Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,125)

Search Parameters:
Keywords = animal-based diet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 611 KiB  
Article
Effects of Increasing Dietary Inclusion of White Lupin on Growth Performance, Meat Quality, and Fatty Acid Profile on Growing-Fattening Pigs
by Georgeta Ciurescu, Mihaela Dumitru, Nicoleta Aurelia Lefter and Dan-Traian Râmbu
Agriculture 2025, 15(15), 1709; https://doi.org/10.3390/agriculture15151709 (registering DOI) - 7 Aug 2025
Abstract
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], [...] Read more.
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], meat quality, and fatty acid profile (FA). A total of 54 male crossbred pigs [(Topigs Large White × Norsvin Landrace) × Duroc], aged 12 weeks, with an initial average BW of 30.30 ± 0.77 kg, were divided into three dietary groups of 18 piglets each. The control group (CON) was fed a standardized SBM-based complete feed. In the experimental groups (WL1 and WL2) the SBM was replaced with increasing levels of WL seeds [WL1-5.0% and WL2-10.0% (grower period, 30–60 kg BW), and WL1-7.0% and WL2-14.0% (finisher period, 61–110 kg BW)]. All diets were formulated to be isocaloric and isonitrogenous with similar content of total lysine and sulphur amino acids, calcium, and available phosphorus. At the end of 83 days’ fattening trial, the animals were slaughtered. Longissimus dorsi muscle (LD) was sampled for analyses of the physicochemical traits. The results show that increasing the dietary raw WL concentration decreased final BW (p = 0.039), ADG (p < 0.0001), and ADFI (p = 0.004) throughout the experimental period, especially in the second phase of feeding. Dietary treatments did not affect the pigs’ blood biochemical constituents. Concerning LD muscle characteristics, the redness color (a*) and collagen content was higher (p < 0.0001) in the WL1/WL2 vs. CON group. Beneficial decrease in the values of some textural attributes (hardness, gumminess, chewiness, and resilience) of LD in the WL1/WL2 vs. CON group was registered. The use of WL had a significant effect on the content of FAs, especially for eicosapentaenoic (p = 0.014) and n-3 PUFA (p = 0.045), which were higher than those fed the CON diet. In conclusion, WL could be used as a replacement of SBM in growing–finishing pigs’ diets, with significant improvements in the meat fatty acid profile and technological properties. Full article
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

13 pages, 513 KiB  
Article
Impact of Dietary Inputs on Carbapenem Resistance Gene Dynamics and Microbial Safety During Bioconversion of Agri-Food Waste and Anaerobic Digestate by Hermetia illucens Larvae
by Andrea Marcelli, Alessio Ilari, Vesna Milanović, Ester Foppa Pedretti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Giorgia Rampanti, Andrea Osimani, Cristiana Garofalo and Lucia Aquilanti
Genes 2025, 16(8), 907; https://doi.org/10.3390/genes16080907 - 29 Jul 2025
Viewed by 211
Abstract
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of [...] Read more.
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of these genes and opportunistic pathogens, raises important safety concerns. This study aimed to assess the influence of different agri-food-based diets on Enterobacteriaceae loads and the CRG occurrence during the bioconversion process. Methods: Four experimental diets were formulated from agri-food residues and anaerobic digestate: Diet 1 (peas and chickpea waste), Diet 2 (peas and wheat waste), Diet 3 (onion and wheat waste), and Diet 4 (wheat waste and digestate). Enterobacteriaceae were quantified by viable counts, while five CRGs (blaKPC, blaNDM, blaOXA-48, blaVIM, and blaGES) were detected and quantified using quantitative PCRs (qPCRs). Analyses were performed on individual substrates, formulated diets, larvae (before and after bioconversion), and frass. Results: Plant-based diets sustained moderate Enterobacteriaceae loads. In contrast, the digestate-based diet led to a significant increase in Enterobacteriaceae in both the frass and mature larvae. CRGs were detected only in legume-based diets: blaVIM and blaGES were found in both mature larvae and frass, while blaOXA-48 and blaKPC were found exclusively in either larvae or frass. No CRGs were detected in onion- or digestate-based diets nor in young larvae or diet inputs. Conclusions: The findings suggest that the diet composition may influence the proliferation of Enterobacteriaceae and the persistence of CRGs. Careful substrate selection and process monitoring are essential to minimize antimicrobial resistance risks in insect-based bioconversion systems. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1908 KiB  
Article
BDE-47 Disrupts Gut Microbiota and Exacerbates Prediabetic Conditions in Mice: Therapeutic Potential of Grape Exosomes and Antioxidants
by Zaoling Liu, Fang Cao, Aerna Qiayimaerdan, Nilupaer Aisikaer, Zulipiya Zunong, Xiaodie Ma and Yale Yu
Toxics 2025, 13(8), 640; https://doi.org/10.3390/toxics13080640 - 29 Jul 2025
Viewed by 222
Abstract
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions [...] Read more.
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions in mitigating these effects. Objectives: To determine whether BDE-47 exposure induces diabetogenic dysbiosis in prediabetic mice and to assess whether dietary interventions, such as grape exosomes and an antioxidant cocktail, can restore a healthy microbiota composition and mitigate diabetes risk. Methods: In this study, a prediabetic mouse model was established in 54 male SPF-grade C57BL/6J mice through a combination of high-sugar and high-fat diet feeding with streptozotocin injection. Oral glucose tolerance tests (OGTT) were conducted on day 7 and day 21 post-modeling to assess the establishment of the model. The criteria for successful model induction were defined as fasting blood glucose levels below 7.8 mmol/L and 2 h postprandial glucose levels between 7.8 and 11.1 mmol/L. Following confirmation of model success, a 3 × 3 factorial design was applied to allocate the experimental animals into groups based on two independent factors: BDE-47 exposure and exosome intervention. The BDE-47 exposure factor consisted of three dose levels—none, high-dose, and medium-dose—while the exosome intervention factor included three modalities—none, Antioxidant Nutrients Intervention, and Grape Exosomes Intervention. Fresh fecal samples were collected from mice two days prior to sacrifice. Cecal contents and segments of the small intestine were collected and transferred into 1.5 mL cryotubes. All sequences were clustered into operational taxonomic units (OTUs) based on defined similarity thresholds. To compare means across multiple groups, a two-way analysis of variance (ANOVA) was employed. The significance level was predefined at α = 0.05, and p-values < 0.05 were considered statistically significant. Bar charts and line graphs were generated using GraphPad Prism version 9.0 software, while statistical analyses were performed using SPSS version 20.0 software. Results: The results of 16S rDNA sequencing analysis of the microbiome showed that there was no difference in the α diversity of the intestinal microbiota in each group of mice (p > 0.05), but there was a difference in the Beta diversity (p < 0.05). At the gate level, the abundances of Proteobacteria, Campylobacterota, Desulfobacterota, and Fusobacteriota in the medium-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Patellar bacteria was lower than that of the model control group (p < 0.05). The abundances of Proteobacteria and Campylobacterota in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Planctomycetota and Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Campylobacterota in the grape exosome group was higher than that of the model control group (p < 0.05). The abundance of Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Firmicutes and Fusobacteriota in the antioxidant nutrient group was higher than that of the model control group (p < 0.05). However, the abundance of Verrucomicrobiota and Patescibacteria was lower than that of the model control group (p < 0.05). At the genus level, the abundances of Bacteroides and unclassified Lachnospiraceae in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Lachnospiraceae NK4A136_group and Lactobacillus was lower than that of the model control group (p < 0.05). The abundance of Veillonella and Helicobacter in the medium-dose BDE-7 group was higher than that in the model control group (p < 0.05), while the abundance of Lactobacillus was lower (p < 0.05). The abundance of genera such as Lentilactobacillus and Faecalibacterium in the grape exosome group was higher than that in the model control group (p < 0.05). The abundance of Alloprevotella and Bacteroides was lower than that of the model control group (p < 0.05). In the antioxidant nutrient group, the abundance of Lachnospiraceae and Hydrogenophaga was higher than that in the model control group (p < 0.05). However, the abundance of Akkermansia and Coriobacteriaceae UCG-002 was significantly lower than that of the model control group (p < 0.05). Conclusions: BDE-47 induces diabetogenic dysbiosis in prediabetic mice, which is reversible by dietary interventions. These findings suggest that microbiota-targeted strategies may effectively mitigate the diabetes risk associated with environmental pollutant exposure. Future studies should further explore the mechanisms underlying these microbiota changes and the long-term health benefits of such interventions. Full article
Show Figures

Figure 1

36 pages, 1502 KiB  
Review
A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
by Youssef Mimoune Reffai and Taoufiq Fechtali
Appl. Microbiol. 2025, 5(3), 74; https://doi.org/10.3390/applmicrobiol5030074 - 29 Jul 2025
Viewed by 345
Abstract
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the [...] Read more.
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the translational challenges in realizing these benefits. Key improvements explored include enhanced mineral bioavailability (e.g., up to 90% phytate reduction), improved protein digestibility, an attenuated glycemic response (GI ≈ 54 vs. ≈75 for conventional bread), and the generation of bioactive compounds. While in vitro and animal studies extensively demonstrate LAB’s potential to reshape nutrient profiles (e.g., phytate hydrolysis improving iron absorption, proteolysis releasing bioactive peptides), translating these effects into consistent human health outcomes proves complex. Significant challenges hinder this transition from laboratory to diet, including the limited bioavailability of LAB-derived metabolites, high strain variability, and sensitivity to fermentation conditions. Furthermore, interactions with the food matrix and host-specific factors, such as gut microbiota composition, contribute to inconsistent findings. This review highlights methodological gaps, particularly reliance on in vitro or animal models, and the lack of long-term, effective human trials. Although LAB hold significant promise for nutritional improvements in sourdough, translating these findings to validated human benefits necessitates continued efforts in mechanism-driven strain optimization, the standardization of fermentation processes, and rigorous human studies. Full article
Show Figures

Graphical abstract

19 pages, 1015 KiB  
Article
Pet, Pest, Profit: Patient! How Attitudes Toward Animals Among Veterinary Students in the Netherlands Differ According to Animal Categories and Student-Related Variables
by Angelika V. Dijkstra Klaasse, Monique R. E. Janssens and Daniela C. F. Salvatori
Animals 2025, 15(15), 2222; https://doi.org/10.3390/ani15152222 - 28 Jul 2025
Viewed by 274
Abstract
Veterinarians are not just animal health professionals; they are also considered animal welfare experts. Animal-directed empathy, the ability to understand and match an animal’s emotional state, is essential for recognizing animal welfare issues. It is therefore a vital competency for veterinarians. The factors [...] Read more.
Veterinarians are not just animal health professionals; they are also considered animal welfare experts. Animal-directed empathy, the ability to understand and match an animal’s emotional state, is essential for recognizing animal welfare issues. It is therefore a vital competency for veterinarians. The factors that play a role in shaping this empathy are animal, personal, and cultural influences, as well as the categorization of animals based on their benefit or harm to people: pet, pest or profit (used for economic purposes). We conducted a survey among veterinary students in the Netherlands to assess their levels of animal-directed empathy by scoring their attitude toward animals with the “Pet, Pest, Profit Scale”. Analysis of 321 completed surveys revealed that students showed the highest empathy for pets, the second-highest levels for pest animals, and the lowest levels for profit animals. Empathy levels also differed depending on career choice, background, and diet. These findings indicate that categorizing animals influences veterinary students’ empathy levels, which can lead to unrecognized welfare issues, especially for pest and profit animals. It is important to enhance empathy for these categories through targeted educational interventions to help prepare veterinary students for their responsibility as veterinarians, ensuring the welfare of all animals, whether pet, pest or profit. Full article
(This article belongs to the Special Issue Empirical Animal and Veterinary Medical Ethics)
Show Figures

Figure 1

17 pages, 325 KiB  
Article
The Effects of Olive Cake and Linseed Dietary Supplementation on the Performance, Carcass Traits, and Oxidative Stability of Beef from Young Podolian Bulls
by Paolo De Caria, Luigi Chies, Giulia Francesca Cifuni, Manuel Scerra, Francesco Foti, Caterina Cilione, Paolo Fortugno, Miriam Arianna Boninsegna, Corinne Giacondino, Salvatore Claps and Pasquale Caparra
Animals 2025, 15(15), 2188; https://doi.org/10.3390/ani15152188 - 25 Jul 2025
Viewed by 286
Abstract
To evaluate animal performance and meat quality, stoned olive cake and linseed were used in an experimental test conducted on thirty-six young Podolian bulls, divided into four groups: the control group (CON), OC group (with olive cake containing a 30% as-fed basis of [...] Read more.
To evaluate animal performance and meat quality, stoned olive cake and linseed were used in an experimental test conducted on thirty-six young Podolian bulls, divided into four groups: the control group (CON), OC group (with olive cake containing a 30% as-fed basis of stoned olive cake), EL group (with linseed containing a 15% as-fed basis of extruded linseed), and OCEL group (with olive cake + linseed containing 20% stoned olive cake and 10% extruded linseed). The results show that olive cake supplementation did not influence performance in vita or the post-slaughter animal measurements (final body weight, DMI, FCR, ADG, carcass weight, dressing percentage, and pH) (p > 0.05); this was not true of the TBARS and color measurements, for which the meat samples showed excellent values (p < 0.001), especially in diets supplemented with olive cake. In conclusion, incorporating olive cake and linseed into the diet of fattening cattle may be a way to utilize a by-product of the olive industry and naturally increase the nutritional value of meat and meat-based products in Mediterranean regions. This would reduce environmental impacts and promote the valorization of this local feed source in alignment with the principles of the circular economy. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

23 pages, 8683 KiB  
Article
Comparative Analysis of Fecal Microbiota and Metabolomic Profiles in Male and Female Leizhou Goats Offered a 10% Crude Protein Diet Among Four Energy Levels
by Hu Liu, Wenji Wang, Weishi Peng, Anmiao Chen, Xiaogao Diao, Xia Yang, Jianmin Chai, Yuanting Yang, Ke Wang, Jiancheng Han and Hanlin Zhou
Animals 2025, 15(15), 2174; https://doi.org/10.3390/ani15152174 - 23 Jul 2025
Viewed by 251
Abstract
The gut microbiota plays a crucial role in maintaining the host’s metabolism and can influence the host’s productivity. Both dietary composition and gender have distinct effects on the composition of the gut microbiota. Therefore, to investigate the differences in the structure and function [...] Read more.
The gut microbiota plays a crucial role in maintaining the host’s metabolism and can influence the host’s productivity. Both dietary composition and gender have distinct effects on the composition of the gut microbiota. Therefore, to investigate the differences in the structure and function of the gut microbiota between female and male goats, we analyzed their fecal microbiota and metabolites when fed a 10% crude protein diet at four different energy levels—7.01, 8.33, 9.66, and 10.98 MJ/kg DM. Four non-pregnant female and four male Leizhou goats (all 8 months of age) were used in the experiment, with an average body weight of 10.3 ± 0.8 kg for females and 13.6 ± 1.1 kg for males (mean ± SD). The animals were assigned to two separate 4 × 4 Latin square designs according to their gender, each consisting of four treatments and four 28-day periods, including 25 days of a dietary adaptation period and 3 days of fecal sample collection per period. The data were analyzed using the SAS statistical package and Pearson’s correlation analysis. The dominant phyla for all samples were Firmicutes and Bacteroidota, regardless of dietary energy levels or gender. Among fecal bacteria, unclassified_f_Lachnospiraceae was the dominant genus in the female goats, and Oscillospiraceae_UCG-005 was the dominant genus in the male goats. The relative abundance of unclassified_f_Lachnospiraceae (p < 0.001), Bacteroides (p = 0.007), norank_f_Ruminococcaceae (p = 0.024), Mediterraneibacter (p = 0.001), and norank_f_Muribaculaceae (p = 0.008) was greater in the female goats than in the male goats. In contrast, the relative abundance of Oscillospiraceae_UCG-005 (p < 0.001), Ruminococcus (p = 0.035), Monoglobus (p = 0.006), Oscillospiraceae-NK4A214_group (p = 0.008), norank_f_F082 (p < 0.001), and Prevotellaceae_UCG-003 (p < 0.001) was lower in the female goats than in the male goats. The volcano plot showed that there were 153, 171, 171, and 183 differential metabolites between the female and male goats at dietary energy levels of 7.01, 8.33, 9.66, and 10.98 MJ/kg DM, respectively. Numerous correlations were observed between differential metabolites and microflora genera. We concluded that the non-pregnant female and male goats exhibited distinct metabolic abilities when consuming a 10% crude protein diet at four different energy levels. Interestingly, in the female and male goats, the fecal microbiota also showed some differing responses to the energy levels. These results provide a gender-based reference for formulating low-protein dietary strategies for 8-month-old Leizhou goats. Full article
Show Figures

Figure 1

19 pages, 1388 KiB  
Article
Lipid Oxidation of Stored Brown Rice Changes Ileum Digestive and Metabolic Characteristics of Broiler Chickens
by Beibei He, Xueyi Zhang, Weiwei Wang, Li Wang, Jingjing Shi, Kuanbo Liu, Junlin Cheng, Yongwei Wang and Aike Li
Int. J. Mol. Sci. 2025, 26(14), 7025; https://doi.org/10.3390/ijms26147025 - 21 Jul 2025
Viewed by 257
Abstract
Long-term storage may induce lipid oxidation in brown rice and impact its utilization in animal diets. One-day-old male Ross 308 broiler chickens (with an initial body weight of 20 g) were randomly divided into three groups: corn-based diet (Corn), fresh brown rice-based diet [...] Read more.
Long-term storage may induce lipid oxidation in brown rice and impact its utilization in animal diets. One-day-old male Ross 308 broiler chickens (with an initial body weight of 20 g) were randomly divided into three groups: corn-based diet (Corn), fresh brown rice-based diet (BR1) and stored brown rice-based diet (BR6), with 8 replicates of 10 birds per pen, in a 42-day feeding trial. The results showed that lipid oxidation indexes increased and fatty acid composition changed significantly in BR6 (p < 0.05). The dietary replacement of corn with brown rice showed no effects on growth performance of broilers (p > 0.05). However, palmitic acid and oleic acid increased, and stearic acid, linoleic acid and docosadienoic acid decreased in the broiler breast muscle of the BR1 and BR6 groups (p < 0.05). Ileum antioxidant enzyme activities increased in the BR1 and BR6 groups compared to the Corn group (p < 0.05), and the activities of α-amylase, trypsin, chymotrypsin and lipase decreased in the BR6 group compared to the BR1 and Corn groups (p < 0.05). Also, compared to the BR1 group, the overall expression of metabolites involved in drug metabolism—cytochrome P450, GnRH secretion and the estrogen signaling pathway in broiler ileum were down-regulated in the BR6 group (p < 0.05). In conclusion, the lipid oxidation of stored brown rice decreased digestive enzyme activities and changed metabolic characteristics in the ileum of broilers. While replacing corn with brown rice did not affect broiler growth performance, it reduced the contents of unsaturated and essential fatty acids in breast muscle and enhanced the ileal antioxidant functions of broilers. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

25 pages, 811 KiB  
Article
Vegetarianísh—How “Flexitarian” Eating Patterns Are Defined and Their Role in Global Food-Based Dietary Guidance
by Julie M. Hess, Kaden Robinson and Angela J. Scheett
Nutrients 2025, 17(14), 2369; https://doi.org/10.3390/nu17142369 - 19 Jul 2025
Viewed by 627
Abstract
Background/Objectives: A dietary pattern that simply reduces animal-based foods may be more acceptable to consumers than strict vegetarian or vegan diets. The objective of this investigation was to identify the most consistently used definitions of “flexitarian” dietary patterns, or dietary patterns with a [...] Read more.
Background/Objectives: A dietary pattern that simply reduces animal-based foods may be more acceptable to consumers than strict vegetarian or vegan diets. The objective of this investigation was to identify the most consistently used definitions of “flexitarian” dietary patterns, or dietary patterns with a reduced amount of animal foods. Then, sets of food-based dietary guidance (FBDG) from different countries and regions were evaluated to determine whether their guidance could accommodate flexitarian diets. Methods: Literature searches yielded 86 total results on flexitarian eating after screening by title/abstract, full text availability, and English language. Definitions of “flexitarian” were extracted from each article then reviewed and summarized. FBDGs available in English were downloaded from the Food and Agriculture Organization of the United Nations website. Guidance related to reduced animal product diets was extracted from FBDGs for eating patterns closest to 2000 kcal. Results: The summary definition of flexitarian included eating at least one animal product (dairy, eggs, meat, or fish) at least once per month but less than once per week. FBDGs from n = 42 countries or regions were downloaded and data extracted. Only FBDG from Sri Lanka explicitly describe a “semi-vegetarian” eating pattern, though n = 12 FBDGs describe a vegetarian pattern and n = 14 recommend reducing meat or animal food and/or choosing meat/dairy alternatives. Conclusions: Following a flexitarian dietary pattern in terms of reducing or limiting red meat is feasible and even implicitly recommended by the official dietary guidance of several countries. Most FBDGs examined did not include recommendations to decrease dairy or fish intake. Full article
Show Figures

Figure 1

14 pages, 2675 KiB  
Article
Development of a Clostridium Perfringens Challenge Model in Broiler Chickens to Evaluate the Effects of Feed Additives
by Anna Kollár, Kinga Selymes, Gergely Tóth, Sándor Szekeres, Péter Ferenc Dobra, Krisztina Bárdos, László Ózsvári, Zsófia Bata, Viviána Molnár-Nagy and Miklós Tenk
Pathogens 2025, 14(7), 707; https://doi.org/10.3390/pathogens14070707 - 17 Jul 2025
Viewed by 407
Abstract
Necrotic enteritis, caused by Clostridium perfringens (C. perfringens) is a disease present worldwide and causes major economic losses. The re-emergence of the disease, in recent years, is mainly due to the ban of the usage of antibiotics as growth promoters in [...] Read more.
Necrotic enteritis, caused by Clostridium perfringens (C. perfringens) is a disease present worldwide and causes major economic losses. The re-emergence of the disease, in recent years, is mainly due to the ban of the usage of antibiotics as growth promoters in the EU. The aim of this study was to establish a reliable, robust challenge model. Ross hybrid broilers were divided into randomized groups: a positive and a negative control group, a group receiving antibiotic treatment and three groups fed with assorted feed supplements, all receiving the same basal diet. The birds in the treatment groups were vaccinated twice using a 10-times dose of an Infectious Bursitis live vaccine and the animals were challenged four times with a NetB toxin producing C. perfringens strain. The presence of clinical signs and body weight gain were monitored. At the end of the study necropsy was performed and the gut lesions were scored. During the experiment, clinical signs were absent in the negative control group and in the antibiotic treated group. The other animals displayed diarrhea and feather loss. These symptoms were the most pronounced in the positive control group. The gut lesion scores showed significant differences between the negative and positive control groups, with the former scoring the lowest. Based on these results, the challenge model establishment was successful and in this setup the assessment of the potency of feed additives is also possible. Full article
Show Figures

Figure 1

12 pages, 2783 KiB  
Article
Physicochemical, Nutritional, and Structural Characterization of a Novel Meat-Based Hummus
by Meena Goswami, Rishav Kumar, Xin M. Teng, Ravi Jadeja, Darren Scott, Morgan Pfeiffer, Gretchen G. Mafi, Vikas Pathak and Ranjith Ramanathan
Foods 2025, 14(14), 2507; https://doi.org/10.3390/foods14142507 - 17 Jul 2025
Viewed by 420
Abstract
The objective was to characterize physicochemical, nutritional, and structural properties of a novel meat-based hummus. This product was created by substituting 50% of chickpea paste with mutton. The meat-based hummus contained 0.4% sodium acid sulfate as an antimicrobial agent. The pH values of [...] Read more.
The objective was to characterize physicochemical, nutritional, and structural properties of a novel meat-based hummus. This product was created by substituting 50% of chickpea paste with mutton. The meat-based hummus contained 0.4% sodium acid sulfate as an antimicrobial agent. The pH values of traditional hummus were greater than those of the meat-based hummus. There was no significant difference in day 0 total plate count between plant- and meat-based hummus; however, the total plate count on day 7 was significantly (p < 0.05) lower in the meat-based hummus than plant-based hummus due to antimicrobial addition. Instrumental color analysis showed greater lightness (L* values) and yellowness values for traditional hummus compared to the meat-based hummus. The meat-based hummus had 66% greater protein than traditional hummus. Scanning electron microscopy revealed a porous, gel-like structure in plant-based hummus, while meat-based hummus showed a dense, fibrous network. The flavor, creaminess, grain properties, and mouth coating scores of meat-based hummus were greater than those of traditional chickpea hummus. The study indicated that meat-based hummus can be developed by incorporating 50% cooked minced mutton. Creating innovative meat-based products like meat hummus offers the benefits of both plant-based and animal-based diets, making it a good option for flexitarians. Full article
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
From Values to Intentions: Drivers and Barriers of Plant-Based Food Consumption in a Cross-Border Context
by Manuel José Serra da Fonseca, Helena Sofia Rodrigues, Bruno Barbosa Sousa and Mário Pinto Ribeiro
Adm. Sci. 2025, 15(7), 280; https://doi.org/10.3390/admsci15070280 - 17 Jul 2025
Viewed by 539
Abstract
The COVID-19 pandemic has significantly altered consumer habits, particularly in relation to food choices. In this context, plant-based diets have gained prominence, driven by health, environmental, and ethical considerations. This study investigates the primary motivational and inhibitory factors influencing the consumption of plant-based [...] Read more.
The COVID-19 pandemic has significantly altered consumer habits, particularly in relation to food choices. In this context, plant-based diets have gained prominence, driven by health, environmental, and ethical considerations. This study investigates the primary motivational and inhibitory factors influencing the consumption of plant-based foods among residents of the Galicia–Northern Portugal Euroregion. Utilizing the Theory of Reasoned Action, an extended model was proposed and tested through a quantitative survey. A total of 214 valid responses were collected via an online questionnaire distributed in Portuguese and Spanish. Linear regression analysis revealed that health awareness, animal welfare, and environmental concern significantly shape positive attitudes, which subsequently affect the intention to consume plant-based foods. Additionally, perceived barriers—such as lack of taste and insufficient information—were found to negatively influence intention. These findings contribute to the consumer behavior literature and provide strategic insights for stakeholders aiming to promote more sustainable dietary patterns in culturally connected cross-border regions. Full article
Show Figures

Figure 1

9 pages, 235 KiB  
Article
Inclusion of Milk Thistle Seed and Achyranthes japonica Extract Alone or in Combination in Diet of Weaning Pigs Results in Similar Growth Outcomes
by Shanmugam Suresh Kumar, Se Yeon Jang and In Ho Kim
Life 2025, 15(7), 1114; https://doi.org/10.3390/life15071114 - 16 Jul 2025
Viewed by 328
Abstract
The objective of this study was to assess the impacts of milk thistle seed (MTS) and Achyranthes japonica extract (AJE), both individually and in combination, on growth performance, nutrient digestibility, fecal score, fecal gas emissions, and cytokine responses in n = 120 crossbred [...] Read more.
The objective of this study was to assess the impacts of milk thistle seed (MTS) and Achyranthes japonica extract (AJE), both individually and in combination, on growth performance, nutrient digestibility, fecal score, fecal gas emissions, and cytokine responses in n = 120 crossbred [(Landrace Yorkshire) × Duroc] weaning piglets with an initial body weight of 6.53 ± 1.24 kg. Pigs were selected based on sex and randomly assigned to one of four dietary treatments for 6 weeks. The experimental diets were as follows: (1) CON—control/basal diet; (2) AJE (CON + 0.10% AJE); (3) MTS (CON + 0.10% MTS); and (4) CMB—combo feed (CON + 0.05% of AJE + 0.05% of MTS). Each treatment consisted of six replicates with five pigs (three ♀ and two barrows ♂) per pen. The incorporation of MTS has the potential to enhance (p < 0.05) the average daily gain in weaning pigs, particularly when used alone or in combination with AJE. But there were no significant effects or adverse effects observed on other growth parameters such as body weight, average daily feed intake, and gain-to-feed ratio. Also, there were no notable changes found in nutrient digestibility, fecal score, fecal gas emissions, or cytokine production. In summary, MTS and AJE, administered alone or in combination, reveal similar growth outcomes, suggesting that both additives could serve as potential options to improve animal performance without adverse effects. Full article
Back to TopTop