Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (713)

Search Parameters:
Keywords = anion detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6757 KB  
Article
Untargeted Metabolomics-Based Characterization of the Metabolic Profile and Antioxidant Activity of Ophiocordyceps sinensis and Its Substitutes
by Bing Jia, Haoxu Tang, Chuyu Tang, Chao Feng, Yuling Li and Xiuzhang Li
J. Fungi 2025, 11(10), 740; https://doi.org/10.3390/jof11100740 (registering DOI) - 16 Oct 2025
Abstract
Ophiocordyceps sinensis represents a valuable medicinal resource. In this study, mechanisms underlying differences in chemical composition and antioxidant capacity among wild O. sinensis (GL), artificially cultivated O. sinensis (RG), and product of O. sinensis “Bailing” capsules (BL) were systematically investigated via in vitro [...] Read more.
Ophiocordyceps sinensis represents a valuable medicinal resource. In this study, mechanisms underlying differences in chemical composition and antioxidant capacity among wild O. sinensis (GL), artificially cultivated O. sinensis (RG), and product of O. sinensis “Bailing” capsules (BL) were systematically investigated via in vitro antioxidant capacity assays and untargeted metabolomics. Results showed GL exhibited the highest total phenol (TPS) content and superior free radical scavenging activity. Additionally, superoxide dismutase (SOD) and peroxidase (POD) activities in RG were higher than those in BL. Correlation analysis of antioxidant indices demonstrated significant positive correlations between total phenols (TPS) and flavonoids (TF) with DPPH radical scavenging, ferric ion reducing antioxidant power (FRAP), hydroxyl radical scavenging rate, and superoxide anion radical scavenging rate (p < 0.01). A total of 6729 metabolites were detected, encompassing amino acids and their derivatives, lipids, and nucleotides and their derivatives, among other classes. Furthermore, metabolites exhibited distinct intergroup separation, indicating significant differences in metabolic profiles between O. sinensis and its substitute products. KEGG enrichment analysis showed that differential metabolites were mainly enriched in amino acid, lipid, and nucleotide metabolic pathways, among which the linoleic acid metabolic pathway was significantly downregulated. Key metabolites included γ-linolenic acid, 12(13)-EpOME-d, 9-HpODE, etc. Additionally, results of correlation analysis revealed that differential metabolites of lipids, nucleotides, and amino acids exhibited a significant positive correlation with antioxidant indices (p < 0.05). These findings suggest that the antioxidant capacity of O. sinensis and its substitutes may be regulated via linoleic acid metabolism, providing a theoretical basis for advancing targeted functional development of O. sinensis and its substitute products. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

15 pages, 1948 KB  
Article
Characterization of O-Glycosylation and N-Glycosylation in Bispecific Antibodies and Its Importance in Therapeutic Antibody Development
by Maoqin Duan, Luyun Guo, Zhen Long, Yongbo Ni, Yalan Yang, Jialiang Du, Meng Li, Jialing Zhang, Tao Tang, Chuanfei Yu and Lan Wang
Pharmaceuticals 2025, 18(10), 1538; https://doi.org/10.3390/ph18101538 - 13 Oct 2025
Viewed by 187
Abstract
Background/Objectives: This study comprehensively characterized the O- and N-glycosylation profiles of bispecific antibodies (BsAbs) via advanced analytical techniques to evaluate their structural and functional implications. Methods: High-resolution MS revealed O-xylosylation at Ser468 within the (G4S)4 linker peptide, which [...] Read more.
Background/Objectives: This study comprehensively characterized the O- and N-glycosylation profiles of bispecific antibodies (BsAbs) via advanced analytical techniques to evaluate their structural and functional implications. Methods: High-resolution MS revealed O-xylosylation at Ser468 within the (G4S)4 linker peptide, which was identified as xylose with a molecular weight of 132.042 Da. HILIC-HPLC analysis of N-glycosylation revealed glycan species engineered to eliminate Fc effector functions. O-glycosylation analysis via β-elimination followed by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) identified xylose as the predominant glycan. Results: O-xylosylation does not affect the binding of BsAbs to either antigen Programmed Death-1 (PD-1) or Vascular Endothelial Growth Factor (VEGF). Notably, O-xylosylation interactions with mannose receptor represent the first discovery highlighting potential immunomodulatory roles. Conclusions: This study highlights the critical importance of monitoring comprehensive glycosylation characterization during the development of BsAb with (G4S)n linkers to ensure optimal therapeutic efficacy, safety, and reduced immunogenic potential. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

16 pages, 2914 KB  
Article
Colorimetric Chemosensor for Determination of Loratadine Based on Bromocresol Purple–Cationic Polyacrylamide Copolymer System
by Andriy B. Vishnikin, Anna Chernyavskaya and Yaroslav Bazel
Chemosensors 2025, 13(10), 357; https://doi.org/10.3390/chemosensors13100357 - 1 Oct 2025
Viewed by 344
Abstract
A new sensor system for the determination of nitrogen-containing pharmaceutical substances has been proposed. It is based on the use of an ion association complex formed between cationic polyacrylamide (CPAA) and sulfonephthalein dye as a reagent. Bromocresol purple (BCP) interacts with CPAA to [...] Read more.
A new sensor system for the determination of nitrogen-containing pharmaceutical substances has been proposed. It is based on the use of an ion association complex formed between cationic polyacrylamide (CPAA) and sulfonephthalein dye as a reagent. Bromocresol purple (BCP) interacts with CPAA to form a complex through hydrophobic interaction as well as electrostatic interaction. In the pH range from 3.5 to 5.5, this leads to an increase in the intensity of the dianionic form BCP band at 590 nm. The interaction between the polymer and the dye leads to an increase in the acidic properties of BCP, causing its pKa2 to shift from 6.3 to 3.75. Subsequently, when loratadine (LOR) is added to the CPAA/BCP system, the strong electrostatic interaction between the BCP monoanion and the protonated form of LOR leads to a decrease in the intensity of the band at 590 nm and an increase in the absorbance of the band at 432 nm, which is related to the dye monoanion. Here, we have demonstrated that this facile methodology can enable the rapid, reliable, and selective determination of LOR with a detection limit of 1.6 mg L−1 and a linear range from 5.0 to 120 mg L−1. The environmental friendliness of the developed method was assessed using the AGREE metric and is characterized by a high score of 0.83. The developed method represents a new approach to the creation of extraction-free spectrophotometric methods based on ionic associates of anionic dyes with protonated forms of nitrogen-containing medicinal compounds. The method was successfully applied to the determination of LOR in pharmaceutical preparations with satisfactory precision and accuracy. Overall, the results obtained indicate that this method has great potential for application in pharmaceutical analysis. Full article
Show Figures

Figure 1

16 pages, 523 KB  
Article
Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution
by Grace Stamm, Arka Bhattacharjee, Gayatri Basapuram, Avishek Dutta and Srimanti Duttagupta
Environments 2025, 12(10), 351; https://doi.org/10.3390/environments12100351 - 29 Sep 2025
Viewed by 666
Abstract
Atmospheric deposition through rainfall plays a significant role in transporting various anthropogenic contaminants to terrestrial and aquatic ecosystems. However, rainwater’s integrated ionic and molecular composition remains underexplored in semiurban environments. This study provides a comprehensive chemical characterization of rainwater collected during seven precipitation [...] Read more.
Atmospheric deposition through rainfall plays a significant role in transporting various anthropogenic contaminants to terrestrial and aquatic ecosystems. However, rainwater’s integrated ionic and molecular composition remains underexplored in semiurban environments. This study provides a comprehensive chemical characterization of rainwater collected during seven precipitation events from February to April 2025 in Athens, Georgia, USA. This semiurban area is characterized by substantial vehicular traffic, seasonal agricultural activities, and ongoing construction, while lacking significant industrial emissions. Targeted spectrophotometric analyses revealed heightened concentrations of nitrate (ranging from 2.0 to 4.3 mg/L), sulfate (17 to 26 mg/L), and phosphate (2.4 to 3.1 mg/L), with peak concentrations observed during high-intensity rainfall events. These findings are consistent with enhanced wet scavenging of atmospheric emissions. Concurrently, both targeted and non-targeted gas chromatography-mass spectrometry (GC-MS) analyses identified a diverse array of organic pollutants in the rainwater, including organophosphate, organochlorine, and triazine pesticides; polycyclic aromatic hydrocarbons (PAHs); plasticizers; flame retardants; surfactant degradation products; and industrial additives such as bisphenol A, triclosan, and nicotine. Furthermore, several legacy contaminants, such as organochlorines, were detected alongside currently utilized compounds, including glyphosate and its metabolite aminomethylphosphonic acid (AMPA). The concurrent presence of elevated anion and organic pollutant levels during significant storm events suggests that atmospheric washout can be the primary deposition mechanism. These findings underscore the capability of semiurban atmospheres to accumulate and redistribute complex mixtures of pollutants through rainfall, even in the absence of large-scale industrial activity. The study emphasizes the importance of integrated ionic and molecular analyses for uncovering concealed pollution sources. It highlights the potential of rainwater chemistry as a diagnostic tool for monitoring atmospheric contamination in urbanizing environments. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution: 2nd Edition)
Show Figures

Figure 1

15 pages, 1167 KB  
Review
Collision-Induced Gas-Phase Reactions of PFB-TMS Derivatives of F2-Prostaglandins in Quadrupole GC-NICI-MS/MS: A Mini-Review and a Meta-Analysis
by Dimitrios S. Tsikas and Stefanos A. Tsikas
Molecules 2025, 30(19), 3846; https://doi.org/10.3390/molecules30193846 - 23 Sep 2025
Viewed by 300
Abstract
Arachidonic acid (eicosatetraenoic acid) is the precursor of the eicosanoids, which include prostaglandins (PG). Methods based on GC-MS/MS are the Gold Standard for the quantitative analysis of eicosanoids in biological samples. After extraction and derivatization, biological F2-prostaglandins are analyzed on quadrupole [...] Read more.
Arachidonic acid (eicosatetraenoic acid) is the precursor of the eicosanoids, which include prostaglandins (PG). Methods based on GC-MS/MS are the Gold Standard for the quantitative analysis of eicosanoids in biological samples. After extraction and derivatization, biological F2-prostaglandins are analyzed on quadrupole GC-MS/MS apparatus as pentafluorobenzyl (PFB) ester trimethylsilyl (TMS) ether derivatives, i.e., PFB-TMS. Negative-ion chemical ionization (NICI) in the ion source generates abundant anions due to [M-PFB], which are detected in the selected ion monitoring (SIM) mode. Collision-induced dissociation (CID) of [M-PFB] in the collision cell generates numerous product ions, which are suitable candidates for quantitative analyses in the selected reaction monitoring (SRM) mode. In this article, we report on investigations of gas-phase reactions of PFB-TMS derivatives of F2-prostaglandins, which consist of PGF, 8-iso-PGF, and up to 62 further isomers, known as the F2-isoprostanes. We performed a meta-analysis of previously reported CID mass spectra (32 eV) of PFB-(TMS)3 of seven chemically closely related isomeric F2-prostaglandins of the 15-F2t-IsoP type. This unique dataset contains 19 product ions generated by CID of the common precursor at m/z 569 [M-PFB] in the m/z range of 150–600. All isomers produced the same product ions, which, however, greatly differed in their intensity. Principal Component Analysis (PCA) and Receiver Operating Characteristic (ROC) Analysis (ROCA) were performed. Two compounds, i.e., 8-iso-9β,11α-PGF and 9α,11β-PGF, and two product ions, i.e., m/z 299 [M-PFB-3×TMSOH] and m/z 215 [M-PFB-3×TMSOH-C4H8-C2H4], were noticeable. ROCA revealed the highest disagreement between PGF and 8-iso-9β,11α-PGF (AUC = 0.7075 ± 0.0834, p = 0.0248). PCA and ROCA are of limited value in the GC-MS/MS of closely chemically related F2-prostaglandins. Fragmentation mechanisms were proposed for the formation of all 19 product ions generated by CID of common precursor anions due to [M-PFB]. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

17 pages, 2295 KB  
Article
Solid Tranilast Nanocrystal-Loaded Cationic Contact Lenses for Sustained Ocular Drug Delivery
by Shinichiro Kobayakawa, Toru Matsunaga, Hiroko Otake, Shiori Hino, Fumihiko Ogata, Manju Misra, Kazutaka Kanai, Naohito Kawasaki and Noriaki Nagai
Pharmaceutics 2025, 17(10), 1240; https://doi.org/10.3390/pharmaceutics17101240 - 23 Sep 2025
Viewed by 432
Abstract
Background/Objectives Conventional eye drops are the primary therapeutic option for ocular diseases; however, their clinical utility is hindered by several drawbacks, including limited bioavailability and suboptimal patient compliance. To overcome these challenges, we designed a sustained-release contact lens (CL) device loaded with tranilast [...] Read more.
Background/Objectives Conventional eye drops are the primary therapeutic option for ocular diseases; however, their clinical utility is hindered by several drawbacks, including limited bioavailability and suboptimal patient compliance. To overcome these challenges, we designed a sustained-release contact lens (CL) device loaded with tranilast (TRA) and determined whether the TRA-laden CL could provide sustained drug delivery to the lacrimal fluid and aqueous humor. Methods TRA nanocrystals were prepared using the bead-milling approach. Using three types of CLs (nonionic, anionic, and cationic), we prepared TRA-laden CLs by employing a combination of solid TRA nanocrystals and soaking methods under high-temperature and high-pressure conditions in an autoclave (the hThP method). Male Japanese albino rabbits (2–3 kg) were used to evaluate the CLs. Results Bead milling reduced the size of the solid TRA nanoparticles (STNs) to approximately 35–180 nm. The TRA-laden cationic CLs prepared using STNs and the hThP method contained a higher amount of TRA than those prepared using the corresponding conventional soaking method. The CLs prepared using the hThP method remained transparent after drug loading. Compared with nonionic and anionic CLs, cationic CLs had the highest drug-loading capacity and allowed for sustained drug release. Moreover, STNs were observed in the released TRA, with no corneal damage or light scattering detected in the rabbits’ eyes. TRA-laden cationic CLs prepared using the hThP method achieved sustained and higher drug delivery into the lacrimal fluid and aqueous humor than those prepared using the conventional soaking method. Conclusions Our findings suggest that TRA-laden cationic CLs prepared using STNs and the hThP method can overcome the challenges associated with the conventional soaking method, including low drug uptake and high burst release. Full article
Show Figures

Graphical abstract

15 pages, 5074 KB  
Article
Cocoa Shell Extract Restores Redox Balance in Developmental Hypertension in Male Rats: Roles of Nrf2, SOD2 and p-eNOS
by Santiago Ruvira, Pilar Rodríguez-Rodríguez, Metee Iampanichakul, Lucía G. Cuquerella, David Ramiro-Cortijo and Silvia M. Arribas
Pathophysiology 2025, 32(4), 49; https://doi.org/10.3390/pathophysiology32040049 - 23 Sep 2025
Viewed by 290
Abstract
Background and objectives: Hypertension is a worldwide burden, for which fetal malnutrition is a risk factor. Another societal challenge is environmental waste. Our research focusses on cocoa shell extract (CSE), a cocoa by-product with antioxidant bioactive components. Male rats exposed to fetal [...] Read more.
Background and objectives: Hypertension is a worldwide burden, for which fetal malnutrition is a risk factor. Another societal challenge is environmental waste. Our research focusses on cocoa shell extract (CSE), a cocoa by-product with antioxidant bioactive components. Male rats exposed to fetal malnutrition develop hypertension and endothelial dysfunction, which are improved by CSE supplementation. We hypothesized that effects of CSE are related to an antioxidant action. Methods: Adult male and female offspring of dams exposed to 50% food restriction during gestation (MUN) and controls were supplemented for 3 weeks with CSE (250 mg/kg/day) or a vehicle. We assessed plasma SOD activity, GSH and carbonyls (via spectrophotometry) and aortic expression of enzymes related to ROS degradation or production (via Western blotting). Results: MUN males showed lower Nrf2 expression and increased carbonyls, SOD activity and mitochondrial SOD2 expression, without alterations in GSH or the related enzyme CGLM. No changes in xanthine oxidase or NADPH subunits (p22phox and p47phox) were detected, suggesting a different origin of superoxide anion. Phosphorylated-eNOS/eNOS and 3-nitrotyrosine expression were increased without changes in plasma nitrates. MUN females only showed plasma SOD and aortic 3-nitrotyrosine elevation. CSE supplementation reduced SOD2 and p-eNOS/eNOS expression and SOD activity and increased Nrf2 expression. Conclusions: MUN arteries exhibit oxidative damage, with a higher impact on males. SOD2 and p-eNOS/e-NOS overexpression may be a counteracting mechanism that compensates for superoxide anion overproduction, likely involving mitochondria. The reversal of these alterations by CSE supplementation is probably related to a reduction in vascular superoxide anion through a direct scavenging action of its bioactive components. A longer supplementation period may be needed to increase endogenous antioxidants through Nrf2 and to reduce oxidative–nitrosative damage. Full article
(This article belongs to the Section Cardiovascular Pathophysiology)
Show Figures

Figure 1

19 pages, 5463 KB  
Article
PEI-Fe3O4/PTA-AuNPs Hybrid System for Rapid DNA Extraction and Colorimetric LAMP Detection of E. faecium
by Muniyandi Maruthupandi, Haang Seok Choi and Nae Yoon Lee
Biosensors 2025, 15(9), 601; https://doi.org/10.3390/bios15090601 - 12 Sep 2025
Viewed by 1028
Abstract
This study introduces a novel nucleic acid testing (NAT) protocol that integrates rapid deoxyribonucleic acid (DNA) extraction, isothermal amplification, and visual detection to enable efficient analysis of opportunistic pathogens. Polyethylenimine-functionalized iron oxide (PEI-Fe3O4) nanoparticles were prepared by combining PEI, [...] Read more.
This study introduces a novel nucleic acid testing (NAT) protocol that integrates rapid deoxyribonucleic acid (DNA) extraction, isothermal amplification, and visual detection to enable efficient analysis of opportunistic pathogens. Polyethylenimine-functionalized iron oxide (PEI-Fe3O4) nanoparticles were prepared by combining PEI, acting as a stabilizing agent, with iron salt, which was utilized as the metal ion precursor by the ultrasonication-assisted co-precipitation method, and characterized for structural, optical, and magnetic properties. PEI-Fe3O4 exhibited cationic and anionic behavior in response to pH variations, enhancing adaptability for DNA binding and release. PEI-Fe3O4 enabled efficient extraction of E. faecium DNA within 10 min at 40 °C, yielding 17.4 ng/µL and achieving an extraction efficiency of ~59% compared to a commercial kit (29.5 ng/µL). The extracted DNA was efficiently amplified by loop-mediated isothermal amplification (LAMP) at 65 °C for 45 min. Pyrogallol-rich poly(tannic acid)-stabilized gold nanoparticles (PTA-AuNPs) served as colorimetric probes for direct visual detection of the DNA amplified using LAMP. The magnetic-nanogold (PEI-Fe3O4/PTA-AuNPs) hybrid system achieved a limit of quantification of 1 fg/µL. To facilitate field deployment, smartphone-based RGB analysis enabled quantitative and equipment-free readouts. Overall, the PEI-Fe3O4/PTA-AuNPs hybrid system used in NAT offers a rapid, cost-effective, and portable solution for DNA detection, making the system suitable for microbial monitoring. Full article
(This article belongs to the Special Issue Aptamer-Based Sensing: Designs and Applications)
Show Figures

Figure 1

15 pages, 2188 KB  
Article
Utility of the Redox Cycle of Nitrofurantoin for the Development of a New Chemiluminescence Method for Its Analysis in Milk Samples
by Mahmoud El-Maghrabey, Ali Abdel-Hakim, Shiho Tagaya, Naotaka Kuroda and Naoya Kishikawa
Molecules 2025, 30(18), 3698; https://doi.org/10.3390/molecules30183698 - 11 Sep 2025
Viewed by 434
Abstract
Nitrofurantoin is utilized in various industries, including dairy, livestock, poultry, and aquaculture, as a growth promoter and antibacterial agent. Because prolonged use can cause mutagenesis and other side effects, many countries have prohibited its use in food-producing animals. In this work, we introduce [...] Read more.
Nitrofurantoin is utilized in various industries, including dairy, livestock, poultry, and aquaculture, as a growth promoter and antibacterial agent. Because prolonged use can cause mutagenesis and other side effects, many countries have prohibited its use in food-producing animals. In this work, we introduce a simple, rapid, and highly sensitive chemiluminescence (CL) approach for the quantitation of nitrofurantoin using its redox cycle activity. Nitrofurantoin is reduced to nitrofurantoin radicals by the reducing agent dithiothreitol, and reactive oxygen species (ROS) formed during the reoxidation process (superoxide anion radical) are detected by luminol CL. The CL conditions were optimized, including types of solvents, CL and reducing reagents, and their concentrations. The method was validated as per International Council for Harmonization (ICHQ2(R2)) guidelines, regarding linearity, detection and quantitation limits, accuracy, and precision. A good linearity with r = 0.9992 was obtained between the CL intensity and the nitrofurantoin concentration in the range of 4.0–400.0 ng/mL with a high sensitivity down to 1.15 ng/mL. The method was utilized to determine nitrofurantoin in milk samples, and a good recovery range was obtained (97.5–103.1%; RSD ≤ 4.4%); the results were comparable to the reported method, demonstrating the method’s reliability. Finally, the method demonstrated good practicality using a recently developed assessment tool. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Figure 1

27 pages, 1622 KB  
Article
Next-Generation Wastewater-Based Epidemiology: Green Automation for Detecting 69 Multiclass Pharmaceutical and Personal Care Products in Wastewater Using 96-Well Plate Solid-Phase Extraction by LC-MS/MS
by Bhaskar Karubothula, Veera Venkataramana Kota, Dnyaneshwar Shinde, Raghu Tadala, Vishnu Cheerala, Samara Bin Salem, Wael Faroug Elamin and Grzegorz Brudecki
Molecules 2025, 30(18), 3694; https://doi.org/10.3390/molecules30183694 - 11 Sep 2025
Viewed by 548
Abstract
Conventional methods for detecting pharmaceutical and personal care products (PPCPs) in environmental samples are complex, resource-intensive, and not sustainable. Therefore, this study aimed to evaluate an automated sample preparation approach using the Biomek i7 Workstation to analyze 69 PPCPs in wastewater, with the [...] Read more.
Conventional methods for detecting pharmaceutical and personal care products (PPCPs) in environmental samples are complex, resource-intensive, and not sustainable. Therefore, this study aimed to evaluate an automated sample preparation approach using the Biomek i7 Workstation to analyze 69 PPCPs in wastewater, with the objective to improve monitoring of public health and environmental protection. The method underwent extensive development, including optimization of UPLC-MS/MS parameters, preparation of wastewater matrix blank sample and assessment of extraction efficiency using three types of SPE cartridges. Extraction efficiency trials revealed that the order of suitability for SPE cartridges is Mixed-Mode Anion Exchange (MAX) > Mixed-Mode Cation Exchange (MCX) > Hydrophilic–Lipophilic Balance (HLB). The method demonstrated specificity for all targeted PPCPs, with the max interfering peak for 1, 7 Dimethylxanthine reaching 14.79% of the response at the target limit of quantification (LOQ). The method met ±20% matrix effect tolerance for 63 PPCPs, while 6 PPCPs showed signal enhancement. The 8-point procedural calibration curve prepared using automated robotic extraction has demonstrated linearity across the tested range. A spiking study at low (LQC), medium (MQC), and high (HQC) quality control levels (n = 6), repeated on three separate occasions, showed % RSD values within 20% and % recovery between 80 and 120%. The method met validation requirements, showed reliability in Intra-Laboratory Comparison, Blind Testing (BT) and received high ratings for greenness (Green Analytical Procedure Index, Analytical GREEnness) and practicality (Blue Applicability Grade Index). Full article
(This article belongs to the Special Issue The Application of LC-MS in Pharmaceutical Analysis)
Show Figures

Figure 1

16 pages, 2773 KB  
Article
Anti-Interference Fe-N-C/PMS System: Synergistic Radical-Nonradical Pathways Enabled by sp2 Carbon and Metal-N Coordination
by Qiongqiong He, Xuewen Wu, Ping Ma, Zhaoyang Song, Xiaoqi Wu, Ruize Gao and Zhenyong Miao
Catalysts 2025, 15(9), 850; https://doi.org/10.3390/catal15090850 - 3 Sep 2025
Viewed by 686
Abstract
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. [...] Read more.
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. The Fe-N-C/PMS system achieved a phenol degradation rate of 99.71%, which follows a first-order kinetic model, with the reaction rate constant of 0.1419 min−1. The phenol degradation rate remained above 92% in inorganic anions (Cl, SO42−, HCO3) and humic acid and the system maintained a 100% phenol removal rate over a wide pH range (3–9). The iron in the catalyst predominantly exists in the forms of Fe0 and Fe3C, and Fe0, Fe2+/Fe3+ are the main active sites that promote PMS activation during the reaction. Additionally, Fe-N-C has a large specific surface area (1041.36 m2/g). Quenching experiments and electron spin resonance (ESR) spectroscopy detected the active free radicals in the Fe-N-C/PMS system: SO4•−, •OH, O2•−, and 1O2. The mechanism for phenol degradation was discussed, involving radical pathways (SO4•−, •OH, O2•−) and the non-radical pathway (1O2), in the Fe-N-C/PMS system activated by Fe0, Fe2+/Fe3+, sp2 hybridized carbon, C-O/C-N, C=O, and graphitic nitrogen active sites. This study provides new insights into the synthesis of efficient carbon-based catalysts for phenol degradation and water remediation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

26 pages, 3150 KB  
Case Report
Metabolic Disorders in Transition Dairy Cows in a 500-Cow Herd—Analysis, Prevention and Follow-Up
by Melanie Schären-Bannert, Benno Waurich, Fanny Rachidi, Adriana Wöckel, Wolf Wippermann, Julia Wittich, Guntram Hermenau, Erik Bannert, Peter Hufe, Detlef May, Sven Dänicke, Hermann Swalve and Alexander Starke
Dairy 2025, 6(5), 49; https://doi.org/10.3390/dairy6050049 - 1 Sep 2025
Viewed by 930
Abstract
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the [...] Read more.
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the resulting management solutions using a real-life case within a 500-cow herd. The initial assessment, involving the collection of data on the level of production, animal health and behaviour, and metabolic indicators, as well as management and housing key indicators, revealed key risk factors, including overcrowding, suboptimal feeding strategies, inadequate water supply, and insufficient disease monitoring. These factors contributed to increased cases of metabolic disorders such as hypocalcemia (annual incidence 7.8%), excessive lipomobilisation, and displaced abomasum (annual incidence 5.2%). A holistic approach combining feeding adjustments, disease monitoring, facility improvements, and long-term management strategies was implemented to address these challenges. Short-term interventions, such as optimizing the dietary cation–anion balance and enhancing disease detection protocols, led to noticeable improvements. However, structural constraints and external factors, such as extreme weather conditions (heat stress) and economic limitations, created significant hurdles in achieving immediate and sustained success. The farm ultimately opted for infrastructural improvements, including a new transition cow facility, to provide a long-term solution to these recurring issues. This case highlights the complexity of transition cow management, demonstrating that long-term success depends on continuous monitoring, interdisciplinary collaboration, and adaptability in response to evolving challenges in dairy production. Full article
Show Figures

Figure 1

14 pages, 1019 KB  
Article
A DODTA–TPB-Based Potentiometric Sensor for Anionic Surfactants: A Computational Design and Environmental Application
by Nada Glumac, Lucija Vrban, Robert Vianello, Marija Jozanović, Maksym Fizer, Marija Kraševac Sakač, Raffaele Velotta, Vincenzo Iannotti, Bartolomeo Della Ventura, Matija Cvetnić, Dean Marković and Nikola Sakač
Chemosensors 2025, 13(9), 321; https://doi.org/10.3390/chemosensors13090321 - 1 Sep 2025
Viewed by 633
Abstract
Surfactants are used in various washing applications with potential negative environmental and health impacts. The ion-pair 1,3-dioctadecyl-1H-1,2,3-triazol-3-ium-tetraphenylborate (DODTA–TPB) was used to fabricate the potentiometric sensor for the quantification of anionic surfactants. The computational analysis of the DODTA+–TPB adduct [...] Read more.
Surfactants are used in various washing applications with potential negative environmental and health impacts. The ion-pair 1,3-dioctadecyl-1H-1,2,3-triazol-3-ium-tetraphenylborate (DODTA–TPB) was used to fabricate the potentiometric sensor for the quantification of anionic surfactants. The computational analysis of the DODTA+–TPB adduct reveals a dynamic, thermodynamically favorable interaction driven primarily by hydrophobic C–H∙∙∙π contacts and the flexibility of the C-18 chains, rather than electrostatic or π–π stacking forces. These findings, supported by the MM-PBSA, RDF, and structural analyses, align with broader trends in molecular recognition and provide a foundation for designing advanced ion-pair-based sensors. The sensor showed advanced analytical properties to anionic surfactants with low interfering effects of selected anions. The response of the SDS was investigated in the range from 8.1 × 10−8 M to 1.0 × 10−2 M, with a slope of −59.2 mV and a limit of detection (LOD) of 3.1 × 10−7 M; and DBS was in the range of 8.1 × 10−8 M to 2.5 × 10−3 M with a slope of −57.5 mV and an LOD of 5.9 × 10−7 M. The sensor was tested on potential interfering ions. Potentiometric titrations of technical-grade anionic surfactants had high recovery rates from 100.2 to 100.4%. The recovery test for spiked samples of surface waters was from 94.2 to 96.5%. The sensor was tested on commercial samples containing anionic surfactants, and the results were compared and showed a good agreement with the two-phase titration method. Full article
Show Figures

Figure 1

15 pages, 1209 KB  
Article
Comparative Analysis of the Fecal Proteome in Two Canine Breeds: Dalmatians and Weimaraners
by Matteo Cerquetella, Francesco Pinnella, Rachele Morazzini, Giacomo Rossi, Andrea Marchegiani, Alessandra Gavazza, Sara Mangiaterra, Alessandro Di Cerbo, Daniela Sorio, Jessica Brandi, Daniela Cecconi and Silvia Vincenzetti
Int. J. Mol. Sci. 2025, 26(17), 8247; https://doi.org/10.3390/ijms26178247 - 25 Aug 2025
Viewed by 787
Abstract
The analysis of proteins in stool samples can significantly enhance the study of mammalian physiology and disease. In this study, we investigated the fecal proteome of clinically healthy dogs (n = 26) by a label-free proteomics approach to evaluate the impact of breed [...] Read more.
The analysis of proteins in stool samples can significantly enhance the study of mammalian physiology and disease. In this study, we investigated the fecal proteome of clinically healthy dogs (n = 26) by a label-free proteomics approach to evaluate the impact of breed differences. The dogs were divided into two groups (n = 13 each) based on their breed, specifically Weimaraner and Dalmatian, the former known for their possible susceptibility to gastrointestinal disease. Quantitative and qualitative differences between the two experimental groups were identified based on analyses performed on pooled biological samples. The overall fecal proteome profile comprised 58 proteins, of which 37 were common, while comparative proteomics analysis detected 15 proteins with different abundances. Notably, the fecal proteome of Weimaraners showed an over-representation of proteins such as pantetheinase, which promotes inflammatory reactions; ferritin heavy chain and hemoglobin, possibly associated with gut ulceration and/or rectal bleeding typical of IBD; and anionic trypsin, implicated in inflammatory bowel disease. Notably, in Dalmatians, despite the absence of specific predispositions, some proteins associated with chronic enteropathy (e.g., carboxypeptidase B and serine protease 1) were also over-represented. Additionally, some proteins linked to breed variation included enzymes associated with “protein digestion and absorption” and “glycolysis and gluconeogenesis”. These findings suggest, for the first time, that the variable breed is a factor that may potentially influence the fecal proteome in dogs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
Silicon Nanowires Sensor Modified with Cu (II) Phthalocyanine Derivative for Phosphate Monitoring
by Milaine Jebali, Zina Fredj, Sameh Daboussi, Mounir Ben Ali and Mohamed Hassen
Chemosensors 2025, 13(8), 297; https://doi.org/10.3390/chemosensors13080297 - 9 Aug 2025
Viewed by 812
Abstract
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated [...] Read more.
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated via metal-assisted chemical etching (MACE) with etching durations of 15, 25, 35, 45, and 60 min. The SiNWs etched for 15 min exhibited the highest sensitivity, showing superior electrochemical performance. Functionalized SiNWs were systematically evaluated for phosphate ion (HPO42−) detection over a wide concentration range (10−10 to 10−6 M) using Mott–Schottky measurements. The surface morphology of the SiNWs was thoroughly characterized before and after Cu (II) Pc-PAA layer functionalization. The sensing material was analyzed using contact angle goniometry and scanning electron microscopy (SEM), confirming both its uniform distribution and effective immobilization. The sensor displayed a Nernstian behavior with a sensitivity of 28.25 mV/Decade and an exceptionally low limit of detection (LOD) of 1.5 nM. Furthermore, the capacitive sensor exhibited remarkable selectivity toward phosphate ions, even in the presence of potentially interfering anions such as Cl, NO3, SO42− and ClO4. These results confirm the sensor’s high sensitivity, selectivity, and fast response, underscoring its suitability for environmental phosphate ion monitoring. Full article
Show Figures

Figure 1

Back to TopTop