Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,176)

Search Parameters:
Keywords = anthropogenic influences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3363 KiB  
Article
Spatial Heterogeneity of Heavy Metals in Arid Oasis Soils and Its Irrigation Input–Soil Nutrient Coupling Mechanism
by Jiang Liu, Chongbo Li, Jing Wang, Liangliang Li, Junling He and Funian Zhao
Sustainability 2025, 17(15), 7156; https://doi.org/10.3390/su17157156 (registering DOI) - 7 Aug 2025
Abstract
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi [...] Read more.
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi gar oasis, Xinjiang, (2) quantify the driving effect of irrigation water, and (3) elucidate interactions between HMs, soil properties, and land use types. Using 591 soil and 12 irrigation water samples, spatial patterns were mapped via inverse distance weighting interpolation, with drivers and interactions analyzed through correlation and land use comparisons. Results revealed significant spatial heterogeneity in HMs with no consistent regional trend: As peaked in arable land (5.27–40.20 μg/g) influenced by parent material and agriculture, Cd posed high ecological risk in gardens (max 0.29 μg/g), and Zn reached exceptional levels (412.00 μg/g) in gardens linked to industry/fertilizers. Irrigation water impacts were HM-specific: water contributed to soil As enrichment, whereas high water Cr did not elevate soil Cr (indicating industrial dominance), and Cd/Cu showed no significant link. Interactions with soil properties were regulated by land use: in arable land, As correlated positively with EC/TN and negatively with pH; in gardens, HMs generally decreased with pH, enhancing mobility risk; in forests, SOM adsorption immobilized HMs; in construction land, Hg correlated with SOM/TP, suggesting industrial-organic synergy. This study advances understanding by demonstrating that HM enrichment arises from natural and anthropogenic factors, with the spatial heterogeneity of irrigation water’s driving effect critically regulated by land use type, providing a spatially explicit basis for targeted pollution control and sustainable oasis management. Full article
Show Figures

Figure 1

19 pages, 9248 KiB  
Article
Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
by Chenwei Tu, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong and Yuan Yao
Agriculture 2025, 15(15), 1704; https://doi.org/10.3390/agriculture15151704 - 7 Aug 2025
Abstract
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability [...] Read more.
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability and its interaction with surface water is essential for water–ecology–agriculture security in arid areas. This study evaluates the irrigation water quality and groundwater–surface water interaction influenced by agricultural activities in a typical arid plain region using hydrochemical and stable isotopic data from 51 water samples. The results reveal that the area of cultivated land increases by 658.9 km2 from 2000 to 2023, predominantly resulting from the conversion of bare land. Groundwater TDS (total dissolved solids) value exhibits significant spatial heterogeneity, ranging from 516 to 2684 mg/L. Cl, SO42−, and Na+ are the dominant ions in groundwater, with a widespread distribution of brackish water. Groundwater δ18O values range from −9.4‰ to −5.4‰, with the mean value close to surface water. In total, 86% of the surface water samples are good and suitable for agricultural irrigation, while 60% of shallow groundwater samples are marginally suitable or unsuitable for irrigation at present. Groundwater hydrochemistry is largely controlled by intensive evaporation, water–rock interaction, and agricultural activities (e.g., cultivated land expansion, irrigation, groundwater exploitation, and fertilizers). Agricultural activities could cause shallow groundwater salinization, even confined water deterioration, with an intense and frequent exchange between groundwater and surface water. In order to sustainably manage groundwater and maintain ecosystem stability in arid plain regions, controlling cultivated land area and irrigation water amount, enhancing water utilization efficiency, limiting groundwater exploitation, and fully utilizing floodwater resources would be the viable ways. The findings will help to deepen the understanding of the groundwater quality evolution mechanism in arid irrigated regions and also provide a scientific basis for agricultural water management in the context of extreme climatic events and anthropogenic activities. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

12 pages, 1451 KiB  
Article
Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta
by Jia Jia, Meng Xia, Yang Zhang, Shimin Tian, Yawei Hu, Zhanshuo Zhang, Xuejie Zhai, Bo Qu and Lingang Hao
Water 2025, 17(15), 2348; https://doi.org/10.3390/w17152348 - 7 Aug 2025
Abstract
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted [...] Read more.
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted plankton surveys across wetlands subjected to freshwater restoration durations ranging from 5 to 22 years. We assessed shifts in phytoplankton and zooplankton community structure, biomass, diversity, and their relationships with environmental drivers. Results revealed distinct temporal dynamics: phytoplankton biomass and diversity followed a “U-shaped” trajectory (initial decline followed by recovery), while zooplankton biomass decreased but diversity increased with restoration duration. Canonical Correspondence Analysis (CCA) and Partial Least Squares Path Modeling (PLS-PM) identified salinity (Cl, SO42−) and dissolved nitrate (NO3) as primary environmental controls for both groups. Cyanobacteria dominated phytoplankton biomass initially but declined with restoration age, while rotifers replaced copepods as the dominant zooplankton taxon over time. These findings demonstrate that freshwater restoration restructures plankton communities through salinity-mediated physiological constraints and altered nutrient availability, with implications for ecosystem function and adaptive management in anthropogenically influenced deltas. Full article
Show Figures

Figure 1

22 pages, 3135 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
Show Figures

Figure 1

19 pages, 3527 KiB  
Article
Drought Vulnerability in South America
by Emma Silverman and Johanna Engström
Water 2025, 17(15), 2332; https://doi.org/10.3390/w17152332 - 6 Aug 2025
Abstract
Although it is the wettest continent, droughts are a regular occurrence in South America. As the effects of anthropogenic influences, including climate change, become more pronounced, droughts are expected to increase in frequency and severity. The purpose of this study is to assess [...] Read more.
Although it is the wettest continent, droughts are a regular occurrence in South America. As the effects of anthropogenic influences, including climate change, become more pronounced, droughts are expected to increase in frequency and severity. The purpose of this study is to assess the relative drought vulnerability of the countries in South America. Each country is evaluated for drought exposure, sensitivity, adaptive capacity, and overall vulnerability. Sixteen drought-related indicators were used to measure the relative vulnerability of each country and to measure separate scores for exposure, sensitivity, and adaptive capacity to identify what factor(s) contributed to a country’s vulnerability. The results indicate that Ecuador, a country with a high population and limited water resources, is the most vulnerable to drought in South America, followed by Colombia and Uruguay. Conversely, the country least vulnerable to drought is Guyana, followed by Suriname and Chile. Our analysis suggests that there are both geographic and as well as economic factors influencing the relative drought vulnerability of countries in South America. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Graphical abstract

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 240
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

18 pages, 2865 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 215
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

20 pages, 27453 KiB  
Article
Natural and Anthropogenic Influence on the Physicochemical Characteristics of Spring Water: The Case Study of Medvednica Mountain (Central Croatia)
by Ivan Martinić and Ivan Čanjevac
Limnol. Rev. 2025, 25(3), 36; https://doi.org/10.3390/limnolrev25030036 - 1 Aug 2025
Viewed by 89
Abstract
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in [...] Read more.
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in relation to local lithology and human activities. This research provides the first results of this kind in this study area, aiming to expand the knowledge on local springs and to support the future protection and management of spring ecosystems. Springs on the Medvednica mountain showed substantial variation in measured parameters. The temperature ranged from 3.4 to 18.9 °C, reflecting local hydrological conditions, aquifer characteristics, and seasonal variability. Electrical conductivity (EC) ranged between 41 μS/cm and 2062 μS/cm, determined by both hydrogeological settings and anthropogenic impacts such as winter road salting. The pH values showed moderate variability, remaining mostly within neutral levels. These results emphasize the importance of continued monitoring and further research of Medvednica springs, in order to highlight their importance and to preserve their ecological and hydrological roles. Full article
Show Figures

Graphical abstract

15 pages, 1894 KiB  
Article
Microbial Communities’ Composition of Supralittoral and Intertidal Sediments in Two East African Beaches (Djibouti Republic)
by Sonia Renzi, Alessandro Russo, Aldo D’Alessandro, Samuele Ciattini, Saida Chideh Soliman, Annamaria Nistri, Carlo Pretti, Duccio Cavalieri and Alberto Ugolini
Microbiol. Res. 2025, 16(8), 173; https://doi.org/10.3390/microbiolres16080173 - 1 Aug 2025
Viewed by 89
Abstract
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial [...] Read more.
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial communities inhabiting supralittoral–intertidal sediments of two contrasting sandy beaches in the Tadjoura Gulf (Djibouti Republic): Sagallou-Kalaf (SK, rural, siliceous sand) and Siesta Plage (SP, urban, calcareous sand). Sand samples were collected at low tide along 10 m transects perpendicular to the shoreline. Bacterial communities differed significantly between sites and along the sea-to-land gradient, suggesting an influence from both anthropogenic activity and sediment granulometry. SK was dominated by Escherichia-Shigella, Staphylococcus, and Bifidobacterium, associated with human and agricultural sources. SP showed higher richness, with enriched marine-associated genera such as Hoeflea, Xanthomarina, and Marinobacter, also linked to hydrocarbon degradation. Fungal diversity was less variable, but showed significant shifts along transects. SK communities were dominated by Kluyveromyces and Candida, while SP hosted a broader fungal assemblage, including Pichia, Rhodotorula, and Aureobasidium. The higher richness at SP suggests that calcium-rich sands, possibly due to their buffering capacity and greater moisture retention, offer more favorable conditions for microbial colonization. Full article
Show Figures

Graphical abstract

20 pages, 1266 KiB  
Systematic Review
A Systematic Review on Contamination of Marine Species by Chromium and Zinc: Effects on Animal Health and Risk to Consumer Health
by Alexandre Mendes Ramos-Filho, Paloma de Almeida Rodrigues, Adriano Teixeira de Oliveira and Carlos Adam Conte-Junior
J. Xenobiot. 2025, 15(4), 121; https://doi.org/10.3390/jox15040121 - 1 Aug 2025
Viewed by 217
Abstract
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of [...] Read more.
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of chromium and zinc in aquatic biota and seafood consumers. Based on the PRISMA protocol, 67 articles were selected for this systematic review. The main results point to a wide distribution of these elements, which have familiar emission sources in the aquatic environment, especially in highly industrialized regions. Significant concentrations of both have been reported in different fish species, which sometimes represent a non-carcinogenic risk to consumer health and a carcinogenic risk related to Cr exposure. New studies should be encouraged to fill gaps, such as the characterization of the toxicity of these essential elements through fish consumption, determination of limit concentrations updated by international regulatory institutions, especially for zinc, studies on the influence of abiotic factors on the toxicity and bioavailability of elements in the environment, and those that evaluate the bioaccessibility of these elements in a simulated digestion system when in high concentrations. Full article
Show Figures

Figure 1

16 pages, 1947 KiB  
Article
Benthic Macrofauna in the Loukkos Estuary, Morocco: Patterns and Environmental Drivers
by Feirouz Touhami
Ecologies 2025, 6(3), 53; https://doi.org/10.3390/ecologies6030053 - 1 Aug 2025
Viewed by 190
Abstract
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), [...] Read more.
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), polychaetes (23%), and crustaceans (21%). Species richness varied considerably along the estuarine gradient, ranging from fewer than five species in the upstream sector to up to 30 species downstream. Overall, higher diversity was observed in the downstream areas and during the dry season. Macrofaunal density also exhibited substantial variability, ranging from 95 ind.m−2 to 14,852 ind.m−2, with a mean density of 2535 ± 4058 ind.m−2. Multivariate analyses identified four distinct benthic assemblages structured primarily by spatial factors (ANOSIM R = 0.86, p = 0.002), with negligible seasonal effect (R = −0.03, p = 0.6). Assemblages ranged from marine-influenced communities at the estuary mouth dominated by Cerastoderma edule, through rich and diverse seagrass-associated communities in the lower estuary dominated by Bittium reticulatum, and moderately enriched mid-estuary communities characterized by Scrobicularia plana and Hediste diversicolor, to species-poor upstream communities dominated by the tolerant species H. diversicolor. Canonical analysis showed that salinity and vegetation explain nearly 40% of the variation in benthic assemblages, highlighting the key role of Zostera seagrass beds as structuring habitats. Moreover, upstream anthropogenic pressures alter environmental conditions, reducing benthic diversity and favoring tolerant species. Full article
Show Figures

Figure 1

20 pages, 4874 KiB  
Article
Influence of Vegetation Cover and Soil Properties on Water Infiltration: A Study in High-Andean Ecosystems of Peru
by Azucena Chávez-Collantes, Danny Jarlis Vásquez Lozano, Leslie Diana Velarde-Apaza, Juan-Pablo Cuevas, Richard Solórzano and Ricardo Flores-Marquez
Water 2025, 17(15), 2280; https://doi.org/10.3390/w17152280 - 31 Jul 2025
Viewed by 173
Abstract
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and [...] Read more.
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and soil properties on water infiltration in a high-Andean environment. A double-ring infiltrometer, the Water Drop Penetration Time (WDPT, s) method, and laboratory physicochemical characterization were employed. Soils under forest cover exhibited significantly higher quasi-steady infiltration rates (is, 0.248 ± 0.028 cm·min−1) compared to grazing areas (0.051 ± 0.016 cm·min−1) and agricultural lands (0.032 ± 0.013 cm·min−1). Soil organic matter content was positively correlated with is. The modified Kostiakov infiltration model provided the best overall fit, while the Horton model better described infiltration rates approaching is. Sand and clay fractions, along with K+, Ca2+, and Mg2+, were particularly significant during the soil’s wet stages. In drier stages, increased Na+ concentrations and decreased silt content were associated with higher water repellency. Based on WDPT, agricultural soils exhibited persistent hydrophilic behavior even after drying (median [IQR] from 0.61 [0.38] s to 1.24 [0.46] s), whereas forest (from 2.84 [3.73] s to 3.53 [24.17] s) and grazing soils (from 4.37 [1.95] s to 19.83 [109.33] s) transitioned to weakly or moderately hydrophobic patterns. These findings demonstrate that native Andean forest soils exhibit a higher infiltration capacity than soils under anthropogenic management (agriculture and grazing), highlighting the need to conserve and restore native vegetation cover to strengthen water resilience and mitigate the impacts of land-use change. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

14 pages, 6012 KiB  
Article
Decoding the Primacy of Transportation Emissions of Formaldehyde Pollution in an Urban Atmosphere
by Shi-Qi Liu, Hao-Nan Ma, Meng-Xue Tang, Yu-Ming Shao, Ting-Ting Yao, Ling-Yan He and Xiao-Feng Huang
Toxics 2025, 13(8), 643; https://doi.org/10.3390/toxics13080643 - 30 Jul 2025
Viewed by 272
Abstract
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed [...] Read more.
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed year-long VOC measurements across three urban zones in Shenzhen, China. Photochemical age correction methods were implemented to develop the initial concentrations of VOCs before source apportionment; then Positive Matrix Factorization (PMF) modeling resolved six primary sources: solvent usage (28.6–47.9%), vehicle exhaust (24.2–31.2%), biogenic emission (13.8–18.1%), natural gas (8.5–16.3%), gasoline evaporation (3.2–8.9%), and biomass burning (0.3–2.4%). A machine learning (ML) framework incorporating Shapley Additive Explanations (SHAP) was subsequently applied to evaluate the influence of six emission sources on HCHO concentrations while accounting for reaction time adjustments. This machine learning-driven nonlinear analysis demonstrated that vehicle exhaust nearly always emerged as the primary anthropogenic contributor in diverse functional zones and different seasons, with gasoline evaporation as another key contributor, while the traditional reactivity metric method, ozone formation potential (OFP), tended to underestimate the role of the two sources. This study highlights the primacy of strengthening emission reduction of transportation sectors to mitigate HCHO pollution in megacities. Full article
Show Figures

Graphical abstract

26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 288
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

Back to TopTop