Development of a Clostridium Perfringens Challenge Model in Broiler Chickens to Evaluate the Effects of Feed Additives
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Their Keeping Conditions
2.2. Feed
2.3. Challenge Material
2.4. Animal Experiments and Summary of the Operations
2.5. Evaluation of the Study
2.6. Statistical Analysis
3. Results
3.1. Clinical Observation
3.2. Body Weight Data
3.3. Gross Pathology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skinner, J.T.; Bauer, S.; Young, V.; Pauling, G.; Wilson, J. An Economic Analysis of the Impact of Subclinical (Mild) Necrotic Enteritis in Broiler Chickens. Avian Dis. 2010, 54, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lillehoj, H.S.; Gadde, U.D.; Ritter, D.; Oh, S. Characterization of Clostridium perfringens Strains Isolated from Healthy and Necrotic Enteritis-Afflicted Broiler Chickens. Avian Dis. 2017, 61, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, M.L.; Quessy, S.; Letellier, A.; Arsenault, J.; Boulianne, M. Impact of a drug-free program on broiler chicken growth performances, gut health, Clostridium perfringens and Campylobacter jejuni occurrences at the farm level. Poult. Sci. 2015, 94, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Shojadoost, B.; Vince, A.R.; Prescott, J.F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 2012, 43, 74. [Google Scholar] [CrossRef] [PubMed]
- El-Hack, M.E.A.; El-Saadony, M.T.; Elbestawy, A.R.; El-Shall, N.A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F.; et al. Necrotic enteritis in broiler chickens: Disease characteristics and prevention using organic antibiotic alternatives—A comprehensive review. Poult. Sci. 2022, 101, 101590. [Google Scholar] [CrossRef] [PubMed]
- Emami, N.K.; Dalloul, R.A. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult. Sci. 2021, 100, 101330. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Ohtani, K.; Hirakawa, H.; Ohshima, K.; Yamashita, A.; Shiba, T.; Ogasawara, N.; Hattori, M.; Kuhara, S.; Hayashi, H. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 2002, 99, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Keyburn, A.L.; Sheedy, S.A.; Ford, M.E.; Williamson, M.M.; Awad, M.M.; Rood, J.I.; Moore, R.J. Alpha-Toxin of Clostridium perfringens Is Not an Essential Virulence Factor in Necrotic Enteritis in Chickens. Infect. Immun. 2006, 74, 6496–6500. [Google Scholar] [CrossRef] [PubMed]
- Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D.; Di Rubbo, A.; Rood, J.I.; Moore, R.J. NetB, a New Toxin That Is Associated with Avian Necrotic Enteritis Caused by Clostridium perfringens. PLoS Pathog. 2008, 4, e26. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Lillehoj, H.S.; Jeong, W.; Jeoung, H.Y.; An, D.J. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult. Sci. 2011, 90, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Fathima, S.; Hakeem, W.G.A.; Shanmugasundaram, R.; Selvaraj, R.K. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022, 10, 1958. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.B. Intercurrent coccidiosis and necrotic enteritis of chickens: Rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 2005, 34, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Fries-Craft, K.; Graham, D.; Hargis, B.M.; Bobeck, E.A. Evaluating a Salmonella Typhimurium, Eimeria maxima, and Clostridium perfringens coinfection necrotic enteritis model in broiler chickens: Repeatability, dosing, and immune outcomes. Poult. Sci. 2023, 102, 103018. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.J. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016, 45, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Annett, C.B.; Viste, J.R.; Chirino-Trejo, M.; Classen, H.L.; Middleton, D.M.; Simko, E. Necrotic enteritis: Effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathol. 2002, 31, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Craven, S.E. Colonization of the Intestinal Tract by Clostridium Perfringens and Fecal Shedding in Diet-Stressed and Unstressed Broiler Chickens. Poult. Sci. 2000, 79, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Castanon, J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Caly, D.L.; D’Inca, R.; Auclair, E.; Drider, D. Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist’s Perspective. Front. Microbiol. 2015, 6, 1336. [Google Scholar] [CrossRef] [PubMed]
- Sandvang, D.; Skjoet-Rasmussen, L.; Cantor, M.D.; Mathis, G.F.; Lumpkins, B.S.; Blanch, A. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens. Poult. Sci. 2021, 100, 100982. [Google Scholar] [CrossRef] [PubMed]
- Emami, N.K.; White, M.B.; Calik, A.; Kimminau, E.A.; Dalloul, R.A. Managing broilers gut health with antibiotic-free diets during subclinical necrotic enteritis. Poult. Sci. 2021, 100, 101055. [Google Scholar] [CrossRef] [PubMed]
- Biabani, N.; Taherpour, K.; Ghasemi, H.A.; Akbari Gharaei, M.; Hafizi, M.; Nazaran, M.H. Dietary advanced chelate technology-based 7-mineral supplement improves growth performance and intestinal health indicators during a mixed Eimeria challenge in broiler chickens. Vet. Parasitol. 2024, 331, 110277. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J.F.; Smyth, J.A.; Shojadoost, B.; Vince, A. Experimental reproduction of necrotic enteritis in chickens: A review. Avian Pathol. 2016, 45, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.R.; Parreira, V.R.; Kulkarni, R.R.; Prescott, J.F. Live attenuated vaccine-based control of necrotic enteritis of broiler chickens. Vet. Microbiol. 2006, 113, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Shamshirgaran, M.A.; Golchin, M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front. Vet. Sci. 2024, 11, 1429637. [Google Scholar] [CrossRef] [PubMed]
- M’Sadeq, S.A.; Wu, S.; Swick, R.A.; Choct, M. Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide. Anim. Nutr. 2015, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McReynolds, J.L.; Byrd, J.A.; Anderson, R.C.; Moore, R.W.; Edrington, T.S.; Genovese, K.J.; Poole, T.L.; Kubena, L.F.; Nisbet, D.J. Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis. Poult. Sci. 2004, 83, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Van Immerseel, F.; Buck, J.D.; Pasmans, F.; Huyghebaert, G.; Haesebrouck, F.; Ducatelle, R. Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol. 2004, 33, 537–549. [Google Scholar] [CrossRef] [PubMed]
- El-Ghany, W.A.A.; Abdel-Latif, M.A.; Hosny, F.; Alatfeehy, N.M.; Noreldin, A.E.; Quesnell, R.R.; Chapman, R.; Sakai, L.; Elbestawy, A.R. Comparative efficacy of postbiotic, probiotic, and antibiotic against necrotic enteritis in broiler chickens. Poult. Sci. 2022, 101, 101988. [Google Scholar] [CrossRef] [PubMed]
- Kerek, Á.; Szabó, Á.; Dobra, P.F.; Bárdos, K.; Ózsvári, L.; Fehérvári, P.; Bata, Z.; Molnár-Nagy, V.; Jerzsele, Á. Determining the In Vivo Efficacy of Plant-Based and Probiotic-Based Antibiotic Alternatives against Mixed Infection with Salmonella enterica and Escherichia coli in Domestic Chickens. Vet. Sci. 2023, 10, 706. [Google Scholar] [CrossRef] [PubMed]
- Kerek, Á.; Szabó, Á.; Dobra, P.F.; Bárdos, K.; Paszerbovics, B.; Bata, Z.; Molnár-Nagy, V.; Jerzsele, Á.; Ózsvári, L. Dose–response study of a fenugreek-based antibiotic alternative in Bábolna Tetra-SL chicks (1–42 days old) with mixed bacterial infections. Front. Vet. Sci. 2025, 12, 1570387. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.R.; Hakeem, W.A.; Shanmugasundaram, R.; Selvaraj, R.K. Effect of synbiotic supplementation on production performance and severity of necrotic enteritis in broilers during an experimental necrotic enteritis challenge. Poult. Sci. 2023, 102, 102959. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Markazi, A.; Mortada, M.; Ng, T.T.; Applegate, T.J.; Bielke, L.R.; Syed, B.; Pender, C.M.; Curry, S.; Murugesan, G.R.; et al. Research Note: Effect of synbiotic supplementation on caecal Clostridium perfringens load in broiler chickens with different necrotic enteritis challenge models. Poult. Sci. 2020, 99, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Kerek, Á.; Román, I.L.; Szabó, Á.; Papp, M.; Bányai, K.; Kardos, G.; Kaszab, E.; Bali, K.; Makrai, L.; Jerzsele, Á. Comprehensive Metagenomic Analysis of Veterinary Probiotics in Broiler Chickens. Animals 2024, 14, 1927. [Google Scholar] [CrossRef] [PubMed]
- Sunder, G.S.; Panda, A.K.; Gopinath, N.C.S.; Rao, S.V.R.; Raju, M.V.L.N.; Reddy, M.R.; Kumar, C.V. Effects of Higher Levels of Zinc Supplementation on Performance, Mineral Availability, and Immune Competence in Broiler Chickens. J. Appl. Poult. Res. 2008, 17, 79–86. [Google Scholar] [CrossRef]
Basal Diet | % | Days | Form |
---|---|---|---|
Soybean meal * | 35.6 | 0–25 days | Crumbled |
Wheat | 30.0 | ||
Corn | 27.4 | ||
Sunflower oil | 3.0 | ||
Broiler premix without coccidiostats | 4.0 |
SUMMARY OF THE OPERATIONS | ||||||
---|---|---|---|---|---|---|
Groups/ Operations | 1 | 2 | 3 | 4 | 5 | 6 |
Feed/ Number of Birds in the Group |
Basal Diet Positive Control 21 |
Basal Diet + Feed Additive 21 | Basal Diet + Feed Additive 22 | Basal Diet + Feed Additive 21 | Basal Diet + Amoxicillin 22 | Basal Diet Negative Control 22 |
D0 | Hatching, transport of day-old broilers to the Dept. of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest Body weight measurement, individual labelling, group forming | |||||
D7 | Body weight measurement | |||||
D14 | Vaccination with IBD | - | ||||
D17 | Feed change (fish meal, high protein content) | - | ||||
D18 | Body weight measurement Challenge with Clostridium perfringen | Body weight measurement | ||||
D19 | Challenge with Clostridium perfringens | - | ||||
D20 | Challenge with Clostridium perfringens | - | ||||
D21 | Challenge with Clostridium perfringens Vaccination with IBD | - | ||||
D25 | Body weight measurement Transport of the birds to the Department of Pathology, University of Veterinary Medicine Budapest, euthanasia, gross pathology |
Score | Description |
---|---|
0 | No gross lesions |
1 | Thin/friable walls or diffuse superficial but removable fibrin |
2 | Focal necrosis/ulceration, non-removable fibrin deposit, 1–5 lesions |
3 | Focal necrosis/ulceration, non-removable fibrin deposit, 6–15 lesions |
4 | Focal necrosis/ulceration, non-removable fibrin deposit, 15 or more lesions |
5 | Patches of necrosis 2 to 3 cm long, variable number of lesions |
6 | Diffuse necrosis, variable number of lesions, extensive |
Serial Number | Day of the Experiment | Group Number | Identification Number of the Birds |
---|---|---|---|
1 | D4 | 2 | 35 |
2 | 2 | 39 | |
3 | 3 | 41 | |
4 | 3 | 47 | |
5 | 3 | 50 | |
6 | 6 | 8 | |
7 | 6 | 17 | |
8 | D5 | 1 | 1 |
9 | 3 | 45 | |
10 | 3 | 46 | |
11 | D8 | 5 | 99 |
12 | D24 | 3 | 42 |
Groups | D0 (g) | D7 (g) | D18 (g) | D25 (g) |
---|---|---|---|---|
G1 positive control (basal diet) | 47.14 ± 3.2 | 127.95 ± 30.06 | 529.00 ± 99.56 a | 1092.55 ± 188.14 |
G2 basal diet + feed additive | 45.9 ± 2.53 | 144 ± 36.18 | 503.21 ± 76.88 | 996.89 ± 162.99 b |
G3 basal diet + feed additive | 46.91 ± 4.32 | 166 ± 31.34 | 567.47 ± 83.5 a | 1212.38 ± 181.06 a |
G4 basal diet + feed additive | 48.14 ± 3.12 | 119.62 ± 29.02 | 464.86 ± 84.08 b | 1027.91 ± 182.34 |
G5 basal diet + amoxicillin | 47.41 ± 3.45 | 151.32 ± 30.02 | 448.95 ± 75.19 b | 1014.19 ± 167.52 |
G6 negative control (basal diet) | 47.18 ± 3.2 | 154.65 ± 33.17 | 568.95 ± 103.07 a | 1059.95 ± 154.6 a |
Groups | Between D0 and D7 (g) | Between D7 and D18 (g) | Between D18 and D25 (g) |
---|---|---|---|
G1 positive control (basal diet) | 80.81 ± 30.38 | 401.05 ± 74.94 | 563.55 ± 104.22 b |
G2 basal diet + feed additive | 98.10 ± 36.07 | 359.21 ± 45.88 | 493.68 ± 101.08 a |
G3 basal diet + feed additive | 119.09 ± 30.96 | 401.47 ± 59.10 | 644.90 ± 126.04 c |
G4 basal diet + feed additive | 71.48 ± 29.56 | 345.24 ± 58.88 | 563.05 ± 110.81 b |
G5 basal diet + amoxicillin | 103.91 ± 28.85 | 297.63 ± 49.49 | 565.24 ± 107.93 b |
G6 negative control (basal diet) | 107.47 ± 33.02 | 414.30 ± 75.08 | 491.00 ± 102.92 a |
Mean | 96.81 | 369.82 | 553.57 |
Groups | Scores |
---|---|
G1 positive control (basal diet) | 1.3 ± 1.22 b,c |
G2 basal diet + feed additive | 1.21 ± 0.79 |
G3 basal diet + feed additive | 1.29 ± 0.77 |
G4 basal diet + feed additive | 0.81 ± 0.60 a,b |
G5 basal diet + amoxicillin | 1.33 ± 0.73 c |
G6 negative control (basal diet) | 0.75 ± 0.79 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kollár, A.; Selymes, K.; Tóth, G.; Szekeres, S.; Dobra, P.F.; Bárdos, K.; Ózsvári, L.; Bata, Z.; Molnár-Nagy, V.; Tenk, M. Development of a Clostridium Perfringens Challenge Model in Broiler Chickens to Evaluate the Effects of Feed Additives. Pathogens 2025, 14, 707. https://doi.org/10.3390/pathogens14070707
Kollár A, Selymes K, Tóth G, Szekeres S, Dobra PF, Bárdos K, Ózsvári L, Bata Z, Molnár-Nagy V, Tenk M. Development of a Clostridium Perfringens Challenge Model in Broiler Chickens to Evaluate the Effects of Feed Additives. Pathogens. 2025; 14(7):707. https://doi.org/10.3390/pathogens14070707
Chicago/Turabian StyleKollár, Anna, Kinga Selymes, Gergely Tóth, Sándor Szekeres, Péter Ferenc Dobra, Krisztina Bárdos, László Ózsvári, Zsófia Bata, Viviána Molnár-Nagy, and Miklós Tenk. 2025. "Development of a Clostridium Perfringens Challenge Model in Broiler Chickens to Evaluate the Effects of Feed Additives" Pathogens 14, no. 7: 707. https://doi.org/10.3390/pathogens14070707
APA StyleKollár, A., Selymes, K., Tóth, G., Szekeres, S., Dobra, P. F., Bárdos, K., Ózsvári, L., Bata, Z., Molnár-Nagy, V., & Tenk, M. (2025). Development of a Clostridium Perfringens Challenge Model in Broiler Chickens to Evaluate the Effects of Feed Additives. Pathogens, 14(7), 707. https://doi.org/10.3390/pathogens14070707