Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (473)

Search Parameters:
Keywords = annual investment cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6168 KiB  
Article
Valorization of Sugarcane Bagasse in Thailand: An Economic Analysis of Ethanol and Co-Product Recovery via Organosolv Fractionation
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Nathiya Kreetachat, Santi Chuetor, Surachai Wongcharee, Kowit Suwannahong, Methawee Nukunudompanich and Torpong Kreetachat
Sustainability 2025, 17(15), 7145; https://doi.org/10.3390/su17157145 - 7 Aug 2025
Abstract
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the [...] Read more.
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the derivation of detailed mass and energy balances, which served as the foundational input for downstream cost modeling. Economic performance metrics, including the total annualized cost and minimum ethanol selling price, were systematically quantified for each scenario. Among the evaluated configurations, the formic acid-catalyzed organosolv system exhibited superior techno-economic attributes, achieving the lowest unit production costs of 1.14 USD/L for ethanol and 1.84 USD/kg for lignin, corresponding to an estimated ethanol selling price of approximately 1.14 USD/L. This favorable outcome was attained with only moderate capital intensity, indicating a well-balanced trade-off between operational efficiency and investment burden. Conversely, the sodium methoxide-based process configuration imposed the highest economic burden, with a TAC of 15.27 million USD/year, culminating in a markedly elevated MESP of 5.49 USD/kg (approximately 4.33 USD/L). The sulfuric acid-driven system demonstrated effective delignification performance. Sensitivity analysis revealed that reagent procurement costs exert the greatest impact on TAC variation, highlighting chemical expenditure as the key economic driver. These findings emphasize the critical role of solvent choice, catalytic performance, and process integration in improving the cost-efficiency of lignocellulosic ethanol production. Among the examined options, the formic acid-based organosolv process stands out as the most economically viable for large-scale implementation within Thailand’s bioeconomy. Full article
Show Figures

Figure 1

19 pages, 1242 KiB  
Article
Integration of Renewable Energy Sources to Achieve Sustainability and Resilience of Mines in Remote Areas
by Josip Kronja and Ivo Galić
Mining 2025, 5(3), 51; https://doi.org/10.3390/mining5030051 - 6 Aug 2025
Abstract
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources [...] Read more.
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources (5) and battery–electric mining equipment. Using the “Studena Vrila” underground bauxite mine as a case study, a comprehensive techno-economic and environmental analysis was conducted across three development models. These models explore incremental scenarios of solar and wind energy adoption combined with electrification of mobile machinery. The methodology includes calculating levelized cost of energy (LCOE), return on investment (ROI), and greenhouse gas (GHG) reductions under each scenario. Results demonstrate that a full transition to RES and electric machinery can reduce diesel consumption by 100%, achieve annual savings of EUR 149,814, and cut GHG emissions by over 1.7 million kg CO2-eq. While initial capital costs are high, all models yield a positive Net Present Value (NPV), confirming long-term economic viability. This research provides a replicable framework for decarbonizing mining operations in off-grid and infrastructure-limited regions. Full article
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 202
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

33 pages, 709 KiB  
Article
Integrated Generation and Transmission Expansion Planning Through Mixed-Integer Nonlinear Programming in Dynamic Load Scenarios
by Edison W. Intriago Ponce and Alexander Aguila Téllez
Energies 2025, 18(15), 4027; https://doi.org/10.3390/en18154027 - 29 Jul 2025
Viewed by 253
Abstract
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a [...] Read more.
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a deterministic MINLP solver, which ensures the identification of truly optimal expansion strategies, overcoming the limitations of heuristic approaches that may converge to local optima. This approach is employed to establish a definitive, high-fidelity economic and technical benchmark, addressing the limitations of commonly used DC approximations and metaheuristic methods that often fail to capture the nonlinearities and interdependencies inherent in power system planning. The co-optimization model is formulated to simultaneously minimize the total annualized costs, which include investment in new generation and transmission assets, the operating costs of the entire generator fleet, and the cost of unsupplied energy. The model’s effectiveness is demonstrated on the IEEE 14-bus system under various dynamic load growth scenarios and planning horizons. A key finding is the model’s ability to identify the most economic expansion pathway; for shorter horizons, the optimal solution prioritizes strategic transmission reinforcements to unlock existing generation capacity, thereby deferring capital-intensive generation investments. However, over longer horizons with higher demand growth, the model correctly identifies the necessity for combined investments in both significant new generation capacity and further network expansion. These results underscore the value of an integrated, AC-based approach, demonstrating its capacity to reveal non-intuitive, economically superior expansion strategies that would be missed by decoupled or simplified models. The framework thus provides a crucial, high-fidelity benchmark for the validation of more scalable planning tools. Full article
Show Figures

Figure 1

18 pages, 692 KiB  
Review
Literature Review and Policy Recommendations for Single-Dose HPV Vaccination Schedule in China: Opportunities and Challenges
by Kexin Cao and Yiu-Wing Kam
Vaccines 2025, 13(8), 786; https://doi.org/10.3390/vaccines13080786 - 24 Jul 2025
Viewed by 748
Abstract
Cervical cancer remains a significant global public health challenge, with human papillomavirus (HPV) as its primary cause. In response, the World Health Organization (WHO) launched a global strategy to eliminate cervical cancer by 2030 and, in its 2022 position paper, recommended a single-dose [...] Read more.
Cervical cancer remains a significant global public health challenge, with human papillomavirus (HPV) as its primary cause. In response, the World Health Organization (WHO) launched a global strategy to eliminate cervical cancer by 2030 and, in its 2022 position paper, recommended a single-dose vaccination schedule. The objective of this review is to critically examine the current HPV vaccination landscape in China, including vaccination policies, immunization schedules, supply–demand dynamics, and the feasibility of transitioning to a single-dose regimen. By synthesizing recent developments in HPV virology, epidemiology, vaccine types, and immunization strategies, we identify both opportunities and barriers unique to the Chinese context. Results indicate that China primarily adheres to a three-dose vaccination schedule, with an optional two-dose schedule for girls aged 9–14, leaving a notable gap compared to the most recent WHO recommendation. The high prevalence of HPV types 52 and 58 contributes to a distinct regional infection pattern, underscoring the specific need for nine-valent vaccines tailored to China’s epidemiological profile. Despite the growing demand, vaccine supply remains inadequate, with an estimated annual shortfall of more than 15 million doses. This issue is further complicated by strong public preference for the nine-valent vaccine and the relatively high cost of vaccination. Emerging evidence supports the comparable efficacy and durable protection of a single-dose schedule, which could substantially reduce financial and logistical burdens while expanding coverage. This review advocates for the adoption of a simplified single-dose regimen, supported by catch-up strategies for older cohorts and the integration of HPV vaccination into China’s National Immunization Program (NIP). Sustained investment in domestic vaccine development and centralized procurement of imported vaccines may also possibly alleviate supply shortage. These coordinated efforts are critical for strengthening HPV-related disease prevention and accelerating China’s progress toward the WHO’s cervical cancer elimination targets. Full article
(This article belongs to the Special Issue Vaccination Strategies for Global Public Health)
Show Figures

Figure 1

20 pages, 3338 KiB  
Article
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
by Fabio Massaro, John Licari, Alexander Micallef, Salvatore Ruffino and Cyril Spiteri Staines
Energies 2025, 18(15), 3931; https://doi.org/10.3390/en18153931 - 23 Jul 2025
Viewed by 260
Abstract
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this [...] Read more.
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this paper, a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser, a hydrogen storage system composed of multiple compressed hydrogen tanks, and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems, considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser, the annual reverse power flows are reduced by 81.61%, while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25%, respectively, on the day with the highest reverse power flows. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

28 pages, 522 KiB  
Article
Sustainable Strategies to Reduce Logistics Costs Based on Cross-Docking—The Case of Emerging European Markets
by Mircea Boșcoianu, Zsolt Toth and Alexandru-Silviu Goga
Sustainability 2025, 17(14), 6471; https://doi.org/10.3390/su17146471 - 15 Jul 2025
Viewed by 533
Abstract
Cross-docking operations in Eastern and Central European markets face increasing complexity amid persistent uncertainty and inflationary pressures. This study provides the first comprehensive comparative analysis integrating economic efficiency with sustainability indicators across strategic locations. Using mixed-methods analysis of 40 bibliographical sources and quantitative [...] Read more.
Cross-docking operations in Eastern and Central European markets face increasing complexity amid persistent uncertainty and inflationary pressures. This study provides the first comprehensive comparative analysis integrating economic efficiency with sustainability indicators across strategic locations. Using mixed-methods analysis of 40 bibliographical sources and quantitative modeling of cross-docking scenarios in Bratislava, Prague, and Budapest, we integrate environmental, social, and governance frameworks with activity-based costing and artificial intelligence analysis. Optimized cross-docking achieves statistically significant cost reductions of 10.61% for Eastern and Central European inbound logistics and 3.84% for Western European outbound logistics when utilizing Budapest location (p < 0.01). Activity-based costing reveals labor (35–40%), equipment utilization (25–30%), and facility operations (20–25%) as primary cost drivers. Budapest demonstrates superior integrated performance index incorporating operational efficiency (94.2% loading efficiency), economic impact (EUR 925,000 annual savings), and environmental performance (486 tons CO2 reduction annually). This is the first empirically validated framework integrating activity-based costing–corporate social responsibility methodologies for an emerging market cross-docking, multi-dimensional performance assessment model transcending operational-sustainability dichotomy and location-specific contingency identification for emerging market implementation. Findings support targeted infrastructure investments, harmonized regulatory frameworks, and public–private partnerships for sustainable logistics development in emerging European markets, providing actionable roadmap for EUR 142,000–EUR 187,000 artificial intelligence implementation investments achieving a 14.6-month return on investment. Full article
Show Figures

Figure 1

15 pages, 218 KiB  
Article
Economic Evaluation of Artificially Intelligent (AI) Diagnostic Systems: Cost Consequence Analysis of Clinician-Friendly Interpretable Computer-Aided Diagnosis (ICADX) Tested in Cardiology, Obstetrics, and Gastroenterology, from the HosmartAI Horizon 2020 Project
by Magda Chatzikou, Dimitra Latsou, Georgios Apostolidis, Antonios Billis, Vasileios Charisis, Emmanouil S. Rigas, Panagiotis D. Bamidis and Leontios Hadjileontiadis
Healthcare 2025, 13(14), 1661; https://doi.org/10.3390/healthcare13141661 - 10 Jul 2025
Viewed by 368
Abstract
Objectives: This study evaluates the economic impact of digital health interventions (DHIs) developed under the HosmartAI EU-funded program, focusing on obstetrics, cardiology, and gastroenterology. Methods: A Cost Consequence Analysis (CCA) was chosen in order to be able to examine the costs [...] Read more.
Objectives: This study evaluates the economic impact of digital health interventions (DHIs) developed under the HosmartAI EU-funded program, focusing on obstetrics, cardiology, and gastroenterology. Methods: A Cost Consequence Analysis (CCA) was chosen in order to be able to examine the costs and consequences of AI technologies in early diagnosis of preterm births, echocardiography, coronary computed tomography angiography (CCTA), and capsule endoscopy (CE). Results: The results show that in obstetrics and CCTA, the AI technologies are cost-saving, with the AI-based preterm birth detection leading to savings of 99,840 EUR due to reduced severity of prematurity. In the echocardiography scenario, the new AI technology slightly increased costs (9409 vs. 2116 EUR), but offered benefits in diagnostic accuracy and shorter interpretation duration, particularly for less experienced physicians. Similarly, the capsule endoscopy AI technology raised annual costs by 6626 EUR but improved productivity, accuracy, and user satisfaction. Conclusions: The findings emphasize the need for standardized frameworks to guide economic evaluations of DHIs, ensuring informed healthcare investment and reimbursement decisions in the future. Full article
(This article belongs to the Special Issue Smart and Digital Health)
26 pages, 3957 KiB  
Article
Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs
by Abdellatif Azzaoui, Mohammed Attiaoui, Elmiloud Chaabelasri, Hugo Gonçalves Silva and Ahmed Alami Merrouni
Energies 2025, 18(14), 3633; https://doi.org/10.3390/en18143633 - 9 Jul 2025
Viewed by 407
Abstract
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is [...] Read more.
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is emerging as a key parameter. When produced using simple and cost-effective technologies like linear Fresnel reflector (LFR), it offers a practical solution. Therefore, assessing the potential of hydrogen production from LFR technology is essential to support the development of the energy sector and promote local industrial growth. This study investigates “green” hydrogen production using a 50 MW concentrated solar power (CSP) system based on LFR technology, where the CSP system generates electricity to power a proton exchange membrane electrolyzer for hydrogen production for three locations, including Ain Beni Mathar in Morocco, Assiout in Egypt, and Tabuk in Saudi Arabia. The results show that Tabuk achieved the highest annual hydrogen production (45.02 kg/kWe), followed by Assiout (38.72 kg/kWe) and Ain Beni Mathar (32.42 kg/kWe), with corresponding levelized costs of hydrogen (LCOH2) of 6.47 USD/kg, 6.84 USD/kg, and 7.35 USD/kg, respectively. In addition, several sensitivity analyses were conducted addressing the impact of thermal energy storage (TES) on the hydrogen production and costs, the effect of reduced investment costs resulting from the local manufacturing of LFR components, and the futuristic assumption of the electrolyzer cost drop. The integration of TES enhanced hydrogen output and reduced LCOH2 by up to 9%. Additionally, a future PEM electrolyzer costs projected for 2030 showed that LCOH2 could decrease by up to 1.3 USD/kg depending on site conditions. These findings demonstrate that combining TES with cost optimization strategies can significantly improve both technical performance and economic feasibility in the MENA region. Full article
(This article belongs to the Special Issue Hydrogen Energy Generation, Storage, Transportation and Utilization)
Show Figures

Figure 1

16 pages, 340 KiB  
Article
Kosovo’s Financial and Economic Benefits from Natural Gas Investment Compared to the Western Balkans
by Gjelosh Vataj, Meshdi Ismailov and Shaqir Rexhepi
Sustainability 2025, 17(14), 6268; https://doi.org/10.3390/su17146268 - 8 Jul 2025
Viewed by 355
Abstract
This paper analyzes annual energy production data in Kosovo and explores the potential benefits of introducing natural gas as an energy source. The study compares current coal-based energy production with natural gas in terms of not only financial impact but also environmental pollution [...] Read more.
This paper analyzes annual energy production data in Kosovo and explores the potential benefits of introducing natural gas as an energy source. The study compares current coal-based energy production with natural gas in terms of not only financial impact but also environmental pollution and public health. The focus is on evaluating financial sustainability by assessing production costs and consumption effects, particularly the potential for expense reduction through natural gas adoption. A financial module analysis was applied, comparing energy prices from coal and natural gas sources. Special emphasis was placed on household economic benefits, return on investment, and reduced energy costs. With the integration of natural gas, household energy expenses could decrease from €0.12 to €0.10 per unit, resulting in estimated national savings of approximately €60 million per year. The investment evaluation was conducted using methodologies grounded in relevant case studies and price differentials in the energy market. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 4683 KiB  
Article
Economic and Sustainability Assessment of Floating Photovoltaic Systems in Irrigation Ponds: A Case Study from Alicante (Spain)
by María Inmaculada López-Ortiz, Joaquín Melgarejo-Moreno and José Alberto Redondo-Orts
Sustainability 2025, 17(13), 6212; https://doi.org/10.3390/su17136212 - 7 Jul 2025
Viewed by 497
Abstract
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility [...] Read more.
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility of installing floating photovoltaic panels in the irrigation ponds of irrigation communities (ICs) in the province of Alicante. To this end, a practical case study based on the operating data of a photovoltaic installation on an irrigation pond, which shows 31% self-consumption and a 27% reduction in energy costs, is presented. Based on these results, this type of installation has been considered for the rest of the ponds in the province of Alicante, with an estimated total investment of EUR 130 million and annual savings of EUR 23 million in energy costs. Additionally, barriers such as the initial investment and the need for public financing for large-scale implementation are identified. Finally, it is concluded that the adoption of floating photovoltaic energy represents a key opportunity to reduce dependence on fossil fuels, mitigate environmental impact, and promote the circular economy in the agricultural sector. Full article
Show Figures

Figure 1

19 pages, 273 KiB  
Article
The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries
by Federico Filippo Orsini, Daniele Bellavia, Fabrizio Schettini and Emanuela Foglia
Healthcare 2025, 13(13), 1604; https://doi.org/10.3390/healthcare13131604 - 4 Jul 2025
Viewed by 457
Abstract
Background/Objectives: European healthcare systems are increasingly adopting automation technologies to improve efficiency. This study evaluates the economic viability of hospital automation and medication management digitalization. Methods: An economic evaluation was based on a standardized hospital model comprising 561 beds, representative of an average [...] Read more.
Background/Objectives: European healthcare systems are increasingly adopting automation technologies to improve efficiency. This study evaluates the economic viability of hospital automation and medication management digitalization. Methods: An economic evaluation was based on a standardized hospital model comprising 561 beds, representative of an average acute care hospital across EU27 + UK. For each technology, several cost items were estimated using country-specific parameters such as labor costs, medication error rates, healthcare expenditure, and money discount rate. The financial metrics (Return On Investment—ROI, Net Present Value—NPV, Payback Time—PBT) were first calculated at the hospital level. These results were then extrapolated to the national level by scaling the per-hospital estimates according to the total number of hospital beds reported in each country. Finally, national results were aggregated to derive the overall European impact. Results: The analysis estimated a total European investment of EUR 3.55 billion, with an average PBT of 4.46 years and annual savings of 1,96 billion. ROI averaged 167%, and the total NPV was 8.21 billion. A major saving driver was the reduction in Medication Administration Errors that has an impact of 37.2% on the total savings. Payback times ranged from 3 years in high-GDP countries, to 7 years in lower-GDP nations. Conclusions: These findings demonstrate how providing structured data on hospital automation benefits could support decision-making processes, highlighting the organizational and economic feasibility of the investment across different European national contexts. Full article
21 pages, 2442 KiB  
Article
Net-Zero Backup Solutions for Green Ammonia Hubs Based on Hydrogen Power Generation
by Markus Strömich-Jenewein, Abdessamad Saidi, Andrea Pivatello and Stefano Mazzoni
Energies 2025, 18(13), 3364; https://doi.org/10.3390/en18133364 - 26 Jun 2025
Viewed by 361
Abstract
This paper explores cleaner and techno-economically viable solutions to provide electricity, heat, and cooling using green hydrogen (H2) and green ammonia (NH3) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g., Jenbacher [...] Read more.
This paper explores cleaner and techno-economically viable solutions to provide electricity, heat, and cooling using green hydrogen (H2) and green ammonia (NH3) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g., Jenbacher JMS 420) as a stationary backup solution and comparing its performance with other backup technologies. While electrochemical storage systems, or battery energy storage systems (BESSs), offer fast and reliable short-term energy buffering, they lack flexibility in relocation and typically involve higher costs for extended backup durations. Through five case studies, we highlight that renewable-based energy supply requires additional capacity to bridge longer periods of undersupply. Our results indicate that, for cost reasons, battery–electric solutions alone are not economically feasible for long-term backup. Instead, a more effective system combines both battery and hydrogen storage, where batteries address daily fluctuations and hydrogen engines handle seasonal surpluses. Despite lower overall efficiency, gas engines offer favorable investment and operating costs in backup applications with low annual operating hours. Furthermore, the inherent fuel flexibility of combustion engines eventually will allow green ammonia-based backup systems, particularly as advancements in small-scale thermal cracking become commercially available. Future studies will address CO2 credit recognition, carbon taxes, and regulatory constraints in developing more effective dispatch and master-planning solutions. Full article
(This article belongs to the Special Issue Advanced Studies on Clean Hydrogen Energy Systems of the Future)
Show Figures

Figure 1

22 pages, 1530 KiB  
Article
Sustainable Power Coordination of Multi-Prosumers: A Bilevel Optimization Approach Based on Shared Energy Storage
by Qingqing Li, Wangwang Jin, Qian Li, Wangjie Pan, Zede Liang and Yuan Li
Sustainability 2025, 17(13), 5890; https://doi.org/10.3390/su17135890 - 26 Jun 2025
Viewed by 224
Abstract
Shared energy storage (SES) represents a transformative approach to advancing sustainable energy systems through improved resource utilization and renewable energy integration. In order to enhance the economic benefits of energy storage and prosumers, as well as to increase the consumption rate of renewable [...] Read more.
Shared energy storage (SES) represents a transformative approach to advancing sustainable energy systems through improved resource utilization and renewable energy integration. In order to enhance the economic benefits of energy storage and prosumers, as well as to increase the consumption rate of renewable energy, this paper proposes a bilevel optimization model for multi-prosumer power complementarity based on SES. The upper level is the long-term energy storage capacity configuration optimization, aiming to minimize the investment and operational costs of energy storage. The lower level is the intra-day operation optimization for prosumers, which reduces electricity costs through peer-to-peer (P2P) transactions among prosumers and the coordinated dispatch of SES. Meanwhile, an improved Nash bargaining method is introduced to reasonably allocate the P2P transaction benefits among prosumers based on their contributions to the transaction process. The case study shows that the proposed model can reduce the SES configuration capacity by 46.3% and decrease the annual electricity costs of prosumers by 0.98% to 27.30% compared with traditional SES, and the renewable energy consumption rate has reached 100%. Through peak–valley electricity price arbitrage, the annual revenue of the SES operator increases by 71.1%, achieving a win–win situation for prosumers and SES. This article, by optimizing the storage configuration and trading mechanism to make energy storage more accessible to users, enhances the local consumption of renewable energy, reduces both users′ energy costs and the investment costs of energy storage, and thereby promotes a more sustainable, resilient, and equitable energy future. Full article
Show Figures

Figure 1

Back to TopTop