Electrochemical and Optical Sensing: Progress, Perspectives and Challenges

A special issue of Chemosensors (ISSN 2227-9040). This special issue belongs to the section "Electrochemical Devices and Sensors".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 574

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
Interests: electrochemistry; electrochemical impedance spectroscopy; electrochemical and bioelectrochemical sensors; surface modification; metal/metal oxide/semiconductor electrodes; phospholipid bilayer membranes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Electrochemical and optical sensors are widely used in a variety of fields, such as biosensing, electrochemical analysis and drug delivery. In addition, new approaches to diagnosing an analyte in a simple and useful way using electrochemical and optical sensors are being considered in analytical chemistry, environmental analysis, the food industry, medical diagnostic processes, etc.

In this Special Issue of Chemosensors, we welcome submissions presenting recent research activities in the field of electrochemical and optical sensors, new and interesting studies on sensor progress, perspectives and challenges, including experimental and theoretical aspects of operating processes on sensor surfaces.

Both review articles and original research papers are welcome, and topics including, though not limited to, the following areas are of particular interest:

  • New concepts in electrochemical and optical sensing;
  • New operating principles for electrochemical and optical sensors;
  • Enabling technologies for electrochemical and optical sensors;
  • New materials for the development of electrochemical and optical sensors;
  • Emerging applications for electrochemical and optical sensors.

Dr. Aušra Valiūnienė
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrochemical sensors
  • optical sensors
  • electrochemical impedance spectroscopy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2914 KB  
Article
Colorimetric Chemosensor for Determination of Loratadine Based on Bromocresol Purple–Cationic Polyacrylamide Copolymer System
by Andriy B. Vishnikin, Anna Chernyavskaya and Yaroslav Bazel
Chemosensors 2025, 13(10), 357; https://doi.org/10.3390/chemosensors13100357 - 1 Oct 2025
Viewed by 287
Abstract
A new sensor system for the determination of nitrogen-containing pharmaceutical substances has been proposed. It is based on the use of an ion association complex formed between cationic polyacrylamide (CPAA) and sulfonephthalein dye as a reagent. Bromocresol purple (BCP) interacts with CPAA to [...] Read more.
A new sensor system for the determination of nitrogen-containing pharmaceutical substances has been proposed. It is based on the use of an ion association complex formed between cationic polyacrylamide (CPAA) and sulfonephthalein dye as a reagent. Bromocresol purple (BCP) interacts with CPAA to form a complex through hydrophobic interaction as well as electrostatic interaction. In the pH range from 3.5 to 5.5, this leads to an increase in the intensity of the dianionic form BCP band at 590 nm. The interaction between the polymer and the dye leads to an increase in the acidic properties of BCP, causing its pKa2 to shift from 6.3 to 3.75. Subsequently, when loratadine (LOR) is added to the CPAA/BCP system, the strong electrostatic interaction between the BCP monoanion and the protonated form of LOR leads to a decrease in the intensity of the band at 590 nm and an increase in the absorbance of the band at 432 nm, which is related to the dye monoanion. Here, we have demonstrated that this facile methodology can enable the rapid, reliable, and selective determination of LOR with a detection limit of 1.6 mg L−1 and a linear range from 5.0 to 120 mg L−1. The environmental friendliness of the developed method was assessed using the AGREE metric and is characterized by a high score of 0.83. The developed method represents a new approach to the creation of extraction-free spectrophotometric methods based on ionic associates of anionic dyes with protonated forms of nitrogen-containing medicinal compounds. The method was successfully applied to the determination of LOR in pharmaceutical preparations with satisfactory precision and accuracy. Overall, the results obtained indicate that this method has great potential for application in pharmaceutical analysis. Full article
Show Figures

Figure 1

Back to TopTop