Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = anisotropic conductive adhesives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4786 KiB  
Article
The Anisotropic Osteoinductive Capacity of a Nickel–Titanium Alloy Fabricated Through Laser Powder Bed Fusion
by Yu Sun, Zhenglei Yu, Qingping Liu, Luquan Ren, Xin Zhao and Jincheng Wang
Int. J. Mol. Sci. 2025, 26(10), 4640; https://doi.org/10.3390/ijms26104640 - 13 May 2025
Viewed by 376
Abstract
A novel parameter optimization method for additively manufacturing nickel–titanium (NiTi) alloys using laser powder bed fusion (LBPF) was developed. Compared with the conventional NiTi alloy and the previously reported LPBF-NiTi alloy, the LBPF-NiTi alloy prepared with these parameters exhibits excellent tensile properties and [...] Read more.
A novel parameter optimization method for additively manufacturing nickel–titanium (NiTi) alloys using laser powder bed fusion (LBPF) was developed. Compared with the conventional NiTi alloy and the previously reported LPBF-NiTi alloy, the LBPF-NiTi alloy prepared with these parameters exhibits excellent tensile properties and an anisotropic microstructure. Since distinct regions of orthopedic implants have specific functional requirements, we investigated the anisotropy of this LPBF-NiTi in terms of its osteoinductive capacity to determine the appropriate building direction for prosthesis fabrication. The biosafety of the transverse (XY-NiTi) and longitudinal (XZ-NiTi) planes was assessed through cytotoxicity assays. Comparative analyses of the biological activities of these planes were conducted by evaluating the adherent cell counts, the adhesion morphology, and the expression of osteogenic-related genes and factors in adherent cells. Compared with XZ-NiTi, XY-NiTi exhibited superior cell adhesion properties. Additionally, the expression levels of osteogenic markers (RUNX2, ALP, OPG, and OCN) were significantly greater in bone marrow mesenchymal cells (BMMCs) adhered to XY-NiTi than in those adhered to XZ-NiTi. These results indicate a greater osteogenic potential in the XY-NiTi group. XY-NiTi was more advantageous as an implant–bone contact surface. Building implant products in the direction perpendicular to the load-bearing axis enhances biofixation; thus, this is the preferred orientation for manufacturing orthopedic implants. Full article
Show Figures

Figure 1

20 pages, 1621 KiB  
Review
Entropy Production in Epithelial Monolayers Due to Collective Cell Migration
by Ivana Pajic-Lijakovic and Milan Milivojevic
Entropy 2025, 27(5), 483; https://doi.org/10.3390/e27050483 - 29 Apr 2025
Viewed by 490
Abstract
The intricate multi-scale phenomenon of entropy generation, resulting from the inhomogeneous and anisotropic rearrangement of cells during their collective migration, is examined across three distinct regimes: (i) convective, (ii) conductive (diffusion), and (iii) sub-diffusion. The collective movement of epithelial monolayers on substrate matrices [...] Read more.
The intricate multi-scale phenomenon of entropy generation, resulting from the inhomogeneous and anisotropic rearrangement of cells during their collective migration, is examined across three distinct regimes: (i) convective, (ii) conductive (diffusion), and (iii) sub-diffusion. The collective movement of epithelial monolayers on substrate matrices induces the accumulation of mechanical stress within the cells, which subsequently influences cell packing density, velocity, and alignment. Variations in these physical parameters affect cell-cell interactions, which play a crucial role in the storage and dissipation of energy within multicellular systems. The internal dynamics of entropy generation, as a consequence of energy dissipation, are characterized in each regime using viscoelastic constitutive models and the surface properties at the cell-matrix biointerface. The focus of this theoretical review is to clarify how cells can modulate their rate of energy dissipation by altering cell-cell and cell-matrix adhesion interactions, undergoing changes in shape, and re-establishing polarity due to the contact inhibition of locomotion. We approach these questions by discussing the physical aspects of these complex phenomena. Full article
Show Figures

Figure 1

17 pages, 6821 KiB  
Article
Size Effects of Au/Ni-Coated Polymer Particles on the Electrical Performance of Anisotropic Conductive Adhesive Films under Flexible Mechanical Conditions
by Yexing Fang, Taiyu Wang, Yue Gu, Mingkun Yang, Hong Li, Sujun Shi, Xiuchen Zhao and Yongjun Huo
Materials 2024, 17(7), 1658; https://doi.org/10.3390/ma17071658 - 4 Apr 2024
Cited by 1 | Viewed by 1883
Abstract
In soft electronics, anisotropic conductive adhesive films (ACFs) are the trending interconnecting approach due to their substantial softness and superior bondability to flexible substrates. However, low bonding pressure (≤1 MPa) and fine-pitch interconnections of ACFs become challenging while being extended in advanced device [...] Read more.
In soft electronics, anisotropic conductive adhesive films (ACFs) are the trending interconnecting approach due to their substantial softness and superior bondability to flexible substrates. However, low bonding pressure (≤1 MPa) and fine-pitch interconnections of ACFs become challenging while being extended in advanced device developments such as wafer-level packaging and three-dimensional multi-layer integrated circuit board assembly. To overcome these difficulties, we studied two types of ACFs with distinct conductive filler sizes (ACF-1: ~20 μm and ACF-2: ~5 μm). We demonstrated a low-pressure thermo-compression bonding technique and investigated the size effect of conductive particles on ACF’s mechanical properties in a customized testing device, which consists of flexible printing circuits and Flex on Flex assemblies. A consistency of low interconnection resistance (<1 Ω) after mechanical stress (cycling bending test up to 600 cycles) verifies the assembly’s outstanding electrical reliability and mechanical stability and thus validates the great effectiveness of the ACF bonding technique. Additionally, in numerical studies using the finite element method, we developed a generic model to disclose the size effect of Au/Ni-coated polymer fillers in ACF on device reliability under mechanical stress. For the first time, we confirmed that ACFs with smaller filler particles are more prone to coating fracture, leading to deteriorated electrical interconnections, and are more likely to peel off from substrate electrode pads resulting in electrical faults. This study provides guides for ACF design and manufacturing and would facilitate the advancement of soft wearable electronic devices. Full article
(This article belongs to the Special Issue Advanced Electronic Packaging Technology: From Hard to Soft)
Show Figures

Graphical abstract

15 pages, 2943 KiB  
Article
Improvement of the Thermal Conductivity and Mechanical Properties of 3D-Printed Polyurethane Composites by Incorporating Hydroxylated Boron Nitride Functional Fillers
by Kai-Han Su, Cherng-Yuh Su, Wei-Ling Shih and Fang-Ting Lee
Materials 2023, 16(1), 356; https://doi.org/10.3390/ma16010356 - 30 Dec 2022
Cited by 21 | Viewed by 4511
Abstract
Recently, the use of fused deposition modeling (FDM) in the three-dimensional (3D) printing of thermal interface materials (TIMs) has garnered increasing attention. Because fillers orient themselves along the direction of the melt flow during printing, this method could effectively enhance the thermal conductivity [...] Read more.
Recently, the use of fused deposition modeling (FDM) in the three-dimensional (3D) printing of thermal interface materials (TIMs) has garnered increasing attention. Because fillers orient themselves along the direction of the melt flow during printing, this method could effectively enhance the thermal conductivity of existing composite materials. However, the poor compatibility and intensive aggregation of h-BN fillers in polymer composites are still detrimental to their practical application in thermally conductive materials. In this study, hydroxyl-functionalized boron nitride (OH-BN) particles were prepared by chemical modification and ultrasonic-assisted liquid-phase exfoliation to explore their impact on the surface compatibility, mechanical properties and the final anisotropic thermal conductivity of thermoplastic polyurethane (TPU) composites fabricated by FDM printing. The results show that the surface-functionalized OH-BN fillers are homogeneously dispersed in the TPU matrix via hydrogen bonding interactions, which improve the interfacial adhesion between the filler and matrix. For the same concentration of loaded filler, the OH-BN/TPU composites exhibit better mechanical properties and thermal conductivities than composites incorporating non-modified h-BN. These composites also show higher heat conduction along the stand-vertical direction, while simultaneously exhibiting a low dielectric constant and dielectric loss. This work therefore provides a possible strategy for the fabrication of thermal management polymers using 3D-printing methods. Full article
(This article belongs to the Special Issue 3D Printing and Additive Manufacturing of Polymer and Composites)
Show Figures

Figure 1

12 pages, 2906 KiB  
Article
Ultrasoft and Ultrastretchable Wearable Strain Sensors with Anisotropic Conductivity Enabled by Liquid Metal Fillers
by Minjae Choe, Dongho Sin, Priyanuj Bhuyan, Sangmin Lee, Hongchan Jeon and Sungjune Park
Micromachines 2023, 14(1), 17; https://doi.org/10.3390/mi14010017 - 21 Dec 2022
Cited by 12 | Viewed by 3422
Abstract
Herein, ultrasoft and ultrastretchable wearable strain sensors enabled by liquid metal fillers in an elastic polymer are described. The wearable strain sensors that can change the effective resistance upon strains are prepared by mixing silicone elastomer with liquid metal (EGaIn, Eutectic gallium-indium alloy) [...] Read more.
Herein, ultrasoft and ultrastretchable wearable strain sensors enabled by liquid metal fillers in an elastic polymer are described. The wearable strain sensors that can change the effective resistance upon strains are prepared by mixing silicone elastomer with liquid metal (EGaIn, Eutectic gallium-indium alloy) fillers. While the silicone is mixed with the liquid metal by shear mixing, the liquid metal is rendered into small droplets stabilized by an oxide, resulting in a non-conductive liquid metal elastomer. To attain electrical conductivity, localized mechanical pressure is applied using a stylus onto the thermally cured elastomer, resulting in the formation of a handwritten conductive trace by rupturing the oxide layer of the liquid metal droplets and subsequent percolation. Although this approach has been introduced previously, the liquid metal dispersed elastomers developed here are compelling because of their ultra-stretchable (elongation at break of 4000%) and ultrasoft (Young’s modulus of <0.1 MPa) mechanical properties. The handwritten conductive trace in the elastomers can maintain metallic conductivity when strained; however, remarkably, we observed that the electrical conductivity is anisotropic upon parallel and perpendicular strains to the conductive trace. This anisotropic conductivity of the liquid metal elastomer film can manipulate the locomotion of a robot by routing the power signals between the battery and the driving motor of a robot upon parallel and perpendicular strains to the hand-written circuit. In addition, the liquid metal dispersed elastomers have a high degree of deformation and adhesion; thus, they are suitable for use as a wearable sensor for monitoring various body motions. Full article
(This article belongs to the Special Issue Droplet-Based Microfluidics: Design, Fabrication and Applications)
Show Figures

Figure 1

13 pages, 3966 KiB  
Article
Die-Level Thinning for Flip-Chip Integration on Flexible Substrates
by Muhammad Hassan Malik, Andreas Tsiamis, Hubert Zangl, Alfred Binder, Srinjoy Mitra and Ali Roshanghias
Electronics 2022, 11(6), 849; https://doi.org/10.3390/electronics11060849 - 8 Mar 2022
Cited by 9 | Viewed by 8090
Abstract
Die-level thinning, handling, and integration of singulated dies from multi-project wafers (MPW) are often used in research, early-stage development, and prototyping of flexible devices. There is a high demand for thin silicon devices for several applications, such as flexible electronics. To address this [...] Read more.
Die-level thinning, handling, and integration of singulated dies from multi-project wafers (MPW) are often used in research, early-stage development, and prototyping of flexible devices. There is a high demand for thin silicon devices for several applications, such as flexible electronics. To address this demand, we study a novel post-processing method on two silicon devices, an electrochemical impedance sensor, and Complementary Metal Oxide Semiconductor (CMOS) die. Both are drawn from an MPW batch, thinned at die-level after dicing and singulation down to 60 µm. The thinned dies were flip-chip bonded to flexible substrates and hermetically sealed by two techniques: thermosonic bonding of Au stud bumps and anisotropic conductive paste (ACP) bonding. The performance of the thinned dies was assessed via functional tests and compared to the original dies. Furthermore, the long-term reliability of the flip-chip bonded thinned sensors was demonstrated to be higher than the conventional wire-bonded sensors. Full article
(This article belongs to the Special Issue Interconnects for Electronics Packaging)
Show Figures

Figure 1

28 pages, 10869 KiB  
Article
Numerical and Experimental Evaluation of a CFRP Fatigue Strengthening for Stringer-Floor Beam Connections in a 19th Century Riveted Railway Bridge
by J. David Jimenez-Vicaria, M. Dolores Gomez-Pulido and Daniel Castro-Fresno
Metals 2021, 11(4), 603; https://doi.org/10.3390/met11040603 - 7 Apr 2021
Cited by 3 | Viewed by 3737
Abstract
A local and global finite element analysis of the stringer-floor beam connection of a 19th century riveted railway bridge in Spain made of puddle iron were performed to obtain the maximum principal strains in the riveted connecting angles corresponding to bending moments from [...] Read more.
A local and global finite element analysis of the stringer-floor beam connection of a 19th century riveted railway bridge in Spain made of puddle iron were performed to obtain the maximum principal strains in the riveted connecting angles corresponding to bending moments from train loading on the bridge. Due to the anisotropic nature of puddle iron, the connecting angles were modelled using Hill anisotropic plasticity potential and a parametric study in the local FE model of the connection was performed. A laboratory specimen fabricated with original stringers dismantled from the railway bridge was tested to calibrate the numerical models, so the yield stress ratio that best fitted experimental results was obtained. Based on the method of constant fatigue-life diagram and modified Goodman fatigue failure criterion, it was detected that the connecting angles were prone to fatigue crack initiation, as the combination of mean stress and alternating stress amplitude at the toe of the angle fillet remained outside the infinite fatigue-life region. An innovative strengthening system based on adhesively-bonded carbon-fiber reinforced polymer (CFRP) angles was designed to prevent fatigue crack initiation in the connecting angles of the stringer-floor beam connection. Different CFRP laminate layouts were numerically evaluated and a proper configuration was obtained that reduced both the mean stress and the alternating stress amplitude in the connecting angle to shift from finite fatigue-life region to infinite fatigue-life region in the constant fatigue-life diagram. To validate the effectiveness of the proposed CFRP strengthening method, its application on a second laboratory specimen fabricated with original stringers was evaluated experimentally and compared with numerical results. The research study conducted showed that the use of adhesively-bonded CFRP angles was an effective strengthening system in reducing the stress level in the fillet region of the puddle iron connecting angles (where fatigue cracks are prone to initiate) and consequently could increase fatigue life of the stringer-floor beam connection. Full article
Show Figures

Graphical abstract

17 pages, 5328 KiB  
Article
3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics
by Lazaros Tzounis, Markos Petousis, Sotirios Grammatikos and Nectarios Vidakis
Materials 2020, 13(12), 2879; https://doi.org/10.3390/ma13122879 - 26 Jun 2020
Cited by 74 | Viewed by 6365
Abstract
Three-dimensional (3D) printing of thermoelectric polymer nanocomposites is reported for the first time employing flexible, stretchable and electrically conductive 3D printable thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) filaments. TPU/MWCNT conductive polymer composites (CPC) have been initially developed employing melt-mixing and extrusion processes. TPU [...] Read more.
Three-dimensional (3D) printing of thermoelectric polymer nanocomposites is reported for the first time employing flexible, stretchable and electrically conductive 3D printable thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) filaments. TPU/MWCNT conductive polymer composites (CPC) have been initially developed employing melt-mixing and extrusion processes. TPU pellets and two different types of MWCNTs, namely the NC-7000 MWCNTs (NC-MWCNT) and Long MWCNTs (L-MWCNT) were used to manufacture TPU/MWCNT nanocomposite filaments with 1.0, 2.5 and 5.0 wt.%. 3D printed thermoelectric TPU/MWCNT nanocomposites were fabricated through a fused deposition modelling (FDM) process. Raman and scanning electron microscopy (SEM) revealed the graphitic nature and morphological characteristics of CNTs. SEM and transmission electron microscopy (TEM) exhibited an excellent CNT nanodispersion in the TPU matrix. Tensile tests showed no significant deterioration of the moduli and strengths for the 3D printed samples compared to the nanocomposites prepared by compression moulding, indicating an excellent interlayer adhesion and mechanical performance of the 3D printed nanocomposites. Electrical and thermoelectric investigations showed that L-MWCNT exhibits 19.8 ± 0.2 µV/K Seebeck coefficient (S) and 8.4 × 103 S/m electrical conductivity (σ), while TPU/L-MWCNT CPCs at 5.0 wt.% exhibited the highest thermoelectric performance (σ = 133.1 S/m, S = 19.8 ± 0.2 µV/K and PF = 0.04 μW/mK2) among TPU/CNT CPCs in the literature. All 3D printed samples exhibited an anisotropic electrical conductivity and the same Seebeck coefficient in the through- and cross-layer printing directions. TPU/MWCNT could act as excellent organic thermoelectric material towards 3D printed thermoelectric generators (TEGs) for potential large-scale energy harvesting applications. Full article
Show Figures

Graphical abstract

17 pages, 4384 KiB  
Article
Effect of Lubrication on Friction in Bending under Tension Test-Experimental and Numerical Approach
by Tomasz Trzepiecinski and Hirpa G. Lemu
Metals 2020, 10(4), 544; https://doi.org/10.3390/met10040544 - 23 Apr 2020
Cited by 17 | Viewed by 4644
Abstract
This paper is aimed to determine the value of coefficient of friction (COF) at the rounded edge of the die in the sheet metal forming operations using the bending under tension (BUT) test. The experimental part of the investigations is devoted to the [...] Read more.
This paper is aimed to determine the value of coefficient of friction (COF) at the rounded edge of the die in the sheet metal forming operations using the bending under tension (BUT) test. The experimental part of the investigations is devoted to the study of the frictional resistances of low alloy steel sheet under different strains of the specimen, surface roughnesses of the tool and for different lubrication conditions. Three oils are destined for different conditions of duties in the stamping process. Numerical modeling of the material flow in the BUT test has been conducted in the MSC.Marc program. One of the objectives of the numerical computations is to know the type of the contact pressure acting on the cylindrical surface countersample in the BUT test by assuming the anisotropic properties of the metallic sheet. It has been found that the COF in the rounded edge of the die does not vary with increasing sheet elongation. Taking into account that normal pressure increases with increasing specimen elongation and workpiece material is subjected to strain hardening phenomenon, the COF value is very stable during the friction test. The effectiveness of the lubrication depends on the balance between two mechanisms accompanied by friction process: roughening of workpiece asperities and adhesion of the contacting surfaces. In the case of high surface roughness of tool due to a dominant share of ploughing, all of the lubricants used were not able to decrease the COF in a sufficient extent. The used lubricants were able to reduce the value of friction coefficient approximately by 3–52% in relation to the surface roughness of rolls. Full article
(This article belongs to the Special Issue Forming Processes of Modern Metallic Materials)
Show Figures

Figure 1

11 pages, 1889 KiB  
Article
Analysis of Hot Bar Soldering, Insulation Displacement Connections (IDC), and Anisotropic Conductive Adhesives (ACA), for the Automated Production of Smart Textiles
by Sebastian Micus, Ivan Kirsten, Michael Haupt and Götz T. Gresser
Sensors 2020, 20(1), 5; https://doi.org/10.3390/s20010005 - 18 Dec 2019
Cited by 11 | Viewed by 5556
Abstract
Despite all the growth forecasts of the smart textiles market, there is no stable automated manufacturing process for attaching classic electronics to textiles. The great amount of manual production steps causes high prices, which slow down market growth. During the production process, the [...] Read more.
Despite all the growth forecasts of the smart textiles market, there is no stable automated manufacturing process for attaching classic electronics to textiles. The great amount of manual production steps causes high prices, which slow down market growth. During the production process, the contacting step offers the greatest potential to reduce manual manufacturing steps. For this reason, we have analyzed various contacting methods for electronic parts on conductive yarns that have a high potential for automation. The chosen methods were thermode soldering, insulation–displacement connectors and anisotropic conductive adhesives. In order to ensure reliable mechanical contacting, the samples were tested in a peeling experiment. The examination of the contact resistances took place in the context of a resistance test using four-wire measuring technology. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 14068 KiB  
Article
Mechanism of Solder Joint Cracks in Anisotropic Conductive Films Bonding and Solutions: Delaying Hot-Bar Lift-Up Time and Adding Silica Fillers
by Shuye Zhang, Ming Yang, Mingliang Jin, Wen-Can Huang, Tiesong Lin, Peng He, Panpan Lin and Kyung-Wook Paik
Metals 2018, 8(1), 42; https://doi.org/10.3390/met8010042 - 9 Jan 2018
Cited by 17 | Viewed by 7391
Abstract
Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. [...] Read more.
Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. Recently, flex-on-board interconnection has become more and more popular for mobile electronic applications. However, crack formation of the solder joint crack was occurred at low temperature curable acrylic polymer resins after bonding processes. In this study, the mechanism of SnBi58 solder joint crack at low temperature curable acrylic adhesive was investigated. In addition, SnBi58 solder joint cracks can be significantly removed by increasing the storage modulus of adhesives instead of coefficient of thermal expansion. The first approach of reducing the amount of polymer rebound can be achieved by using an ultrasonic bonding method to maintain a bonding pressure on the SnBi58 solder joints cooling to room temperature. The second approach is to increase storage modulus of adhesives by adding silica filler into acrylic polymer resins to prevent the solder joint from cracking. Finally, excellent acrylic based SnBi58 solder joints reliability were obtained after 1000 cycles thermal cycling test. Full article
(This article belongs to the Special Issue Science, Characterization and Technology of Joining and Welding)
Show Figures

Figure 1

20 pages, 18761 KiB  
Article
High-Temperature Storage Testing of ACF Attached Sensor Structures
by Sanna Lahokallio, Maija Hoikkanen, Jyrki Vuorinen and Laura Frisk
Materials 2015, 8(12), 8641-8660; https://doi.org/10.3390/ma8125455 - 10 Dec 2015
Cited by 9 | Viewed by 7382
Abstract
Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional [...] Read more.
Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. Full article
Show Figures

Figure 1

Back to TopTop