Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Structural Characterization of ANFs/MXene/AgNWs Composite Films
2.2. Mechanical Property, Electrical Conductivity and EMI Shielding Performance of ANFs/MXene/AgNWs Composite Films
2.3. Thermal Management and Joule Heating Performance of ANFs/MXene/AgNWs Composite Films
2.4. Thermal Stability and Flame Retardancy of ANFs/MXene/AgNWs Composite Films
2.5. Sensing Performance and Application of ANFs/MXene/AgNWs Composite Films
3. Materials and Methods
3.1. Materials
3.2. Synthesis of MXene Nanosheets
3.3. Fabrication of the ANFs/MXene/AgNWs Composite Films
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, X.F.; Pan, J.J.; Guo, H.T.; Wang, J.W.; Zhang, C.M.; Han, J.Q.; Lou, Z.C.; Ma, C.X.; Jiang, S.H.; Zhang, K. Ultrathin Wood-Derived Conductive Carbon Composite Film for Electromagnetic Shielding and Electric Heating Management. Adv. Funct. Mater. 2023, 33, 9. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled Distributed Ti3C2Tx Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding. Adv. Mater. 2023, 35, 2211642. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.K.; Xu, Y.; Chen, S.; Lei, Z.H.; Zhang, Y.Y.; Tao, P.; Shang, W.; Fu, B.W.; Song, C.Y.; Deng, T. Cuttlefish-Inspired Self-Adaptive Liquid Metal Network Enabling Electromagnetic Interference Shielding and Thermal Management. Adv. Mater. Technol. 2023, 8, 9. [Google Scholar] [CrossRef]
- Dong, J.W.; Feng, Y.Z.; Lin, K.; Zhou, B.; Su, F.M.; Liu, C.T. A Stretchable Electromagnetic Interference Shielding Fabric with Dual-Mode Passive Personal Thermal Management. Adv. Funct. Mater. 2024, 34, 12. [Google Scholar] [CrossRef]
- Dai, B.; Gao, C.; Xie, Y. Flexible wearable devices for intelligent health monitoring. VIEW 2022, 3, 20220027. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Xie, C.J.; He, L.Y.; Shi, Y.F.; Guo, Z.X.; Qiu, T.; Tuo, X.L. From Monomers to a Lasagna-like Aerogel Monolith: An Assembling Strategy for Aramid Nanofibers. Acs Nano 2019, 13, 7811–7824. [Google Scholar] [CrossRef]
- Xie, F.; Jia, F.F.; Zhuo, L.H.; Lu, Z.Q.; Si, L.M.; Huang, J.Z.; Zhang, M.Y.; Ma, Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 2019, 11, 23382–23391. [Google Scholar] [CrossRef]
- Liang, X.; Chen, G.; Wu, Q.; Zhang, H.; Zhong, R.; Zeng, X.; Hu, D.; Lin, J. Highly thermally conductive composite films by the rational assembly of aramid nanofibers with low-dimensional nanofillers. J. Mater. Res. Technol. 2024, 30, 4003–4023. [Google Scholar] [CrossRef]
- Guan, Y.; Li, W.; Zhang, Y.L.; Shi, Z.Q.; Tan, J.; Wang, F.; Wang, Y.H. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos. Sci. Technol. 2017, 144, 193–201. [Google Scholar] [CrossRef]
- Patterson, B.A.; Malakooti, M.H.; Lin, J.J.; Okorom, A.; Sodano, H.A. Aramid nanofibers for multiscale fiber reinforcement of polymer composites. Compos. Sci. Technol. 2018, 161, 92–99. [Google Scholar] [CrossRef]
- Yang, B.; Wang, L.; Zhang, M.Y.; Luo, J.J.; Ding, X.Y. Timesaving, High-Efficiency Approaches to Fabricate Aramid Nanofibers. Acs Nano 2019, 13, 7886–7897. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ma, Z.; Sun, Y.; Han, Y.; Gu, J. Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 2022, 3, 2200162. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Ma, J.; Shao, L.; Zhang, Y.; Liu, C.; Wei, A.; Xiang, X.; Wei, L.; Gu, J. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx mxene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. Acs Nano 2020, 14, 8368–8382. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ruan, K.; Gu, J.J.N.R. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755. [Google Scholar] [CrossRef]
- Lin, J.; Yu, Y.; Zhang, Z.; Gao, F.; Liu, S.; Wang, W.; Li, G. A Novel Approach for Achieving High-Efficiency Photoelectrochemical Water Oxidation in InGaN Nanorods Grown on Si System: MXene Nanosheets as Multifunctional Interfacial Modifier. Adv. Funct. Mater. 2020, 30, 1910479. [Google Scholar] [CrossRef]
- Zhao, D.; Dang, L.Y.; Wang, G.G.; Sun, N.; Deng, X.; Han, J.C.; Zhu, J.Q.; Yang, Y. Multifunctional, superhydrophobic and highly elastic MXene/bacterial cellulose hybrid aerogels enabled via silylation. J. Mater. Chem. A 2022, 10, 24772. [Google Scholar] [CrossRef]
- Ye, X.A.; Zhang, S.Y.; Zhao, D.Q.; Ding, L.; Fang, K.; Zhou, X.; Wang, G.G. Super-flexible and highly conductive H-Ti3C2Tx MXene composite films with 3D macro-assemblies for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107866. [Google Scholar] [CrossRef]
- Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J.M. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Adv. Funct. Mater. 2020, 30, 11. [Google Scholar] [CrossRef]
- Sun, K.; Wang, F.; Yang, W.K.; Liu, H.; Pan, C.F.; Guo, Z.H.; Liu, C.T.; Shen, C.Y. Flexible Conductive Polyimide Fiber/MXene Composite Film for Electromagnetic Interference Shielding and Joule Heating with Excellent Harsh Environment Tolerance. Acs Appl. Mater. Interfaces 2021, 13, 50368–50380. [Google Scholar] [CrossRef]
- Li, Q.M.; Yin, R.; Zhang, D.B.; Liu, H.; Chen, X.Y.; Zheng, Y.J.; Guo, Z.H.; Liu, C.T.; Shen, C.Y. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 2020, 8, 21131–21141. [Google Scholar] [CrossRef]
- Luo, J.C.; Gao, S.J.; Luo, H.; Wang, L.; Huang, X.W.; Guo, Z.; Lai, X.J.; Lin, L.W.; Li, R.K.Y.; Gao, J.F. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 2021, 406, 11. [Google Scholar] [CrossRef]
- Song, P.; Liu, B.; Qiu, H.; Shi, X.T.; Cao, D.P.; Gu, J.W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 13. [Google Scholar] [CrossRef]
- Won, J.S.; Prasad, C.; Jeong, S.G.; Rosaiah, P.; Reddy, A.S.; Ahmad, Z.; Sangaraju, S.; Choi, H.Y. Recent advances in the development of MXenes/cellulose based composites: A review. Int. J. Biol. Macromol. 2023, 240, 25. [Google Scholar] [CrossRef] [PubMed]
- Aghvami-Panah, M.; Ameli, A. MXene/Cellulose composites as electromagnetic interference shields: Relationships between microstructural design and shielding performance. Compos. Part A Appl. Sci. Manuf. 2024, 176, 21. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Yang, S.G.; Li, L.; Yang, B.; Huang, H.D.; Yan, D.X.; Zhong, G.J.; Xu, L.; Li, Z.M. Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. Acs Appl. Mater. Interfaces 2018, 10, 40156–40167. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Pan, L.L.; Yang, X.T.; Ruan, K.P.; Han, Y.X.; Kong, J.; Gu, J.W. Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos. Part A Appl. Sci. Manuf. 2019, 124, 10. [Google Scholar] [CrossRef]
- Song, P.; Qiu, H.; Wang, L.; Liu, X.Y.; Zhang, Y.L.; Zhang, J.L.; Kong, J.; Gu, J.W. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 2020, 24, 8. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wu, Z.; Xing, Y.Q.; Liu, L. A novel 1D/2D interpenetrating network architecture of MXene/cellulose composite microfiber and graphene for broadband microwave absorption. Chem. Eng. J. 2022, 439, 10. [Google Scholar] [CrossRef]
- Cheng, H.R.; Xing, L.L.; Zuo, Y.; Pan, Y.M.; Huang, M.N.; Alhadhrami, A.; Ibrahim, M.M.; El-Bahy, Z.M.; Liu, C.T.; Shen, C.Y.; et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 755–765. [Google Scholar] [CrossRef]
- Zhao, Y.; Miao, B.J.; Nawaz, M.A.; Zhu, Q.S.; Chen, Q.L.; Reina, T.R.; Bai, J.B.; He, D.L.; Al-Tahan, M.A.; Arsalan, M. Construction of cellulose nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers with gradient structure for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2024, 7, 16. [Google Scholar] [CrossRef]
- Hu, D.; Liu, H.; Ding, Y.; Ma, W. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr. Polym. 2021, 264, 118058. [Google Scholar] [CrossRef]
- Hu, D.; Ma, W.; Zhang, Z.; Ding, Y.; Wu, L. Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films. ACS Appl. Mater. Interfaces 2020, 12, 11115–11125. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Wang, J.; Li, Y.; Lu, X.; Hu, D.; Jia, Z.; Lin, J. Sandwich-Like Flexible Breathable Strain Sensor with Tunable Thermal Regulation Capability for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 10633–10645. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liang, C.; Li, J.; Lin, C.; Liang, Y.; Dong, D. Ultrastrong and Hydrophobic Sandwich-Structured MXene-Based Composite Films for High-Efficiency Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2022, 14, 33817–33828. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Wang, S.; Xu, Z.; Tang, T.; Zhao, Y. Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS Omega 2022, 7, 29161–29170. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Wang, S.; Zhang, C.; Yi, P.; Jiang, P.; Huang, X. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.Y.; Yang, B.; Tan, J.J. Lightweight, Robust, Conductive Composite Fibers Based on MXene@Aramid Nanofibers as Sensors for Smart Fabrics. Acs Appl. Mater. Interfaces 2021, 13, 41933–41945. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Z.; Ruan, K.; Gu, J. Flexible Ti3C2Tx/(Aramid Nanofiber/PVA) Composite Films for Superior Electromagnetic Interference Shielding. Research 2022, 2022, 9780290. [Google Scholar]
- Liu, C.; Ma, Y.; Xie, Y.; Zou, J.; Wu, H.; Peng, S.; Qian, W.; He, D.; Zhang, X.; Li, B.-W.; et al. Enhanced Electromagnetic Shielding and Thermal Management Properties in MXene/Aramid Nanofiber Films Fabricated by Intermittent Filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Ji, Y.; Chen, Y.; Liu, K.; Shen, B.; He, S.; Duan, G.; Han, J.; Jiang, S. Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding. Compos. Commun. 2021, 27, 100879. [Google Scholar] [CrossRef]
- Li, L.; Yuan, X.; Zhai, H.; Zhang, Y.; Ma, L.; Wei, Q.; Xu, Y.; Wang, G. Flexible and Ultrathin Graphene/Aramid Nanofiber Carbonizing Films with Nacre-like Structures for Heat-Conducting Electromagnetic Wave Shielding/Absorption. ACS Appl. Mater Interfaces 2023, 15, 15872–15883. [Google Scholar] [CrossRef]
- Lei, C.; Zhang, Y.; Liu, D.; Wu, K.; Fu, Q. Metal-Level Robust, Folding Endurance, and Highly Temperature-Stable MXene-Based Film with Engineered Aramid Nanofiber for Extreme-Condition Electromagnetic Interference Shielding Applications. ACS Appl. Mater Interfaces 2020, 12, 26485–26495. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, X.; Zhou, X.; Wang, G. Asymmetric and Flexible Ag-MXene/ANFs Composite Papers for Electromagnetic Shielding and Thermal Management. Nanomaterials 2023, 13, 2608. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, J.; Sang, M.; Li, Z.; Zhou, J.; Wang, Y.; Xuan, S.; Leung, K.C.-F.; Gong, X. Acid-Assisted Toughening Aramid Aerogel Monoliths with Ultralow Thermal Conductivity and Superior Tensile Toughness. Adv. Funct. Mater. 2024, 34, 2307072. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, B.; Xu, P.; Zhang, M. Dual-Network Assembled Nanopaper towards Extremely Harsh Conditions. Adv. Funct. Mater. 2024, 2407763. [Google Scholar] [CrossRef]
- Eom, T.-G.; Tang, F.; Seo, M.; Kim, S.-J.; Song, Y.-G.; Park, J.-H.; Jeong, Y.G. Aramid nanofiber-reinforced thermotropic polyarylate nanocomposites with improved thermal and long-term mechanical performance. J. Mater. Sci. 2023, 58, 14700–14713. [Google Scholar] [CrossRef]
- Yu, Q.; Han, W.; Qiu, L.; Yu, Y.; Yi, L.; Chen, D. Exceptionally Flame Retardant and Electromagnetic Interference Shielding Aramid Nanofiber-Ti3C2Tx MXene Twin-layered Films with Remarkable Mechanical Strength and Flexibility. J. Alloys Compd. 2024, 1000, 175119. [Google Scholar] [CrossRef]
- Zhan, Y.; Zheng, X.; Nan, B.; Lu, M.; Shi, J.; Wu, K. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur. Polym. J. 2023, 186, 111847. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Pham, A.L.H.; Nguyen, D.K.; Lien, M.T.K.; Nguyen, V.C.; Vu, M.C. Ultrathin Aramid Nanofiber Composites with Alternating Multilayered Structure of Silver Nanowires and Boron Arsenide: Toward Superior Electrically Insulating Thermoconductive Electromagnetic Interference Shielding Materials. ACS Appl. Electron. Mater. 2024, 6, 3704–3716. [Google Scholar] [CrossRef]
- Tao, Y.; Mi, Y.; Gao, S.; Wang, G.; Bai, J.; Ma, S.; Wang, B. High-efficiency, thermal stable, and self-floating silver nanowires/Ti3C2Tx MXene/aramid nanofibers composite aerogel for photothermal water evaporation and antibacterial application. Chem. Eng. J. 2023, 477, 147276. [Google Scholar] [CrossRef]
- Ma, Y.; Zou, M.; Chen, W.; Luo, W.; Hu, X.; Xiao, S.; Luo, L.; Jiang, X.; Li, Q. A structured phase change material integrated by MXene/AgNWs modified dual-network and polyethylene glycol for energy storage and thermal management. Appl. Energy 2023, 349, 121658. [Google Scholar] [CrossRef]
- Han, X.; Feng, H.; Tian, W.; Zhang, K.; Zhang, L.; Wang, J.; Jiang, S. A Sandwich Structural Filter Paper–AgNWs/MXene Composite for Superior Electromagnetic Interference Shielding. Polymers 2024, 16, 760. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, Y.; Feng, D.; Ruan, K.; Liu, X.; Gu, J. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828. [Google Scholar] [CrossRef]
- Cheng, H.; Pan, Y.; Chen, Q.; Che, R.; Zheng, G.; Liu, C.; Shen, C.; Liu, X. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 2021, 4, 505–513. [Google Scholar] [CrossRef]
- Ye, X.-A.; Zhou, X.; Zeng, X.-Y.; Wang, G.-G. Conductive Composite Inks Comprised of Waterborne Polyurethane, Silver Nanosheets, and Heat-Treated MXene Nanosheets for Electromagnetic Shielding and Thermal Management. ACS Appl. Nano Mater. 2024. [Google Scholar] [CrossRef]
- Guo, Z.; Ren, P.; Lu, Z.; Hui, K.; Yang, J.; Zhang, Z.; Chen, Z.; Jin, Y.; Ren, F. Multifunctional CoFe2O4@MXene-AgNWs/Cellulose Nanofiber Composite Films with Asymmetric Layered Architecture for High-Efficiency Electromagnetic Interference Shielding and Remarkable Thermal Management Capability. ACS Appl. Mater. Interfaces 2022, 14, 41468–41480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Lin, J.; Zhang, H.; Wang, J.; Li, Y.; Pan, K.; Zhang, H.; Hu, D. Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing. Molecules 2024, 29, 4000. https://doi.org/10.3390/molecules29174000
Dong J, Lin J, Zhang H, Wang J, Li Y, Pan K, Zhang H, Hu D. Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing. Molecules. 2024; 29(17):4000. https://doi.org/10.3390/molecules29174000
Chicago/Turabian StyleDong, Jin, Jing Lin, Hebai Zhang, Jun Wang, Ye Li, Kelin Pan, Haichen Zhang, and Dechao Hu. 2024. "Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing" Molecules 29, no. 17: 4000. https://doi.org/10.3390/molecules29174000
APA StyleDong, J., Lin, J., Zhang, H., Wang, J., Li, Y., Pan, K., Zhang, H., & Hu, D. (2024). Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing. Molecules, 29(17), 4000. https://doi.org/10.3390/molecules29174000