Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = annual fuel reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1242 KiB  
Article
Integration of Renewable Energy Sources to Achieve Sustainability and Resilience of Mines in Remote Areas
by Josip Kronja and Ivo Galić
Mining 2025, 5(3), 51; https://doi.org/10.3390/mining5030051 - 6 Aug 2025
Abstract
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources [...] Read more.
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources (5) and battery–electric mining equipment. Using the “Studena Vrila” underground bauxite mine as a case study, a comprehensive techno-economic and environmental analysis was conducted across three development models. These models explore incremental scenarios of solar and wind energy adoption combined with electrification of mobile machinery. The methodology includes calculating levelized cost of energy (LCOE), return on investment (ROI), and greenhouse gas (GHG) reductions under each scenario. Results demonstrate that a full transition to RES and electric machinery can reduce diesel consumption by 100%, achieve annual savings of EUR 149,814, and cut GHG emissions by over 1.7 million kg CO2-eq. While initial capital costs are high, all models yield a positive Net Present Value (NPV), confirming long-term economic viability. This research provides a replicable framework for decarbonizing mining operations in off-grid and infrastructure-limited regions. Full article
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 2082 KiB  
Article
Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties
by Tadeusz Dziok, Justyna Łaskawska and František Hopan
Energies 2025, 18(15), 4109; https://doi.org/10.3390/en18154109 - 2 Aug 2025
Viewed by 261
Abstract
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the [...] Read more.
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the leaves can change during the growth period. These changes can result from both the natural growth process and environmental factors—particulate matter adsorption. The main objective was to determine changes in the characteristics of leaves and needles during the growth period (from May to October). Furthermore, to determine the effect of adsorbed particulate matter, the washing process was carried out. Studies were carried out for three tree species: Norway maple, horse chestnut and European larch. Proximate and ultimate analysis was performed and mercury content was determined. During the growth period, beneficial changes were observed: an increase in carbon content and a decrease in hydrogen and sulphur content. The unfavourable change was a significant increase in ash content, which caused a decrease in calorific value. The increase in ash content was caused by adsorbed particulate matter. They were mostly absorbed by the tissues of the needle and leaves and could not be removed by washing the surface. Full article
Show Figures

Figure 1

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 - 31 Jul 2025
Viewed by 334
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

23 pages, 1652 KiB  
Article
Case Study on Emissions Abatement Strategies for Aging Cruise Vessels: Environmental and Economic Comparison of Scrubbers and Low-Sulphur Fuels
by Luis Alfonso Díaz-Secades, Luís Baptista and Sandrina Pereira
J. Mar. Sci. Eng. 2025, 13(8), 1454; https://doi.org/10.3390/jmse13081454 - 30 Jul 2025
Viewed by 230
Abstract
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. [...] Read more.
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. This study evaluates, at environmental and economic levels, two key sulphur abatement strategies for a 1998-built cruise vessel nearing the end of its service life: (i) the installation of open-loop scrubbers with fuel enhancement devices, and (ii) a switch to marine diesel oil as main fuel. The analysis was based on real operational data from a cruise vessel. For the environmental assessment, a Tier III hybrid emissions model was used. The results show that scrubbers reduce SOx emissions by approximately 97% but increase fuel consumption by 3.6%, raising both CO2 and NOx emissions, while particulate matter decreases by only 6.7%. In contrast, switching to MDO achieves over 99% SOx reduction, an 89% drop in particulate matter, and a nearly 5% reduction in CO2 emissions. At an economic level, it was found that, despite a CAPEX of nearly USD 1.9 million, scrubber installation provides an average annual net saving exceeding USD 8.2 million. From the deterministic and probabilistic analyses performed, including Monte Carlo simulations under various fuel price correlation scenarios, scrubber installation consistently shows high profitability, with NPVs surpassing USD 70 million and payback periods under four months. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

18 pages, 2111 KiB  
Article
Modelling Renewable Energy and Resource Interactions Using CLEWs to Support Thailand’s 2050 Carbon Neutrality Goal
by Nat Nakkorn, Surasak Janchai, Suparatchai Vorarat and Prayuth Rittidatch
Sustainability 2025, 17(15), 6909; https://doi.org/10.3390/su17156909 - 30 Jul 2025
Viewed by 348
Abstract
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate [...] Read more.
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate the long-term trade-offs among energy, water, and land systems. Data were sourced from esteemed international organisations (e.g., the IEA, FAO, and OECD) and national agencies and organised into a tailored OSeMOSYS Starter Data Kit for Thailand, comprising a baseline and a carbon neutral trajectory. The baseline scenario, primarily reliant on fossil fuels, is projected to generate annual CO2 emissions exceeding 400 million tons and water consumption surpassing 85 billion cubic meters by 2025. By the mid-century, the carbon neutral scenario will have approximately 40% lower water use and a 90% reduction in power sector emissions. Under the carbon neutral path, renewable energy takes the front stage; the share of renewable electricity goes from under 20% in the baseline scenario to almost 80% by 2050. This transition and large reforestation initiatives call for consistent investment in solar energy (solar energy expenditures exceeding 20 billion USD annually by 2025). Still, it provides notable co-benefits, including greater resource sustainability and better alignment with international climate targets. The results provide strategic insights aligned with Thailand’s National Energy Plan (NEP) and offer modelling evidence toward achieving international climate goals under COP29. Full article
Show Figures

Graphical abstract

26 pages, 6343 KiB  
Article
Comparing Pre- and Post-Fire Strategies to Mitigate Wildfire-Induced Soil Erosion in Two Mediterranean Watersheds
by Akli Benali, Yacine Benhalima, Bruno Aparício, Sandeep Timilsina, Jacob Keizer and Alan Ager
Forests 2025, 16(8), 1202; https://doi.org/10.3390/f16081202 - 22 Jul 2025
Viewed by 389
Abstract
Wildfires accelerate soil erosion. Preventive fuel management and post-fire control measures are two distinct strategies that can be used to mitigate wildfire-induced soil loss with varying effectiveness and costs. Here, we quantified the impacts and effectiveness of pre- versus post-fire treatment strategies on [...] Read more.
Wildfires accelerate soil erosion. Preventive fuel management and post-fire control measures are two distinct strategies that can be used to mitigate wildfire-induced soil loss with varying effectiveness and costs. Here, we quantified the impacts and effectiveness of pre- versus post-fire treatment strategies on soil loss mitigation. We coupled fire simulations with soil erosion modelling to estimate annual wildfire-induced soil loss for two watersheds in Portugal. We identified optimal treatment locations with the aim of maximizing the reduction in soil loss, and estimated treatment effectiveness using treatment leverage and cost-effectiveness. Both mitigation strategies were predicted to reduce post-fire soil loss, with effects increasing with treatment extent. Treatments had a strong mitigation effect particularly in extreme fire years. Results indicated that there was no single mitigation strategy that fits all watersheds, and the choice was largely influenced by wildfire and treatment frequency. For the most fire-prone watershed, Castelo de Bode, fuel treatments were the most effective strategy, being approximately 2-fold cheaper and more effective than post-fire treatments. Treatments were more effective and exhibited lower variability in years with higher soil loss. Our results show that the most cost-effective combinations of treatment strategies vary with the soil loss reduction objective. Relevant treatment synergies were identified that can help land managers to maximize the attainment of soil loss mitigation goals ensuring the best use of resources. This work contributes to a better understanding of how post-fire soil loss can be mitigated, contributing for better resource allocation while maximizing specific management goals. Full article
(This article belongs to the Special Issue Forest Fire Detection, Prevention and Management)
Show Figures

Figure 1

21 pages, 5207 KiB  
Article
Experimental Study on Co-Firing of Coal and Biomass in Industrial-Scale Circulating Fluidized Bed Boilers
by Haoteng Zhang and Chunjiang Yu
Energies 2025, 18(14), 3832; https://doi.org/10.3390/en18143832 - 18 Jul 2025
Viewed by 336
Abstract
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% [...] Read more.
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% (weight percent) operation. By analyzing boiler parameters and post-shutdown samples, the comprehensive impact of biomass co-firing on the boiler system was assessed. The results indicate that biomass pellets were blended with coal at the last conveyor belt section before the furnace, successfully ensuring operational continuity during co-firing. Further, co-firing biomass up rates of to 20 wt% do not significantly impact the fuel combustion efficiency (gaseous and solid phases) or boiler thermal efficiency and also have positive effects in reducing the bottom ash and SOx and NOx emissions and lowering the risk of low-temperature corrosion. The biomass co-firing slightly increases the combustion share in the dense phase zone and raises the bed temperature. The strong ash adhesion characteristics of the biomass were observed, which were overcome by increasing the ash blowing frequency. Under 20 wt% co-firing, the annual CO2 emissions reductions can reach 130,000 tons. This study provides technical references and practical experience for the engineering application of direct biomass co-firing in industrial-scale CFB boilers. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

27 pages, 1677 KiB  
Article
The Impact of IMO Market-Based Measures on Korean Shipping Companies: A Focus on the GHG Levy
by Hanna Kim and Sunghwa Park
Sustainability 2025, 17(14), 6524; https://doi.org/10.3390/su17146524 - 16 Jul 2025
Viewed by 497
Abstract
This study examines the effects of the International Maritime Organization’s (IMO) market-based measures, with a particular focus on the greenhouse gas (GHG) levy and on the financial and operational performance of Korean shipping companies. The analysis estimates that these companies, which play a [...] Read more.
This study examines the effects of the International Maritime Organization’s (IMO) market-based measures, with a particular focus on the greenhouse gas (GHG) levy and on the financial and operational performance of Korean shipping companies. The analysis estimates that these companies, which play a vital role in global trade, consume approximately 9211 kilotons of fuel annually and emit 28.5 million tons of carbon dioxide. Under the lowest proposed carbon tax scenario, the financial burden on these companies is estimated at approximately KRW 1.07 trillion, resulting in an 8.8% reduction in net profit, a 2.4% decrease in return on equity (ROE), and a 1.1% decline in return on assets (ROA). Conversely, under the highest carbon tax scenario, costs rise to KRW 4.89 trillion, leading to a significant 40.2% decrease in net profit, thereby posing a serious threat to the financial stability and competitiveness of these firms. These findings underscore the urgent need for strategic policy interventions to mitigate the financial impact of carbon taxation while promoting both environmental sustainability and economic resilience in the maritime sector. Full article
(This article belongs to the Special Issue Sustainable Management of Shipping, Ports and Logistics)
Show Figures

Figure 1

18 pages, 3631 KiB  
Article
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
by Piotr Olczak and Dominika Matuszewska
Energies 2025, 18(14), 3674; https://doi.org/10.3390/en18143674 - 11 Jul 2025
Viewed by 304
Abstract
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage [...] Read more.
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data, the research identified the storage requirements, including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell, representing the smallest and most basic commercially available units, and included a sensitivity analysis. At the household level—represented by a single-family home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years, respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system, decreasing the imbalance from 5.73 kWh to 4.42 kWh. However, while it greatly improves self-consumption, its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

21 pages, 4683 KiB  
Article
Economic and Sustainability Assessment of Floating Photovoltaic Systems in Irrigation Ponds: A Case Study from Alicante (Spain)
by María Inmaculada López-Ortiz, Joaquín Melgarejo-Moreno and José Alberto Redondo-Orts
Sustainability 2025, 17(13), 6212; https://doi.org/10.3390/su17136212 - 7 Jul 2025
Viewed by 497
Abstract
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility [...] Read more.
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility of installing floating photovoltaic panels in the irrigation ponds of irrigation communities (ICs) in the province of Alicante. To this end, a practical case study based on the operating data of a photovoltaic installation on an irrigation pond, which shows 31% self-consumption and a 27% reduction in energy costs, is presented. Based on these results, this type of installation has been considered for the rest of the ponds in the province of Alicante, with an estimated total investment of EUR 130 million and annual savings of EUR 23 million in energy costs. Additionally, barriers such as the initial investment and the need for public financing for large-scale implementation are identified. Finally, it is concluded that the adoption of floating photovoltaic energy represents a key opportunity to reduce dependence on fossil fuels, mitigate environmental impact, and promote the circular economy in the agricultural sector. Full article
Show Figures

Figure 1

18 pages, 1480 KiB  
Article
Energy-Environmental Analysis of Retrofitting of a Chilled Water Production System in an Industrial Facility—A Case Study
by Tomasz Mróz and Kacper Fórmaniak
Appl. Sci. 2025, 15(13), 7465; https://doi.org/10.3390/app15137465 - 3 Jul 2025
Viewed by 322
Abstract
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants [...] Read more.
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants based on dual-stage absorption chillers supplied from an existing gas-fueled co-generation plant were identified. The proposed variants, i.e., tri-generation systems, were compared with the basic variant, which relied on electric compression water chillers. An evaluation of the variants was performed on the basis of two criteria: annual primary energy consumption and annual carbon dioxide emission. Variant 2, i.e., with a 1650 kW dual-stage absorption water chiller supplied from an existing gas fueled co-generation plant, was chosen as the optimal variant. It achieved a 370 MWh annual primary energy consumption reduction and a 1140 Mg annual carbon dioxide emission reduction. It was found that increasing the co-generation ratio for the CHP plant powering the pharmaceutical factory resulted in lower consumption of primary energy in variants in which the cooling energy supply system was retrofitted based on absorption water chillers. The threshold values of the co-generation ratio were e = 0.37 for Variant 1 and e = 0.34 for Variant 2. A literature survey revealed that there is limited interest in the application of such a solution in industrial plants. The performed analysis showed that the evaluated systems may nonetheless be an attractive option for pharmaceutics factories, leading to the reduction of primary energy consumption and carbon dioxide emissions, thereby making more electrical power available for core production. The lessons learned during our analysis could be easily transferred to other industrial facilities requiring chilled water production systems. Full article
Show Figures

Figure 1

25 pages, 1568 KiB  
Article
Analysis of the Potential Impacts of Climate Change on the Mean Annual Water Balance and Precipitation Deficits for a Catchment in Southern Ecuador
by Luis-Felipe Duque, Greg O’Donnell, Jimmy Cordero, Jorge Jaramillo and Enda O’Connell
Hydrology 2025, 12(7), 177; https://doi.org/10.3390/hydrology12070177 - 2 Jul 2025
Cited by 1 | Viewed by 590
Abstract
The mean annual water balance is essential for evaluating water availability in a catchment and planning water resources. Climate change alters this balance by affecting precipitation, evapotranspiration, and overall water availability. This study analyses the impact of climate change on the mean annual [...] Read more.
The mean annual water balance is essential for evaluating water availability in a catchment and planning water resources. Climate change alters this balance by affecting precipitation, evapotranspiration, and overall water availability. This study analyses the impact of climate change on the mean annual water balance in the Catamayo catchment, a key water source for irrigation and hydropower in southern Ecuador and northern Peru. A Budyko-based approach was employed due to its conceptual simplicity and proven robustness for estimating long-term water balances under changing climatic conditions. Using outputs from 23 Global Circulation Models (GCMs) under CMIP6’s SSP2-4.5 and SSP8.5 scenarios, the results indicate increasing aridity, particularly in the lower and middle parts of the catchment, which correspond to arid and semi-arid zones. Water availability may decrease by 26.3 ± 12.3% to 33.3 ± 17% until 2080 due to negligible changes (statistically speaking) in average precipitation but rising evapotranspiration. However, historical precipitation analysis (1961–2020) reveals an increasing trend over this historical period which can be attributed to natural climatic variability associated to the El Nino-Southern Oscillation (ENSO), possibly enhanced by anthropogenic climate change. A novel hybrid method combining the statistics of historical precipitation deficits with GCM mean projections provides estimates of future precipitation deficits. These findings suggest potential reductions in crop yields and hydropower capacity, which (although not quantitatively assessed in this study) are inferred based on the projected decline in water availability. Such impacts could lead to higher energy costs, increased reliance on fossil fuels, and intensified competition for water. Mitigation measures, including water-saving strategies, energy diversification, and integrated water resource management, are recommended to address these challenges. Full article
Show Figures

Figure 1

32 pages, 3011 KiB  
Article
Sensitivity Analysis of a Hybrid PV-WT Hydrogen Production System via an Electrolyzer and Fuel Cell Using TRNSYS in Coastal Regions: A Case Study in Perth, Australia
by Raed Al-Rbaihat
Energies 2025, 18(12), 3108; https://doi.org/10.3390/en18123108 - 12 Jun 2025
Cited by 1 | Viewed by 459
Abstract
This article presents a modeling and analysis approach for a hybrid photovoltaic wind turbine (PV-WT) hydrogen production system. This study uses the TRNSYS simulation platform to evaluate the system under coastal climate conditions in Perth, Australia. The system encapsulates an advanced alkaline electrolyzer [...] Read more.
This article presents a modeling and analysis approach for a hybrid photovoltaic wind turbine (PV-WT) hydrogen production system. This study uses the TRNSYS simulation platform to evaluate the system under coastal climate conditions in Perth, Australia. The system encapsulates an advanced alkaline electrolyzer (ELE) and an alkaline fuel cell (AFC). A comprehensive 4E (energy, exergy, economic, and environmental) assessment is conducted. The analysis is based on hourly dynamic simulations over a full year. Key performance metrics include hydrogen production, energy and exergy efficiencies, carbon emission reduction, levelized cost of energy (LCOE), and levelized cost of hydrogen (LCOH). The TRNSYS model is validated against the existing literature data. The results show that the system performance is highly sensitive to ambient conditions. A sensitivity analysis reveals an energy efficiency of 7.3% and an exergy efficiency of 5.2%. The system has an entropy generation of 6.22 kW/K and a sustainability index of 1.055. The hybrid PV-WT system generates 1898.426 MWh of renewable electricity annually. This quantity corresponds to 252.7 metric tons of hydrogen production per year. The validated model shows a stable LCOE of 0.102 USD/kWh, an LCOH of 4.94 USD/kg, an energy payback time (EPBT) of 5.61 years, and cut CO2 emissions of 55,777.13 tons. This research provides a thorough analysis for developing green hydrogen systems using hybrid renewables. This study also offers a robust prediction model, enabling further enhancements in hybrid renewable hydrogen production. Full article
(This article belongs to the Special Issue Research on Integration and Storage Technology of Hydrogen Energy)
Show Figures

Figure 1

17 pages, 1498 KiB  
Article
Efficient Free Fatty Acid Reduction in Palm Oil Mill Effluent (POME) for Biodiesel Production: Challenges and Optimization Strategies
by Indunil Chamara, Helitha Nilmalgoda and Eranga Wimalasiri
Challenges 2025, 16(2), 28; https://doi.org/10.3390/challe16020028 - 12 Jun 2025
Viewed by 1245
Abstract
The increasing demand for fossil fuels has led the oil industry to explore biodiesel as a renewable alternative, which is crucial for advancing planetary health. Biodiesel offers environmental benefits and shares similar properties with petroleum diesel, making it a promising substitute. However, Palm [...] Read more.
The increasing demand for fossil fuels has led the oil industry to explore biodiesel as a renewable alternative, which is crucial for advancing planetary health. Biodiesel offers environmental benefits and shares similar properties with petroleum diesel, making it a promising substitute. However, Palm Oil Mill Effluent (POME), containing sludge palm oil (SPO), presents challenges due to its high free fatty acid (FFA) content. This study proposes novel optimization strategies to reduce FFAs in SPO and improve biodiesel yield. A combination of base neutralization, esterification, and transesterification processes was employed. Neutralization with sodium hydroxide (NaOH) at concentrations ranging from 0.1% to 0.5% w/w was followed by esterification using sulfuric acid (H2SO4) with varying methanol-to-oil ratios. The optimal FFA reduction of 2.26% was achieved at a 6:1 methanol ratio. Transesterification with a 7:1 methanol-to-oil ratio yielded the highest biodiesel output of 71.25%. The biodiesel met ASTM standards, with a calorific value of 40.01 MJ/kg, a flash point of 180.5 °C, and a density of 0.86 g/cm3. Economic analysis estimates an annual net profit of USD 244,901,600, demonstrating that this approach provides a financially viable solution while advancing planetary health by reducing dependency on fossil fuels, mitigating climate change, and supporting sustainable fuel production. Full article
Show Figures

Figure 1

Back to TopTop