Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = anisotropic thermal transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2540 KB  
Review
Hexagonal Boron Nitride Nanosheets: Properties, Preparation and Applications in Thermal Management
by Min Liu and Yilin Wang
Nanomaterials 2026, 16(2), 101; https://doi.org/10.3390/nano16020101 - 12 Jan 2026
Viewed by 278
Abstract
Hexagonal boron nitride nanosheets (BNNSs) have emerged as one of the most promising materials for next-generation thermal management, driven by the intensifying heat dissipation demands of highly integrated electronics. While conventional polymer-based packaging materials are lightweight and electrically insulating, their intrinsically low thermal [...] Read more.
Hexagonal boron nitride nanosheets (BNNSs) have emerged as one of the most promising materials for next-generation thermal management, driven by the intensifying heat dissipation demands of highly integrated electronics. While conventional polymer-based packaging materials are lightweight and electrically insulating, their intrinsically low thermal conductivity severely limits effectiveness in high-power devices. The remarkable thermal transport, wide bandgap, chemical robustness, and mechanical strength of BNNSs offer a compelling solution. This review provides a comprehensive overview of the structural and physical foundations that underpin the anisotropic yet exceptional thermal properties of bulk h-BN and BNNSs. We examine major synthesis routes including tape exfoliation, ball milling, liquid-phase exfoliation, chemical vapor deposition, and metal–organic chemical vapor deposition, highlighting how process mechanisms govern nanosheet thickness, defect density, crystallinity, and scalability. Particular emphasis is placed on the advantages of BNNSs in thermal management systems, from their use as high-efficiency thermally conductive fillers and advanced thermal interface materials. We conclude by examining key challenges including large-area growth, filler alignment, and interfacial engineering, and by presenting future research directions that could enable the practical deployment of BNNSs-based thermal management technologies. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

42 pages, 6169 KB  
Review
SnSe: A Versatile Material for Thermoelectric and Optoelectronic Applications
by Chi Zhang, Zhengjie Guo, Fuyueyang Tan, Jinhui Zhou, Xuezhi Li, Xi Cao, Yikun Yang, Yixian Xie, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 56; https://doi.org/10.3390/coatings16010056 - 3 Jan 2026
Viewed by 543
Abstract
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic [...] Read more.
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic applications. Key crystallographic characteristics are first discussed, including the temperature-driven Pnma–Cmcm phase transition, anisotropic band and valley structures, and phonon transport mechanisms that lead to intrinsically low lattice thermal conductivity below 0.5 W m−1 K−1 and tunable carrier transport. Subsequently, major synthesis strategies are critically compared, spanning Bridgman and vertical-gradient single-crystal growth, spark plasma sintering and hot pressing of polycrystals, as well as vapor- and solution-based thin-film fabrication, with emphasis on process windows, stoichiometry control, defect chemistry, and microstructure engineering. For thermoelectric applications, directional and temperature-dependent transport behaviors are analyzed, highlighting record thermoelectric performance in single-crystal SnSe at hi. We analyze directional and temperature-dependent transport, highlighting record thermoelectric figure of merit values exceeding 2.6 along the b-axis in single-crystal SnSe at ~900 K, as well as recent progress in polycrystalline and thin-film systems through alkali/coinage-metal doping (Ag, Na, Cu), isovalent and heterovalent substitution (Zn, S), and hierarchical microstructural design. For optoelectronic applications, optical properties, carrier dynamics, and photoresponse characteristics are summarized, underscoring high absorption coefficients exceeding 104 cm−1 and bandgap tunability across the visible to near-infrared range, together with interface engineering strategies for thin-film photovoltaics and broadband photodetectors. Emerging applications beyond energy conversion, including phase-change memory and electrochemical energy storage, are also reviewed. Finally, key challenges related to selenium volatility, performance reproducibility, long-term stability, and scalable manufacturing are identified. Overall, this review provides a process-oriented and application-driven framework to guide the rational design, synthesis optimization, and device integration of SnSe-based materials. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

24 pages, 5672 KB  
Article
Microstructure Statistical Symmetry, and Quantification of Anisotropic Thermal Conduction in Additive Manufactured Short Carbon Fiber/Polyetherimide Composites
by Tiantian Ke, Harry Hongru Zhou, Soroush Azhdari, Matthias Feuchtgruber and Sergii G. Kravchenko
J. Manuf. Mater. Process. 2026, 10(1), 16; https://doi.org/10.3390/jmmp10010016 - 1 Jan 2026
Viewed by 317
Abstract
This work presents a microstructure-informed pathway for assigning a material symmetry class to distinguish between tensor components and scalar effective thermal conductivity (ETC) values derived from directional measurements. The framework combines directional thermal measurements with three-dimensional statistical quantification of microstructural features (fibers and [...] Read more.
This work presents a microstructure-informed pathway for assigning a material symmetry class to distinguish between tensor components and scalar effective thermal conductivity (ETC) values derived from directional measurements. The framework combines directional thermal measurements with three-dimensional statistical quantification of microstructural features (fibers and voids) to assess whether symmetry assumptions required for tensorial interpretation are justified. Three distinct microstructures of short carbon fiber-reinforced polyetherimide composite were analyzed, with the microstructure statistics altered by the melt extrusion additive manufacturing process parameters. The directional temperature-rise history in the material samples was measured using the Transient Plane Source sensor. The statistics obtained from 3D images of microstructural features were used to assess the material’s anisotropy class to justify the applicability of the transverse isotropic regression method for ETC. One microstructure exhibited characteristics consistent with a statistical transverse isotropy idealization, enabling inference of the ETC tensor; the others did not, and their directional ETC values are treated as test-specific parameters obtained from isotropic model fits. The results also demonstrate that microstructure parameters may strongly influence directional thermal transport. More broadly, this work highlights the need for microstructure-informed justification when interpreting directional measurements as tensor components rather than configuration-dependent scalars, underscoring a critical unresolved gap in the experimental characterization of general anisotropic ETC tensors. Full article
Show Figures

Figure 1

43 pages, 26581 KB  
Review
Advances in Computational Modeling and Machine Learning of Cellulosic Biopolymers: A Comprehensive Review
by Sharmi Mazumder, Mohammad Hossein Golbabaei and Ning Zhang
Biomimetics 2025, 10(12), 802; https://doi.org/10.3390/biomimetics10120802 - 1 Dec 2025
Viewed by 954
Abstract
The hierarchical structure and multifunctional properties of bio-based cellular materials, particularly cellulose, hemicellulose, and lignin, have attracted increasing attention and interest due to their sustainability and versatility. Recent advances in computational modeling and machine learning strategies have provided transformative insights into the molecular, [...] Read more.
The hierarchical structure and multifunctional properties of bio-based cellular materials, particularly cellulose, hemicellulose, and lignin, have attracted increasing attention and interest due to their sustainability and versatility. Recent advances in computational modeling and machine learning strategies have provided transformative insights into the molecular, mechanical, thermal, and electronic behaviors of these biopolymers. This review categorizes the conducted studies based on key material properties and discusses the computational methods utilized, including quantum mechanical approaches, atomistic and coarse-grained molecular dynamics, finite element modeling, and machine learning techniques. For each property, such as structural, mechanical, thermal, and electronic, we have analyzed the progress made in understanding inter- and intra-molecular interactions, deformation mechanisms, phase behavior, and functional performance. For instance, atomistic simulations have shown that cellulose nanocrystals exhibit a highly anisotropic elastic response, with axial elastic moduli ranging from approximately 100 to 200 GPa. Similarly, thermal transport studies have shown that the thermal conductivity along the chain axis (≈5.7 W m−1 K−1) is nearly an order of magnitude higher than that in the transverse direction (≈0.7 W m−1 K−1). In recent years, this research area has also experienced rapid advancement in data-driven methodologies, with the number of machine learning applications for biopolymer systems increasing more than fourfold over the past five years. By bridging multiscale modeling and data-driven approaches, this review aims to illustrate how these techniques can be integrated into a unified framework to accelerate the design and discovery of high-performance bioinspired materials. Eventually, we have discussed emerging opportunities in multiscale modeling and data-driven discovery to outline future directions for the design and application of high-performance bioinspired materials. This review aims to bridge the gap between molecular-level understanding and macroscopic functionality, thereby supporting the rational design of next-generation sustainable materials. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Graphical abstract

37 pages, 16681 KB  
Article
Experimental, Simulation and Theoretical Insights into Anisotropic Thermal Behavior of Epoxy Nanocomposites Reinforced with Carbonaceous Nanofillers
by Giovanni Spinelli, Rosella Guarini, Liberata Guadagno, Carlo Naddeo, Luigi Vertuccio and Vittorio Romano
Polymers 2025, 17(9), 1248; https://doi.org/10.3390/polym17091248 - 3 May 2025
Viewed by 1193
Abstract
Understanding and optimizing thermal conductivity in epoxy-based composites is crucial for efficient thermal management applications. This study investigates the anisotropic thermal conductivity of a tetra-functional epoxy resin filled with low concentrations (0.25–2.00 wt%) of carbonaceous nanofillers: 1D multiwall carbon nanotubes (MWCNTs) and 2D [...] Read more.
Understanding and optimizing thermal conductivity in epoxy-based composites is crucial for efficient thermal management applications. This study investigates the anisotropic thermal conductivity of a tetra-functional epoxy resin filled with low concentrations (0.25–2.00 wt%) of carbonaceous nanofillers: 1D multiwall carbon nanotubes (MWCNTs) and 2D exfoliated graphite (EG) nanoparticles. Experimental measurements conducted using the Transient Plane Source (TPS) method reveal distinct behaviors depending on the nanofiller’s geometry. Epoxy formulations incorporating MWCNTs exhibit a ~60% increase in in-plane thermal conductivity (λI-p dir.) compared to the unfilled resin, with negligible changes in the through-plane direction (λT-p dir.). Conversely, EG nanoparticles enhance thermal conductivity in both directions, with a preference for the in-plane direction, achieving a ~250% increase at 2 wt%. In light of this, graphene-based fillers establish a predominant thermal transport direction in the resulting nanocomposites due to their layered structure, whereas MWCNTs create unidirectional thermal pathways. The TPS results were complemented by multiphysics simulations in COMSOL and theoretical studies based on the theory of thermal circuits to explain the observed phenomena and justify the experimental findings. This integrated approach, combining experiments, theoretical analyses, and simulations, demonstrates the potential for tailoring the thermal properties of epoxy nanocomposites. These insights provide a foundation for developing advanced materials optimized for efficient thermal management in high-performance systems. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

11 pages, 706 KB  
Article
On the Resistance Coefficients for Heat Conduction in Anisotropic Bodies at the Limit of Linear Extended Thermodynamics
by Devyani Thapliyal, Raj Kumar Arya, Dimitris S. Achilias and George D. Verros
Entropy 2025, 27(3), 314; https://doi.org/10.3390/e27030314 - 18 Mar 2025
Cited by 1 | Viewed by 876
Abstract
This study examines the thermal conduction resistance in anisotropic bodies using linear extended irreversible thermodynamics. The fulfilment of the Onsager Reciprocal Relations in anisotropic bodies, such as crystals, has been demonstrated. This fulfilment is achieved by incorporating Newton’s heat transfer coefficients into the [...] Read more.
This study examines the thermal conduction resistance in anisotropic bodies using linear extended irreversible thermodynamics. The fulfilment of the Onsager Reciprocal Relations in anisotropic bodies, such as crystals, has been demonstrated. This fulfilment is achieved by incorporating Newton’s heat transfer coefficients into the calculation of the entropy production rate. Furthermore, a basic principle for the transport of heat, similar to the Onsager–Fuoss formalism for the multicomponent diffusion at a constant temperature, was established. This work has the potential to be applied not just in the field of material science, but also to enhance our understanding of heat conduction in crystals. A novel formalism for heat transfer analogous to Onsager–Fuoss model for multicomponent diffusion was developed. It is believed that this work could be applied for educational purposes. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

12 pages, 554 KB  
Article
Maxwellian Distribution-Based Hall Transport Coefficients for Charged Particles in Magnetic Disk Array
by Linlin An and Peifeng Fan
Entropy 2025, 27(3), 244; https://doi.org/10.3390/e27030244 - 26 Feb 2025
Viewed by 946
Abstract
This study explores Hall transport phenomena by expanding upon prior research on magnetic disk arrays (MDAs). We examine the dynamics of charged particles using collision models akin to those in Lorentzian plasma. Previously, we derived transport coefficients under isotropic and mono-kinetic conditions. In [...] Read more.
This study explores Hall transport phenomena by expanding upon prior research on magnetic disk arrays (MDAs). We examine the dynamics of charged particles using collision models akin to those in Lorentzian plasma. Previously, we derived transport coefficients under isotropic and mono-kinetic conditions. In this study, we adopt an anisotropic framework, enhanced by Fourier transformation, and employ the local Maxwellian distribution function. These assumptions allow us to calculate the Hall diffusivity, electrical conductivity, and thermal Hall conductivity tensors. Our findings contribute to a deeper understanding of the Hall transport in magnetic disk arrays and chiral active systems. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

18 pages, 7290 KB  
Review
Photothermal Infrared Radiometry and Thermoreflectance—Unique Strategy for Thermal Transport Characterization of Nanolayers
by Ankur Chatterjee, Mohanachandran Nair Sindhu Swapna, Ameneh Mikaeeli, Misha Khalid, Dorota Korte, Andreas D. Wieck and Michal Pawlak
Nanomaterials 2024, 14(21), 1711; https://doi.org/10.3390/nano14211711 - 27 Oct 2024
Cited by 1 | Viewed by 2205
Abstract
Thermal transport properties for the isotropic and anisotropic characterization of nanolayers have been a significant gap in the research over the last decade. Multiple studies have been close to determining the thermal conductivity, diffusivity, and boundary resistance between the layers. The methods detailed [...] Read more.
Thermal transport properties for the isotropic and anisotropic characterization of nanolayers have been a significant gap in the research over the last decade. Multiple studies have been close to determining the thermal conductivity, diffusivity, and boundary resistance between the layers. The methods detailed in this work involve non-contact frequency domain pump-probe thermoreflectance (FDTR) and photothermal radiometry (PTR) methods for the ultraprecise determination of in-plane and cross-plane thermal transport properties. The motivation of one of the works is the advantage of the use of amplitude (TR signal) as one of the input parameters along with the phase for the determination of thermal parameters. In this article, we present a unique strategy for measuring the thermal transport parameters of thin films, including cross-plane thermal diffusivity, in-plane thermal conductivity, and thermal boundary resistance as a comprehensively reviewed article. The results obtained for organic and inorganic thin films are presented. Precise ranges for the thermal conductivity can be across confidence intervals for material measurements between 0.5 and 60 W/m-K for multiple nanolayers. The presented strategy is based on frequency-resolved methods, which, in contrast to time-resolved methods, make it possible to measure volumetric-specific heat. It is worth adding that the presented strategy allows for accurate (the signal in both methods depends on cross-plane thermal conductivity and thermal boundary resistance) and precise measurement. Full article
Show Figures

Figure 1

14 pages, 4480 KB  
Article
Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing
by Jin Dong, Jing Lin, Hebai Zhang, Jun Wang, Ye Li, Kelin Pan, Haichen Zhang and Dechao Hu
Molecules 2024, 29(17), 4000; https://doi.org/10.3390/molecules29174000 - 23 Aug 2024
Cited by 1 | Viewed by 2215
Abstract
Developing multifunctional flexible composites with high-performance electromagnetic interference (EMI) shielding, thermal management, and sensing capacity is urgently required but challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers (ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-assisted filtration [...] Read more.
Developing multifunctional flexible composites with high-performance electromagnetic interference (EMI) shielding, thermal management, and sensing capacity is urgently required but challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers (ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-assisted filtration and hot-pressing. The formed 3D conductive skeleton enabled fast electron and phonon transport pathways in the composite films. As a result, the composite films showed a high electrical conductivity of 71.53 S/cm and an outstanding thermal conductivity of 6.4 W/m·K when the mass ratio of ANFs to MXene/AgNWs was 10:8. The excellent electrical properties and multi-layered structure endowed the composite films with superior EMI shielding performance and remarkable Joule heating performance, with a surface temperature of 78.3 °C at a voltage of 2.5 V. Additionally, it was found that the composite films also exhibited excellent mechanical properties and outstanding flame resistance. Moreover, the composite films could be further designed as strain sensors, which show great promise in monitoring real-time signals for human motion. These satisfactory results may open up a new opportunity for EMI shielding, thermal management, and sensing applications in wearable electronic devices. Full article
(This article belongs to the Special Issue Recent Advances in Functional Composite Materials)
Show Figures

Graphical abstract

16 pages, 2388 KB  
Article
A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene
by Rafat Mohammadi, Mohammad Reza Ghaderi and Ebrahim Hajian
Materials 2023, 16(20), 6714; https://doi.org/10.3390/ma16206714 - 16 Oct 2023
Cited by 4 | Viewed by 3531
Abstract
Efficient thermal management of modern electronics requires the use of thin films with highly anisotropic thermal conductivity. Such films enable the effective dissipation of excess heat along one direction while simultaneously providing thermal insulation along the perpendicular direction. This study employs non-equilibrium molecular [...] Read more.
Efficient thermal management of modern electronics requires the use of thin films with highly anisotropic thermal conductivity. Such films enable the effective dissipation of excess heat along one direction while simultaneously providing thermal insulation along the perpendicular direction. This study employs non-equilibrium molecular dynamics to investigate the thermal conductivity of bilayer graphene (BLG) sheets, examining both in-plane and cross-plane thermal conductivities. The in-plane thermal conductivity of 10 nm × 10 nm BLG with zigzag and armchair edges at room temperature is found to be around 204 W/m·K and 124 W/m·K, respectively. The in-plane thermal conductivity of BLG increases with sheet length. BLG with zigzag edges consistently exhibits 30–40% higher thermal conductivity than BLG with armchair edges. In addition, increasing temperature from 300 K to 600 K decreases the in-plane thermal conductivity of a 10 nm × 10 nm zigzag BLG by about 34%. Similarly, the application of a 12.5% tensile strain induces a 51% reduction in its thermal conductivity compared to the strain-free values. Armchair configurations exhibit similar responses to variations in temperature and strain, but with less sensitivity. Furthermore, the cross-plane thermal conductivity of BLG at 300 K is estimated to be 0.05 W/m·K, significantly lower than the in-plane results. The cross-plane thermal conductance of BLG decreases with increasing temperatures, specifically, at 600 K, its value is almost 16% of that observed at 300 K. Full article
(This article belongs to the Special Issue Advanced 2D Nanomaterials: Characterization and Application)
Show Figures

Figure 1

21 pages, 8218 KB  
Article
The Effect of Mechanical Elongation on the Thermal Conductivity of Amorphous and Semicrystalline Thermoplastic Polyimides: Atomistic Simulations
by Victor M. Nazarychev and Sergey V. Lyulin
Polymers 2023, 15(13), 2926; https://doi.org/10.3390/polym15132926 - 1 Jul 2023
Cited by 8 | Viewed by 3036
Abstract
Over the past few decades, the enhancement of polymer thermal conductivity has attracted considerable attention in the scientific community due to its potential for the development of new thermal interface materials (TIM) for both electronic and electrical devices. The mechanical elongation of polymers [...] Read more.
Over the past few decades, the enhancement of polymer thermal conductivity has attracted considerable attention in the scientific community due to its potential for the development of new thermal interface materials (TIM) for both electronic and electrical devices. The mechanical elongation of polymers may be considered as an appropriate tool for the improvement of heat transport through polymers without the necessary addition of nanofillers. Polyimides (PIs) in particular have some of the best thermal, dielectric, and mechanical properties, as well as radiation and chemical resistance. They can therefore be used as polymer binders in TIM without compromising their dielectric properties. In the present study, the effects of uniaxial deformation on the thermal conductivity of thermoplastic PIs were examined for the first time using atomistic computer simulations. We believe that this approach will be important for the development of thermal interface materials based on thermoplastic PIs with improved thermal conductivity properties. Current research has focused on the analysis of three thermoplastic PIs: two semicrystalline, namely BPDA-P3 and R-BAPB; and one amorphous, ULTEMTM. To evaluate the impact of uniaxial deformation on the thermal conductivity, samples of these PIs were deformed up to 200% at a temperature of 600 K, slightly above the melting temperatures of BPDA-P3 and R-BAPB. The thermal conductivity coefficients of these PIs increased in the glassy state and above the glass transition point. Notably, some improvement in the thermal conductivity of the amorphous polyimide ULTEMTM was achieved. Our study demonstrates that the thermal conductivity coefficient is anisotropic in different directions with respect to the deformation axis and shows a significant increase in both semicrystalline and amorphous PIs in the direction parallel to the deformation. Both types of structural ordering (self-ordering of semicrystalline PI and mechanical elongation) led to the same significant increase in thermal conductivity coefficient. Full article
Show Figures

Graphical abstract

12 pages, 1980 KB  
Article
Improved Thermal Anisotropy of Multi-Layer Tungsten Telluride on Silicon Substrate
by Mengke Fang, Xiao Liu, Jinxin Liu, Yangbo Chen, Yue Su, Yuehua Wei, Yuquan Zhou, Gang Peng, Weiwei Cai, Chuyun Deng and Xue-Ao Zhang
Nanomaterials 2023, 13(12), 1817; https://doi.org/10.3390/nano13121817 - 7 Jun 2023
Viewed by 2267
Abstract
WTe2, a low-symmetry transition metal dichalcogenide, has broad prospects in functional device applications due to its excellent physical properties. When WTe2 flake is integrated into practical device structures, its anisotropic thermal transport could be affected greatly by the substrate, which [...] Read more.
WTe2, a low-symmetry transition metal dichalcogenide, has broad prospects in functional device applications due to its excellent physical properties. When WTe2 flake is integrated into practical device structures, its anisotropic thermal transport could be affected greatly by the substrate, which matters a lot to the energy efficiency and functional performance of the device. To investigate the effect of SiO2/Si substrate, we carried out a comparative Raman thermometry study on a 50 nm-thick supported WTe2 flake (with κzigzag = 62.17 W·m−1·K−1 and κarmchair = 32.93 W·m−1·K−1), and a suspended WTe2 flake of similar thickness (with κzigzag = 4.45 W·m−1·K−1, κarmchair = 4.10 W·m−1·K−1). The results show that the thermal anisotropy ratio of supported WTe2 flake (κzigzagarmchair ≈ 1.89) is about 1.7 times that of suspended WTe2 flake (κzigzagarmchair ≈ 1.09). Based on the low symmetry nature of the WTe2 structure, it is speculated that the factors contributing to thermal conductivity (mechanical properties and anisotropic low-frequency phonons) may have affected the thermal conductivity of WTe2 flake in an uneven manner when supported on a substrate. Our findings could contribute to the 2D anisotropy physics and thermal transport study of functional devices based on WTe2 and other low-symmetry materials, which helps solve the heat dissipation problem and optimize thermal/thermoelectric performance for practical electronic devices. Full article
Show Figures

Figure 1

16 pages, 9132 KB  
Article
First-Principles Studies on the Physical Properties of the Half Heusler RbNbCd and RbNbZn Compounds: A Promising Material for Thermoelectric Applications
by Debidatta Behera, Ahmed Azzouz-Rached, Abdessalem Bouhenna, Mostafa M. Salah, Ahmed Shaker and Sanat Kumar Mukherjee
Crystals 2023, 13(4), 618; https://doi.org/10.3390/cryst13040618 - 4 Apr 2023
Cited by 29 | Viewed by 2926
Abstract
This work focuses on study of the structural, electronic, thermodynamic and thermoelectric properties of RbNbCd and RbNbZn Half Heusler (HH), utilizing a full-potential linearized augmented plane wave (FP-LAPW) approach and the Boltzmann transport equation using a constant relaxation time approximation within the context [...] Read more.
This work focuses on study of the structural, electronic, thermodynamic and thermoelectric properties of RbNbCd and RbNbZn Half Heusler (HH), utilizing a full-potential linearized augmented plane wave (FP-LAPW) approach and the Boltzmann transport equation using a constant relaxation time approximation within the context of density functional theory (DFT) as embedded in the WIEN2k code. The structural analysis employed the generalized gradient approximation (GGA) and considered the Birch Murnaghan equation of state (EOS), which results in the stable phase for RbNbCd and RbNbZn. The positive phonon spectra indicate the dynamical stability of the studied RbNbCd and RbNbZn. The compounds under investigation that have no bandgap are metallic, as evidenced by their electronic properties. Their mechanical and thermal stability as well as their anisotropic and ductile character are confirmed by the various elastic and thermodynamic parameters. The lattice thermal conductivity has been calculated. This thorough analysis demonstrates the applicability of the studied RbNbCd and RbNbZn for thermoelectric applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

13 pages, 2587 KB  
Article
Coupled Modeling of Anisotropic Stress-Induced Diffusion and Trapping of Nitrogen in Austenitic Stainless Steel during Nitriding and Thermal Annealing
by Teresa Moskaliovienė, Paulius Andriūnas and Arvaidas Galdikas
Coatings 2023, 13(2), 415; https://doi.org/10.3390/coatings13020415 - 12 Feb 2023
Cited by 6 | Viewed by 2474
Abstract
In this paper, nitrogen diffusion is investigated in single-crystalline austenitic stainless steel during modified layer formation and thermal annealing. A generalized system of diffusion equations is derived within a thermodynamic framework from Fick’s laws, which describe nitrogen flux under multiple driving forces, including [...] Read more.
In this paper, nitrogen diffusion is investigated in single-crystalline austenitic stainless steel during modified layer formation and thermal annealing. A generalized system of diffusion equations is derived within a thermodynamic framework from Fick’s laws, which describe nitrogen flux under multiple driving forces, including a concentration gradient and the gradient of hydrostatic stress. Trapping and detrapping phenomena are considered within this model, and nitrogen flux is distinguished depending on whether nitrogen is in a lattice or a trapping site. Furthermore, the effects of anisotropic elasticity in single-crystal austenitic stainless steel on the stress field are investigated. The proposed model is used to simulate the nitrogen transportation process in single-crystalline AISI 316L during ion beam nitriding and after isothermal annealing at three different crystalline orientations. The results of our theoretical predictions are compared with experimental results taken from the literature. It is shown that during isothermal annealing, nitrogen diffusion becomes significantly slower than during nitriding. The diffusion coefficient during the annealing process, compared with the nitriding process, decreases by factors of 4.3, 3.3, and 2.5 for the orientations (001), (011), and (111), respectively. Full article
(This article belongs to the Collection Feature Paper Collection in Thin Films)
Show Figures

Figure 1

15 pages, 4068 KB  
Article
Bulk Physical Properties of a Magnetic Weyl Semimetal Candidate NdAlGe Grown by a Laser Floating-Zone Method
by Naoki Kikugawa, Taichi Terashima, Takashi Kato, Momoko Hayashi, Hitoshi Yamaguchi and Shinya Uji
Inorganics 2023, 11(1), 20; https://doi.org/10.3390/inorganics11010020 - 1 Jan 2023
Cited by 7 | Viewed by 3012
Abstract
In this study, we report the successful growth of single crystals of a magnetic Weyl semimetal candidate NdAlGe with the space group I41md. The crystals were grown using a floating-zone technique, which used five laser diodes, with a total [...] Read more.
In this study, we report the successful growth of single crystals of a magnetic Weyl semimetal candidate NdAlGe with the space group I41md. The crystals were grown using a floating-zone technique, which used five laser diodes, with a total power of 2 kW, as the heat source. To ensure that the molten zone was stably formed during the growth, we employed a bell-shaped distribution profile of the vertical irradiation intensity. After the nominal powder, crushed from an arc-melted ingot, was shaped under hydrostatic pressure, we sintered the feed and seed rods in an Ar atmosphere under ultra-low oxygen partial pressure (<10−26 atm) generated by an oxygen pump made of yttria-stabilized zirconia heated at 873 K. Single crystals of NdAlGe were successfully grown to a length of 50 mm. The grown crystals showed magnetic order in bulk at 13.5 K. The fundamental physical properties were characterized by magnetic susceptibility, magnetization, specific heat, thermal expansion, and electrical resistivity measurements. This study demonstrates that the magnetic order induces anisotropic magnetoelasticity, magneto-entropy, and charge transport in NdAlGe. Full article
Show Figures

Figure 1

Back to TopTop