, Yukinobu Ikeya and Mikio Nishizawa
Molecules 2025, 30(14), 2996; https://doi.org/10.3390/molecules30142996 - 16 Jul 2025
Viewed by 386
Abstract
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum [...] Read more.
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum, has antioxidant and anti-inflammatory activities. However, the effects of other flavonoids on this crude drug have not yet been thoroughly investigated. To evaluate and compare anti-inflammatory effects, we used primary cultured rat hepatocytes, which produce proinflammatory mediators, such as nitric oxide (NO) and proinflammatory cytokines, in response to interleukin (IL)-1β. Eight derivatives of 5,7-dihydroxyflavone were purified and identified in the ethyl acetate-soluble fraction of a C. indicum capitulum extract: luteolin (Compound 1), apigenin (2), diosmetin (3), 5,7-dihydroxy-3′,4′,5′-trimethoxyflavone (4), acacetin (5), eupatilin (6), jaceosidin (7), and 6-methoxytricin (8). Luteolin is the most abundant compound in this fraction. All compounds significantly suppressed NO production in hepatocytes, with apigenin and acacetin showing the greatest efficacy. The comparison of the IC50 values of the inhibition of NO production suggests that substitutions by hydroxyl and methoxy groups at the C-3′ and C-4′ positions of 5,7-dihydroxyflavone may be at least essential for the suppression of NO production. In hepatocytes, acacetin and luteolin decreased the levels of mRNAs encoding inducible nitric oxide synthase (iNOS), proinflammatory cytokines, including tumor necrosis factor, IL-6, and type 1 IL-1 receptor, which regulates inflammatory responses. Based on the comparison of the IC50 values and the content, luteolin, jaceosidin, and diosmetin may be responsible for the anti-inflammatory effects of C. indicum capitula. Full article
Show Figures

Graphical abstract

13 pages, 4473 KiB  
Article
Effect of Alkyl Chain Length on Dissolution and Regeneration Behavior of Cotton in 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids
by Niwanthi Dissanayake, Vidura D. Thalangamaarachchige, Edward Quitevis and Noureddine Abidi
Molecules 2025, 30(13), 2711; https://doi.org/10.3390/molecules30132711 - 24 Jun 2025
Viewed by 281
Abstract
Ionic liquids (ILs) have attained considerable attention as cellulose solvents. Nevertheless, the detailed mechanism of cellulose dissolution in ILs is not clearly defined. It is crucial to recognize the role of the individual components of the ILs to fully understand this mechanism. During [...] Read more.
Ionic liquids (ILs) have attained considerable attention as cellulose solvents. Nevertheless, the detailed mechanism of cellulose dissolution in ILs is not clearly defined. It is crucial to recognize the role of the individual components of the ILs to fully understand this mechanism. During this study, the effect of alkyl chain length in imidazolium cation was examined using synthesized ILs which are composed of common acetate anion and imidazolium cations with different alkyl substituents. This study also aimed to investigate the odd–even effect of alkyl chain carbons. Furthermore, whereas most published investigations on cellulose dissolution in ILs used microcrystalline cellulose (MCC), which has a far lower degree of polymerization, in this study, cotton cellulose was used. During the dissolution experiments, cotton cellulose (5% w/w) was added to each IL, and the progress of the dissolution was monitored using polarized light microscopy (PLM). The regeneration of cellulose was performed by using water as the anti-solvent, and the regenerated cellulose was characterized by Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). During these experiments, it was noted that ILs with odd C3 and C5 carbon chains were less effective at dissolving cellulose than those with even C2 and C4 alkyl chains. Additionally, after regeneration, biomaterials for a variety of applications could be produced. Full article
Show Figures

Graphical abstract

17 pages, 3798 KiB  
Article
Integrative Wound-Healing Effects of Clinacanthus nutans Extract and Schaftoside Through Anti-Inflammatory, Endothelial-Protective, and Antiviral Mechanisms
by Nipitpawn Limpanich, Pattarasuda Chayapakdee, Kullanun Mekawan, Saruda Thongyim, Rujipas Yongsawas, Phanuwit Khamwong, Yingmanee Tragoolpua, Thida Kaewkod, Siriphorn Jangsutthivorawat, Jarunee Jungklang, Usawadee Chanasut, Angkhana Inta, Phatchawan Arjinajarn, Aussara Panya and Hataichanok Pandith
Int. J. Mol. Sci. 2025, 26(13), 6029; https://doi.org/10.3390/ijms26136029 - 23 Jun 2025
Viewed by 857
Abstract
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf [...] Read more.
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf extract. In the lipopolysaccharide (LPS)-stimulated murine macrophage cell line (RAW 264.7), both C. nutans extract (5 and 50 μg/mL) and its flavonoid schaftoside (5 and 20 μg/mL) significantly downregulated the expression of pro-inflammatory genes, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), under both pre-treatment and post-treatment conditions. ELISA confirmed dose-dependent inhibition of human COX-2 enzymatic activity, reaching up to 99.3% with the extract and 86.9% with schaftoside. In the endothelial cell models (CCL-209), the extract exhibited low cytotoxicity and effectively protected cells from LPS-induced apoptosis, preserving vascular integrity critical to tissue regeneration. Antiviral assays demonstrated suppression of HSV-2 replication, particularly during early infection, which may help prevent infection-related delays in wound healing. Collectively, these findings suggest that C. nutans and schaftoside promote wound repair by attenuating inflammatory responses, supporting endothelial survival, and controlling viral reactivation. These multifunctional properties highlight their potential as natural therapeutic agents for enhancing wound-healing outcomes. Full article
(This article belongs to the Special Issue Molecular Advances in Burn and Wound Healing)
Show Figures

Graphical abstract

29 pages, 10703 KiB  
Article
Enhanced Therapeutic Efficacy of Omeprazole Nanosuspension in Ethanol-Induced Gastric Ulcer: A Focus on Oxidative Stress and Inflammatory Pathways
by Mody Albalawi and Sahar Khateeb
Biomolecules 2025, 15(6), 902; https://doi.org/10.3390/biom15060902 - 19 Jun 2025
Viewed by 732
Abstract
Gastric ulcer is a concerning condition that affects numerous individuals globally. Omeprazole (OMP), a well-known drug for treating stomach ulcers, has been associated with several adverse effects and limited solubility. The study aimed to create an omeprazole nanosuspension (OMP-NS) with improved solubility and [...] Read more.
Gastric ulcer is a concerning condition that affects numerous individuals globally. Omeprazole (OMP), a well-known drug for treating stomach ulcers, has been associated with several adverse effects and limited solubility. The study aimed to create an omeprazole nanosuspension (OMP-NS) with improved solubility and bioavailability. Additionally, the study investigated the potential therapeutic effects of OMP-NS on ethanol-induced gastric injury in rats, comparing it to traditional OMP therapy to identify novel therapeutic alternatives. The characterization of the OMP-NS was assessed using DLS, TEM, XRD, FTIR, UV spectrophotometric analysis, in vitro release studies, and entrapment efficiency (EE) assays. A total of 24 male Wistar albino rats (weighing 150–200 g, aged 8–10 weeks) were randomly divided into four groups (six rats/group). Gastric injury was induced using absolute ethanol (5 mL/kg), followed by oral administration of either OMP or OMP-NS (20 mg/kg) for 7 days. Data were analyzed using one-way ANOVA accompanied by the Bonferroni post hoc test or the Kruskal–Wallis test, based on data distribution, with significance set at p < 0.05. The OMP-NS demonstrated a Z-average diameter of 216.1 nm, a polydispersity index of 0.2, and a zeta potential of −19.6 mV. The particles were predominantly spherical with an average size of 67.28 nm. In vitro release studies showed 97.78% release at 8 h, with an EE% of 96.97%. Ethanol-induced gastric ulcers were associated with oxidative stress, characterized by elevated levels of NADPH, ROS, MDA, and NO, while the level of SOD was reduced. It was accompanied by increased inflammatory markers HMGB1, which subsequently increased TLR-2, MyD88, NF-κBp56, NLRP3, TNF-α, IL-1β, and IL-6 levels; conversely, a significant decrease in Nrf2/PPAR-γ/SIRT1 levels was observed. In contrast, OMP-NS administration significantly reduced oxidative stress and inflammatory markers, restored SOD activity, and upregulated protective pathways Nrf2/PPAR-γ/SIRT1 more effectively than conventional OMP therapy. In conclusion, OMP-NS represents a promising therapeutic strategy with notable anti-inflammatory and anti-ulcerogenic effects in ethanol-induced gastric ulcers. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

15 pages, 1570 KiB  
Article
The Anti-Inflammatory Potential of Levosimendan in Sepsis: An Experimental Study Using a LPS-Induced Rat Model
by Elif Dedeler Ertanıdır, Ipek Duman, Duygu Onmaz Eryavuz, Ali Ünlü, Mehmet Ertanıdır and Ateş Duman
Life 2025, 15(6), 928; https://doi.org/10.3390/life15060928 - 9 Jun 2025
Viewed by 565
Abstract
Sepsis is a life-threatening condition driven by a dysregulated host immune response to infection, with cytokine overproduction contributing to organ dysfunction and high mortality. Levosimendan, a calcium sensitizer used in acute heart failure, has been proposed to exert anti-inflammatory effects, but information on [...] Read more.
Sepsis is a life-threatening condition driven by a dysregulated host immune response to infection, with cytokine overproduction contributing to organ dysfunction and high mortality. Levosimendan, a calcium sensitizer used in acute heart failure, has been proposed to exert anti-inflammatory effects, but information on its immunomodulatory effects in early sepsis remains scarce. This study aimed to investigate the dose- and time-dependent effects of levosimendan on cytokine profiles in a rat model of lipopolysaccharide (LPS)-induced sepsis. Thirty-two male Wistar albino rats were randomly assigned to four groups: sham, sepsis control, low-dose levosimendan (1 mg/kg), and high-dose levosimendan (2 mg/kg). Cytokine levels (TNF-α, IL-1β, IL-6, IL-8, IL-17, MCP-1) were measured at 5 and 10 h post-LPS administration. High-dose levosimendan significantly reduced TNF-α, IL-1β, IL-6, and MCP-1 levels by the 10th hour, accompanied by improved Murine Sepsis Scores. IL-17 and IL-6 showed biphasic responses, increasing initially and decreasing significantly later, particularly with high-dose treatment. IL-8 reduction was observed only in the high-dose group. These findings support levosimendan’s dose and time-dependent anti-inflammatory effects and suggest it may modulate both early and late-phase cytokines in sepsis. Further studies are warranted to clarify its potential role in clinical sepsis management. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

20 pages, 2727 KiB  
Article
Single or Combined Supplementation of Rhodotorula Yeast Culture and Bacillus Subtilis Enhances Intestinal Barrier Function in Yellow-Feathered Broilers
by Xiangtan Su, Ke Wang, Yeqing Liu, Xinyu Lu, Meiru Chen, Jianlong Dang, Gaowei Zhang, Guang Yang, Aiqin Gao and Yuanqing Xu
Vet. Sci. 2025, 12(6), 558; https://doi.org/10.3390/vetsci12060558 - 6 Jun 2025
Cited by 1 | Viewed by 618
Abstract
This study aimed to investigate the effects of dietary supplementation with Rhodotorula yeast cultures (RYC) and Bacillus subtilis (BS), alone or in combination, on growth performance and intestinal barrier function in yellow-feathered broilers. A 2 × 2 factorial interaction study was conducted, in [...] Read more.
This study aimed to investigate the effects of dietary supplementation with Rhodotorula yeast cultures (RYC) and Bacillus subtilis (BS), alone or in combination, on growth performance and intestinal barrier function in yellow-feathered broilers. A 2 × 2 factorial interaction study was conducted, in which a total of 192 one-day-old yellow-feathered broilers were randomly assigned into four treatment groups: CON group, fed a basal diet; BS group, supplemented with 5 × 109 CFU/kg of BS; RYC group, supplemented with 5000 mg/kg of RYC; and RYC + BS group, supplemented with both. During the 56-day experimental period, body weight, average daily feed intake, average daily gain, and feed conversion ratio were not significantly affected by RYC, BS, or their interaction (p > 0.05). In the jejunum, the villus height-to-crypt depth ratio was significantly increased by the interaction of RYC and BS (p < 0.05). mRNA expression of tight junction proteins (JAM2, TJP1) was significantly upregulated by BS alone (p < 0.05), but this effect was diminished when RYC and BS were combined, indicating an antagonistic interaction between the two supplements. Mucin-2 (MUC2) expression was significantly increased by RYC or BS alone (p < 0.05). In immune function analysis, IgM levels were significantly increased by RYC alone but decreased when RYC and BS were combined (p < 0.05), further highlighting their antagonistic interaction. BS supplementation significantly increased IgG and pro-inflammatory gene expression (TNFA, IL1B, and NFKB1) (p < 0.05), while RYC supplementation reduced IFN-γ and increased anti-inflammatory gene expression (IL10 and MyD88). Cecal microbial analysis revealed increased abundance of g_Bacillus in the BS group, g_norank_f__norank_o__Clostridia_UCG-014 in the RYC group, and g_norank_f__norank_o__norank_c_Clostridia in the BS + RYC group were significantly increased compared to the CON group (p < 0.05). These results suggest that RYC and BS, as dietary supplements, may enhance intestinal health and barrier function in yellow-feathered broilers with minimal effects on growth performance. However, the antagonistic interactions between RYC and BS in modulating immune responses and tight junction protein expression highlight the need for careful consideration when combining these supplements in poultry nutrition strategies. Full article
Show Figures

Figure 1

Back to TopTop