Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = animal and animal-derived matrices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 429 KiB  
Article
The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List
by Aleksandra Figura, Magdalena Gryzinska and Andrzej Jakubczak
Genes 2025, 16(7), 805; https://doi.org/10.3390/genes16070805 - 8 Jul 2025
Viewed by 280
Abstract
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is [...] Read more.
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is the detection of CITES-listed species in highly processed consumer goods. Methods: This study investigates the use of molecular techniques to detect animal DNA in two selected commercially available medicinal products—a balm and a gel—marketed with ingredients suggestive of protected species such as the brown bear (Ursus arctos) and the medicinal leech (Hirudo medicinalis). Results: Although DNA from these target species was not detected, the analysis revealed the presence of genetic material from the American mink (Neovison vison) and domestic pig (Sus scrofa), indicating the undeclared use of animal-derived substances. While limited in scope, these findings suggest potential ethical and transparency concerns, particularly for consumers adhering to vegetarian, vegan, or religious dietary practices. Conclusions: The study illustrates the feasibility of applying DNA-based screening methods in complex, degraded matrices and their potential as supportive tools in consumer product assessment. However, broader studies are necessary before drawing general regulatory or conservation conclusions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

55 pages, 3842 KiB  
Review
New Strategies and Artificial Intelligence Methods for the Mitigation of Toxigenic Fungi and Mycotoxins in Foods
by Fernando Mateo, Eva María Mateo, Andrea Tarazona, María Ángeles García-Esparza, José Miguel Soria and Misericordia Jiménez
Toxins 2025, 17(5), 231; https://doi.org/10.3390/toxins17050231 - 7 May 2025
Cited by 2 | Viewed by 1502
Abstract
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in [...] Read more.
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in food matrices as opposed to traditional approaches such as chemical fungicides, which may leave toxic residues and pose risks to human and animal health as well as the environment. The novel methodologies discussed include the use of plant-derived compounds such as essential oils, classified as Generally Recognized as Safe (GRAS), polyphenols, lactic acid bacteria, cold plasma technologies, nanoparticles (particularly metal nanoparticles such as silver or zinc nanoparticles), magnetic materials, and ionizing radiation. Among these, essential oils, polyphenols, and lactic acid bacteria offer eco-friendly and non-toxic alternatives to conventional fungicides while demonstrating strong antimicrobial and antifungal properties; essential oils and polyphenols also possess antioxidant activity. Cold plasma and ionizing radiation enable rapid, non-thermal, and chemical-free decontamination processes. Nanoparticles and magnetic materials contribute advantages such as enhanced stability, controlled release, and ease of separation. Furthermore, this review explores recent advancements in the application of artificial intelligence, particularly machine learning methods, for the identification and classification of fungal species as well as for predicting the growth of toxigenic fungi and subsequent mycotoxin production in food products and culture media. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

33 pages, 1197 KiB  
Review
Scoping Review of Extraction Methods for Detecting β-Lactam Antibiotics in Food Products of Animal Origin
by Joanna Pacyńska and Przemysław Niedzielski
Molecules 2025, 30(9), 1937; https://doi.org/10.3390/molecules30091937 - 27 Apr 2025
Cited by 1 | Viewed by 995
Abstract
The widespread use of β-lactam antibiotics in veterinary medicine and food production has contributed to the rise of antibiotic-resistant bacteria, posing significant health risks to humans. This issue is recognized by various regulatory agencies, which settled maximum residue limits (MRLs) for antibiotics in [...] Read more.
The widespread use of β-lactam antibiotics in veterinary medicine and food production has contributed to the rise of antibiotic-resistant bacteria, posing significant health risks to humans. This issue is recognized by various regulatory agencies, which settled maximum residue limits (MRLs) for antibiotics in animal-derived foods. To adhere to these regulations, sensitive and selective methods are required for monitoring antibiotic residues. Due to the critical importance of sample preparation in the analysis, numerous extraction techniques have been developed. This review focuses on various methodologies for extracting β-lactam antibiotics from different food matrices. The paper summarizes the procedures for the extraction of β-lactam antibiotics identified in the literature, indicating their detailed methodology. The summary may be useful for any laboratories preparing new applications for the determination of antibiotics in food. Research studies analyzed in the paper were collected from databases, such as Google Scholar, PubMed, and Scopus. After a close evaluation of about 200 articles (published between 2010 and 2024), 35 of them, which met the criteria, were included in the analysis. Full article
(This article belongs to the Special Issue Review Papers in Analytical Chemistry, 2nd Edition)
Show Figures

Figure 1

15 pages, 526 KiB  
Review
Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review
by Isaac Wong Kai Jie, Kar Wai Alvin Lee, Song Eun Yoon, Jong Keun Song, Lisa Kwin Wah Chan, Cheuk Hung Lee, Eunji Jeong, Jin-Hyun Kim and Kyu-Ho Yi
Life 2025, 15(4), 582; https://doi.org/10.3390/life15040582 - 1 Apr 2025
Cited by 3 | Viewed by 2809
Abstract
Introduction: Recombinant human collagen, developed through advanced recombinant DNA technology, has emerged as a cutting-edge biomaterial with diverse applications in medicine. It addresses significant limitations of animal-derived collagens, such as immunogenicity and the risk of zoonotic diseases. Objective: This review evaluates the clinical [...] Read more.
Introduction: Recombinant human collagen, developed through advanced recombinant DNA technology, has emerged as a cutting-edge biomaterial with diverse applications in medicine. It addresses significant limitations of animal-derived collagens, such as immunogenicity and the risk of zoonotic diseases. Objective: This review evaluates the clinical applications, benefits, and challenges associated with recombinant human collagen, focusing on its potential to transform medical and surgical practices. Methods: A comprehensive search was conducted in MEDLINE, PubMed, and Ovid databases using keywords such as “Recombinant Human Collagen”, “Collagen-Based Biomaterials”, “Clinical Applications”, “Tissue Repair”, and “Wound Healing”. Relevant studies, including clinical trials and diagnostic applications, were analyzed and classified according to the Oxford Centre for Evidence-Based Medicine evidence hierarchy. Findings: Recombinant human collagen demonstrates superior mechanical properties and controlled degradation rates compared to traditional collagen sources. Clinical studies highlight its effectiveness in accelerating wound closure, promoting dermal regeneration, and minimizing scarring, making it particularly valuable in chronic wound management and surgical interventions. In tissue engineering, recombinant human collagen scaffolds have shown potential for regenerating cartilage, bone, and cardiovascular tissues by supporting cell proliferation, differentiation, and matrix deposition. Additionally, its adaptability for forming hydrogels and matrices enhances its suitability for drug delivery systems, enabling controlled and sustained release of therapeutic agents. Conclusion: Recombinant human collagen represents a transformative advancement in clinical practice, providing a safer and more effective alternative to traditional collagen sources. Its demonstrated success in wound healing, tissue engineering, and drug delivery highlights its potential to significantly improve patient outcomes. However, challenges such as high production costs, regulatory complexities, and long-term biocompatibility remain barriers to widespread clinical adoption. Further research and collaboration between biotechnology developers and regulatory authorities are essential to fully realize its clinical potential. Full article
Show Figures

Figure 1

17 pages, 2967 KiB  
Systematic Review
Can Bacteriophages Be Effectively Utilized for Disinfection in Animal-Derived Food Products? A Systematic Review
by Rafail Fokas, Zoi Kotsiri and Apostolos Vantarakis
Pathogens 2025, 14(3), 291; https://doi.org/10.3390/pathogens14030291 - 16 Mar 2025
Cited by 2 | Viewed by 907
Abstract
Food safety is a paramount public health concern, particularly with the rise of antimicrobial-resistant bacteria. This systematic review explores the efficacy of bacteriophages as a novel and environmentally sustainable approach to controlling multi-resistant and non-resistant bacterial pathogens in animal-derived food products. Following PRISMA [...] Read more.
Food safety is a paramount public health concern, particularly with the rise of antimicrobial-resistant bacteria. This systematic review explores the efficacy of bacteriophages as a novel and environmentally sustainable approach to controlling multi-resistant and non-resistant bacterial pathogens in animal-derived food products. Following PRISMA guidelines, data from multiple studies were synthesized to evaluate bacteriophage applications across diverse food matrices, including beef, poultry, seafood, and dairy. The findings highlight significant variability in bacteriophage efficacy, influenced by factors such as food matrix properties, bacterial strains, and application methods. Phage cocktails and their combination with thermal treatments consistently demonstrated superior bacterial reduction compared to single-phage applications, which yielded variable results. Interestingly, the absence of a clear dose-response relationship underscores the need for a more detailed understanding of phage-host interactions and environmental influences. This review addresses a critical gap in the literature by advocating for matrix-specific, targeted phage applications over generalized approaches. Additionally, it underscores the transformative potential of bacteriophages as sustainable alternatives to chemical disinfectants in modern food safety practices. These insights provide a framework for future research aimed at optimizing bacteriophage efficacy and scaling their application in real-world food production systems. Full article
Show Figures

Figure 1

20 pages, 838 KiB  
Review
A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma
by Miral Javed, Wei Cao, Linyi Tang and Kevin M. Keener
Toxins 2025, 17(3), 129; https://doi.org/10.3390/toxins17030129 - 10 Mar 2025
Cited by 1 | Viewed by 1547
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global [...] Read more.
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the “working” gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

14 pages, 2480 KiB  
Article
Development of a Magnetic Solid-Phase Extraction-Liquid Chromatography Targeted to Five Fluoroquinolones in Food Based on Aptamer Recognition
by Haiyan Zhou, Xiaofeng Yan, Yaning Song, Xiao Yang, Xianggui Chen and Yukun Huang
Foods 2025, 14(5), 798; https://doi.org/10.3390/foods14050798 - 26 Feb 2025
Viewed by 713
Abstract
Fluoroquinolones (FQs) are present in trace amounts in the environment, from where they enter animal- and plant-derived food products. Long-term exposure to low-dose drugs poses a risk to human health and increases the pressure on antibiotic selection. Based on previous aptamer screening with [...] Read more.
Fluoroquinolones (FQs) are present in trace amounts in the environment, from where they enter animal- and plant-derived food products. Long-term exposure to low-dose drugs poses a risk to human health and increases the pressure on antibiotic selection. Based on previous aptamer screening with high FQs specificity, this study combined a new aptamer recognition probe with a metal–organic framework (MOF) to obtain a sample pretreatment composite material with strong FQs specificity for multi-target analysis. Residual FQs were extracted from the complex food matrix via magnetic dispersive solid-phase extraction and examined using high-performance liquid chromatography. The method showed good linearity in a range of 0.39 to 200 µg/kg for five FQs in milk and fish samples, with a detection limit of 0.04–0.10 µg/kg and a quantitative limit of 0.13–0.33 µg/kg. This study successfully developed an effective sample pretreatment material and methodology for trace FQs identification in complex animal-derived food matrices. Full article
Show Figures

Figure 1

14 pages, 3286 KiB  
Article
Research on the Properties of DOM from the Microalgal Treatment Process for Leachate from Incineration Fly Ash Based on EEM-PARAFAC Analysis
by Yahan Yang, Wenjing Pang, Yuting Zheng, Chuanhua Wang, Qiongzhen Chen, Qiang Ke and Qi Wang
Water 2024, 16(23), 3413; https://doi.org/10.3390/w16233413 - 27 Nov 2024
Viewed by 959
Abstract
Fly ash derived from the incineration of garbage is known to contain hazardous materials that can affect the growth of plants and animals and pose a threat to human health. In this study, we explored how treatment of fly ash leachate with microalgae [...] Read more.
Fly ash derived from the incineration of garbage is known to contain hazardous materials that can affect the growth of plants and animals and pose a threat to human health. In this study, we explored how treatment of fly ash leachate with microalgae could alter the properties of dissolved organic matter (DOM). Fly ash leachate samples obtained from a landfill site in Wenzhou were treated with the microalgae Chlorella vulgaris or Scenedesmus obliquus without and with the addition of ammonium ferric citrate (C6H8FeNO7) for 24 days, and changes in DOM levels and types were measured using excitation emission matrix fluorescence technology. The following results were obtained: Analysis of three-dimensional fluorescence spectral indices indicated that the algal treatment process consistently generated new autogenous DOM, with most of the organic matter being newly formed. Additional nutrients had a minor effect on the production and composition of DOM in the system. Using a parallel factor model to analyze the three-dimensional fluorescence spectral matrices of water samples from various systems revealed common components in each group, including arginine, tryptophan-like proteins and fulvic acid-like substances. This study aimed to explore the changes in DOM properties during microalgae treatment of fly ash leachate from the perspective of three-dimensional fluorescence. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 2227 KiB  
Article
Harnessing Fermentation by Bacillus and Lactic Acid Bacteria for Enhanced Texture, Flavor, and Nutritional Value in Plant-Based Matrices
by Raquel Fernández-Varela, Anders Holmgaard Hansen, Birgit Albrecht Svendsen, Elahe Ghanei Moghadam, Arzu Bas, Stjepan Krešimir Kračun, Olivier Harlé and Vera Kuzina Poulsen
Fermentation 2024, 10(8), 411; https://doi.org/10.3390/fermentation10080411 - 9 Aug 2024
Cited by 5 | Viewed by 3352
Abstract
This article explores the transformative potential of fermentation in elevating the quality of plant-based matrices to match the desirable attributes of traditional dairy and meat products. As the demand for sustainable products without animal welfare issues increases, fermentation has emerged as a key [...] Read more.
This article explores the transformative potential of fermentation in elevating the quality of plant-based matrices to match the desirable attributes of traditional dairy and meat products. As the demand for sustainable products without animal welfare issues increases, fermentation has emerged as a key process to enhance the organoleptic properties and nutritional content of plant-based analogs. This study explores the effect of fermentation when applied to legume matrices, focusing on the resulting texture, flavor, and nutritional value. A selection of Bacillus subtilis, lactic acid bacteria (LAB) strains, and combinations thereof showed potential for improving the aforementioned organoleptic and nutritional characteristics of fermented plant bases. In four different legume-derived matrices, fermentation improved texture, degraded undesirable plant carbohydrates, and removed off-flavor compounds, while producing desirable dairy-associated compounds. The degradation of the undesirable beany off-flavor-causing compound hexanal appears to be a universal phenomenon, as every tested strain as well as their combinations exhibited the capability to decrease the hexanal content, albeit with varying efficiency. Some LAB strains were found to be capable of producing carotenoids and might hence have the potential for tailoring fermented plant-based matrices for specific applications, such as yellow cheese or red meat analogs. Full article
(This article belongs to the Special Issue Application of Bacillus in Fermented Food)
Show Figures

Figure 1

18 pages, 6485 KiB  
Article
A Cost-Effective and Sensitive Method for the Determination of Lincomycin in Foods of Animal Origin Using High-Performance Liquid Chromatography
by Minqi Ye, Limin Hou, Zongpei Jiang, Xueyan Sun, Liangzhu Chen and Binghu Fang
Molecules 2024, 29(13), 3054; https://doi.org/10.3390/molecules29133054 - 27 Jun 2024
Cited by 2 | Viewed by 1147
Abstract
Background: Lincomycin (LIN) is extensively used for treating diseases in livestock and promoting growth in food animal farming, and it is frequently found in both the environment and in food products. Currently, most of the methods for detecting lincomycin either lack sensitivity and [...] Read more.
Background: Lincomycin (LIN) is extensively used for treating diseases in livestock and promoting growth in food animal farming, and it is frequently found in both the environment and in food products. Currently, most of the methods for detecting lincomycin either lack sensitivity and precision or require the use of costly equipment such as mass spectrometers. Result: In this study, we developed a reliable high-performance liquid chromatography-ultraviolet detection (HPLC-UVD) method and used it to detect LIN residue in 11 types of matrices (pig liver and muscle; chicken kidney and liver; cow fat, liver and milk; goat muscle, liver and milk; and eggs) for the first time. The tissue homogenates and liquid samples were extracted via liquid–liquid extraction, and subsequently purified and enriched via sorbent and solid phase extraction (SPE). After nitrogen drying, the products were derivatized with p-toluene sulfonyl isocyanic acid (PTSI) (100 µL) for 30 min at room temperature. Finally, the derivatized products were analyzed by HPLC at 227 nm. Under the optimized conditions, the method displayed impressive performance and demonstrated its reliability and practicability, with a limit of detection (LOD) and quantification (LOQ) of LIN in each matrix of 25–40 μg/kg and 40–60 μg/kg, respectively. The recovery ranged from 71.11% to 98.30%. Conclusions: The results showed that this method had great selectivity, high sensitivity, satisfactory recovery and cost-effectiveness—fulfilling the criteria in drug residue and actual detection requirements—and proved to have broad applicability in the field of detecting LIN in animal-derived foods. Full article
Show Figures

Figure 1

41 pages, 5616 KiB  
Review
Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies
by Tiago de Melo Nazareth, Elisa Soriano Pérez, Carlos Luz, Giuseppe Meca and Juan Manuel Quiles
Foods 2024, 13(12), 1920; https://doi.org/10.3390/foods13121920 - 18 Jun 2024
Cited by 19 | Viewed by 4065
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, [...] Read more.
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety. Full article
(This article belongs to the Special Issue Mycotoxins: Mitigation to Food and Ways of Control)
Show Figures

Figure 1

12 pages, 2448 KiB  
Article
Production of Plant-Based, Film-Type Scaffolds Using Alginate and Corn Starch for the Culture of Bovine Myoblasts
by Jun-Yeong Lee, Jihad Kamel, Chandra-Jit Yadav, Usha Yadav, Sadia Afrin, Yu-Mi Son, So-Yeon Won, Sung-Soo Han and Kyung-Mee Park
Foods 2024, 13(9), 1358; https://doi.org/10.3390/foods13091358 - 28 Apr 2024
Cited by 7 | Viewed by 3399
Abstract
Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation [...] Read more.
Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation compared to non-animal scaffolds, and used immortalized cell lines. However, for cultured meat production, non-animal-derived scaffolds with edible cells are preferred. Our study represents the first research to describe plant-derived, film-type scaffolds to overcome limitations associated with previously reported thick, gel-type scaffolds completely devoid of animal-derived materials. This approach has been employed to address the difficulties of fostering bovine muscle cell survival, migration, and differentiation in three-dimensional co-cultures. Primary bovine myoblasts from Bos Taurus Coreanae were harvested and seeded on alginate (Algi) or corn-derived alginate (AlgiC) scaffolds. Scaffold functionalities, including biocompatibility and the promotion of cell proliferation and differentiation, were evaluated using cell viability assays, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. Our results reveal a statistically significant 71.7% decrease in production time using film-type scaffolds relative to that for gel-type scaffolds, which can be maintained for up to 7 days. Film-type scaffolds enhanced initial cell attachment owing to their flatness and thinness relative to gel-type scaffolds. Algi and AlgiC film-type scaffolds both demonstrated low cytotoxicity over seven days of cell culture. Our findings indicated that PAX7 expression increased 16.5-fold in alginate scaffolds and 22.8-fold in AlgiC from day 1 to day 3. Moreover, at the differentiation stage on day 7, MHC expression was elevated 41.8-fold (Algi) and 32.7-fold (AlgiC), providing initial confirmation of the differentiation potential of bovine muscle cells. These findings suggest that both Algi and AlgiC film scaffolds are advantageous for cultured meat production. Full article
(This article belongs to the Special Issue Advances in Cultured Meat Science and Technology)
Show Figures

Figure 1

20 pages, 3718 KiB  
Review
Cold Plasma Technology Based Eco-Friendly Food Packaging Biomaterials
by Chandrima Karthik, Rubie Mavelil-Sam, Sabu Thomas and Vinoy Thomas
Polymers 2024, 16(2), 230; https://doi.org/10.3390/polym16020230 - 14 Jan 2024
Cited by 12 | Viewed by 4341
Abstract
Biopolymers have intrinsic drawbacks compared to traditional plastics, such as hydrophilicity, poor thermo-mechanical behaviours, and barrier characteristics. Therefore, biopolymers or their film modifications offer a chance to create packaging materials with specified properties. Cold atmospheric plasma (CAP) or Low temperature plasma (LTP) has [...] Read more.
Biopolymers have intrinsic drawbacks compared to traditional plastics, such as hydrophilicity, poor thermo-mechanical behaviours, and barrier characteristics. Therefore, biopolymers or their film modifications offer a chance to create packaging materials with specified properties. Cold atmospheric plasma (CAP) or Low temperature plasma (LTP) has a wide range of applications and has recently been used in the food industry as a potent tool for non-thermal food processing. Though its original purpose was to boost polymer surface energy for better adherence and printability, it has since become an effective technique for surface decontamination of food items and food packaging materials. These revolutionary innovative food processing methods enable the balance between the economic constraints and higher quality while ensuring food stability and minimal processing. For CAP to be considered as a viable alternative food processing technology, it must positively affect food quality. Food products may have their desired functional qualities by adjusting the conditions for cold plasma formation. Cold plasma is a non-thermal method that has little effects on the treated materials and is safe for the environment. In this review, we focus on recent cold plasma advances on various food matrices derived from plants and animals with the aim of highlighting potential applications, ongoing research, and market trends. Full article
(This article belongs to the Special Issue New Progress in Polymer Materials for Food Packaging)
Show Figures

Figure 1

44 pages, 5440 KiB  
Review
Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges
by Devyani Thapliyal, Sarojini Verma, Pramita Sen, Rahul Kumar, Amit Thakur, Anurag Kumar Tiwari, Dhananjay Singh, George D. Verros and Raj Kumar Arya
J. Compos. Sci. 2023, 7(12), 506; https://doi.org/10.3390/jcs7120506 - 4 Dec 2023
Cited by 85 | Viewed by 19550
Abstract
This comprehensive review explores the multifaceted world of natural fiber applications within the domain of composite materials. Natural fibers are meticulously examined in detail, considering their diverse origins, which encompass plant-derived fibers (cellulose-based), animal-derived fibers (protein-based), and even mineral-derived variations. This review conducts [...] Read more.
This comprehensive review explores the multifaceted world of natural fiber applications within the domain of composite materials. Natural fibers are meticulously examined in detail, considering their diverse origins, which encompass plant-derived fibers (cellulose-based), animal-derived fibers (protein-based), and even mineral-derived variations. This review conducts a profound analysis, not only scrutinizing their chemical compositions, intricate structures, and inherent physical properties but also highlighting their wide-ranging applications across various industries. The investigation extends to composites utilizing mineral or polymer matrices, delving into their synergistic interplay and the resulting material properties. Furthermore, this review does not limit itself to the intrinsic attributes of natural fibers but ventures into the realm of innovative enhancements. The exploration encompasses the augmentation of composites through the integration of natural fibers, including the incorporation of nano-fillers, offering a compelling avenue for further research and technological development. In conclusion, this review synthesizes a comprehensive understanding of the pivotal role of natural fibers in the realm of composite materials. It brings together insights from their diverse origins, intrinsic properties, and practical applications across sectors. As the final curtain is drawn, the discourse transcends the present to outline the trajectories of future work in the dynamic arena of natural fiber composites, shedding light on emerging trends that promise to shape the course of scientific and industrial advancements. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

23 pages, 774 KiB  
Review
Current State of Milk, Dairy Products, Meat and Meat Products, Eggs, Fish and Fishery Products Authentication and Chemometrics
by Slim Smaoui, Maria Tarapoulouzi, Sofia Agriopoulou, Teresa D’Amore and Theodoros Varzakas
Foods 2023, 12(23), 4254; https://doi.org/10.3390/foods12234254 - 24 Nov 2023
Cited by 9 | Viewed by 5165
Abstract
Food fraud is a matter of major concern as many foods and beverages do not follow their labelling. Because of economic interests, as well as consumers’ health protection, the related topics, food adulteration, counterfeiting, substitution and inaccurate labelling, have become top issues and [...] Read more.
Food fraud is a matter of major concern as many foods and beverages do not follow their labelling. Because of economic interests, as well as consumers’ health protection, the related topics, food adulteration, counterfeiting, substitution and inaccurate labelling, have become top issues and priorities in food safety and quality. In addition, globalized and complex food supply chains have increased rapidly and contribute to a growing problem affecting local, regional and global food systems. Animal origin food products such as milk, dairy products, meat and meat products, eggs and fish and fishery products are included in the most commonly adulterated food items. In order to prevent unfair competition and protect the rights of consumers, it is vital to detect any kind of adulteration to them. Geographical origin, production methods and farming systems, species identification, processing treatments and the detection of adulterants are among the important authenticity problems for these foods. The existence of accurate and automated analytical techniques in combination with available chemometric tools provides reliable information about adulteration and fraud. Therefore, the purpose of this review is to present the advances made through recent studies in terms of the analytical techniques and chemometric approaches that have been developed to address the authenticity issues in animal origin food products. Full article
Show Figures

Figure 1

Back to TopTop