Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review
Abstract
:1. Introduction
Fundamental Research
2. Dermatological Applications
3. Cardiovascular Applications
4. Gynecological Applications
5. Oncological Applications
6. Discussion
6.1. Wound Healing and Skin Regeneration
6.2. Treatment of Photoaging Skin
6.3. Oral Ulcer and Endometrial Regeneration
6.4. Cardiovascular and Oncology Applications
6.5. Regulatory and Production Perspectives
6.6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Z.; Yuan, D.; Yu, M.; Min, J. Tissue engineering applications of recombinant human collagen: A review of recent progress. Front. Bioeng. Biotechnol. 2024, 12, 1358246. [Google Scholar] [CrossRef]
- Dong, C.; Lv, Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef]
- San Antonio, J.D.; Jacenko, O.; Fertala, A.; Orgel, J. Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering 2020, 8, 3. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Prabhakaran, M.; Sireesha, M.; Ramakrishna, S. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective. Fortschritte Hochpolym. Forsch. 2013, 251, 173. [Google Scholar] [CrossRef]
- Huang, N.F.; Zaitseva, T.S.; Paukshto, M.V. Biomedical Applications of Collagen. Bioengineering 2023, 10, 90. [Google Scholar] [CrossRef]
- Collagen in health and disease. Lancet 1978, 1, 1077–1079.
- Gelse, K.; Pöschl, E.; Aigner, T. Collagens—Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Mienaltowski, M.J.; Gonzales, N.L.; Beall, J.M.; Pechanec, M.Y. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. Adv. Exp. Med. Biol. 2021, 1348, 5–43. [Google Scholar] [CrossRef]
- Davison-Kotler, E.; Marshall, W.S.; García-Gareta, E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering 2019, 6, 56. [Google Scholar] [CrossRef]
- Dzobo, K.; Thomford, N.E.; Senthebane, D.A.; Shipanga, H.; Rowe, A.; Dandara, C.; Pillay, M.; Motaung, K. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int. 2018, 2018, 2495848. [Google Scholar] [CrossRef]
- Duarte, A.C.; Costa, E.C.; Filipe, H.A.L.; Saraiva, S.M.; Jacinto, T.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Animal-Derived products in science and current alternatives. Biomater. Adv. 2023, 151, 213428. [Google Scholar] [CrossRef]
- López Lasaosa, F.; Zhou, Y.; Song, J.; He, Y.; Cui, Y.; Bolea Bailo, R.M.; Gu, Z. Nature-Inspired Scarless Healing: Guiding Biomaterials Design for Advanced Therapies. Tissue Eng. Part B Rev. 2024, 30, 371–384. [Google Scholar] [CrossRef]
- Ramshaw, J.A. Biomedical applications of collagens. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 665–675. [Google Scholar] [CrossRef]
- Báez, J.; Olsen, D.; Polarek, J.W. Recombinant microbial systems for the production of human collagen and gelatin. Appl. Microbiol. Biotechnol. 2005, 69, 245–252. [Google Scholar] [CrossRef]
- Xu, Y.; Kirchner, M. Collagen Mimetic Peptides. Bioengineering 2021, 8, 5. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, D.; Shang, L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: A short review. Biomed. Mater. 2020, 16, 012001. [Google Scholar] [CrossRef]
- Fu, C.; Ma, J.; Liu, G.; Fan, Y.; Wei, N.; Xiao, J. Development of triple-helical recombinant collagen-silver hybrid nanofibers for anti-methicillin-resistant Staphylococcus aureus (MRSA) applications. Biomed. Mater. 2024, 20, 015012. [Google Scholar] [CrossRef]
- An, B.; Lin, Y.S.; Brodsky, B. Collagen interactions: Drug design and delivery. Adv. Drug Deliv. Rev. 2016, 97, 69–84. [Google Scholar] [CrossRef]
- Fertala, A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering 2020, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- Rajabimashhadi, Z.; Gallo, N.; Salvatore, L.; Lionetto, F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers 2023, 15, 544. [Google Scholar] [CrossRef] [PubMed]
- Prockop, D.J.; Kivirikko, K.I. Collagens: Molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 1995, 64, 403–434. [Google Scholar] [CrossRef] [PubMed]
- Werkmeister, J.A.; Ramshaw, J.A. Recombinant protein scaffolds for tissue engineering. Biomed. Mater. 2012, 7, 012002. [Google Scholar] [CrossRef]
- Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3, 1863–1887. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, X.; Wang, J.; Li, D.; Li, L.; Hu, H.; Qu, T. Effect of atomization on the composition and structure of recombinant humanized collagen type III. J. Appl. Biomater. Funct. Mater. 2024, 22, 22808000241261904. [Google Scholar] [CrossRef]
- Hua, C.; Zhu, Y.; Xu, W.; Ye, S.; Zhang, R.; Lu, L.; Jiang, S. Characterization by high-resolution crystal structure analysis of a triple-helix region of human collagen type III with potent cell adhesion activity. Biochem. Biophys. Res. Commun. 2019, 508, 1018–1023. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Wang, J.; Qiu, H.; Gao, Y.; Xu, Y.; Liu, Z.; Tang, Y.; Song, L.; Ramshaw, J.; et al. Characterization of recombinant humanized collagen type III and its influence on cell behavior and phenotype. J. Leather Sci. Eng. 2022, 4, 33. [Google Scholar] [CrossRef]
- Zhang, R.; Shao, W.; Zhang, Q.; Yan, J.; Xu, G.; Ke, C.; Chen, C.; Ke, Y. The Efficacy of Recombinant Human Type III Collagen in the Treatment of Atrophic Scars and Its Impact on p38 MAPK Signaling Pathway Proteins. Altern. Ther. Health Med. 2024, AT10149, ahead of print. [Google Scholar]
- Liu, W.; Lin, H.; Zhao, P.; Xing, L.; Li, J.; Wang, Z.; Ju, S.; Shi, X.; Liu, Y.; Deng, G.; et al. A regulatory perspective on recombinant collagen-based medical devices. Bioact. Mater. 2022, 12, 198–202. [Google Scholar] [CrossRef]
- Lee, Y.I.; Lee, S.G.; Ham, S.; Jung, I.; Suk, J.; Lee, J.H. Exploring the Safety and Efficacy of Organic Light-Emitting Diode in Skin Rejuvenation and Wound Healing. Yonsei Med. J. 2024, 65, 98–107. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, H.; Xu, Y.; Gao, Y.; Tan, P.; Zhao, R.; Liu, Z.; Tang, Y.; Zhu, X.; Bao, C.; et al. The biological effect of recombinant humanized collagen on damaged skin induced by UV-photoaging: An in vivo study. Bioact. Mater. 2022, 11, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Z.; Zou, Y.; Lu, G.; Ronca, A.; D’Amora, U.; Liang, J.; Fan, Y.; Zhang, X.; Sun, Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. J. Leather Sci. Eng. 2022, 4, 30. [Google Scholar] [CrossRef]
- Zhang, Z.; Michniak-Kohn, B.B. Tissue engineered human skin equivalents. Pharmaceutics 2012, 4, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Carretero, M.; Guerrero-Aspizua, S.; Del Rio, M. Applicability of bioengineered human skin: From preclinical skin humanized mouse models to clinical regenerative therapies. Bioeng. Bugs 2011, 2, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Zhou, C.; Tong, L.; Han, X.; Zou, Y.; Dong, Z.; Liang, J.; Chen, Y.; Fan, Y. Injectable hydrogels of recombinant human collagen type III and chitosan with antibacterial and antioxidative activities for wound healing. J. Mater. Chem. B 2023, 11, 4131–4142. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, B.; Xie, Y.; Liu, P.; Yao, L.; Xiao, J. Bioactive Triple-Helical Recombinant Collagen Gels for Improved Healing of Sunburned Skin. Cosmetics 2024, 11, 138. [Google Scholar] [CrossRef]
- Shuai, X.; Kang, N.; Li, Y.; Bai, M.; Zhou, X.; Zhang, Y.; Lin, W.; Li, H.; Liu, C.; Lin, H.; et al. Recombination humanized type III collagen promotes oral ulcer healing. Oral Dis. 2024, 30, 1286–1295. [Google Scholar] [CrossRef]
- Hu, C.; Liu, W.; Long, L.; Wang, Z.; Yuan, Y.; Zhang, W.; He, S.; Wang, J.; Yang, L.; Lu, L.; et al. Microenvironment-responsive multifunctional hydrogels with spatiotemporal sequential release of tailored recombinant human collagen type III for the rapid repair of infected chronic diabetic wounds. J. Mater. Chem. B 2021, 9, 9684–9699. [Google Scholar] [CrossRef]
- Zheng, K.; Zhou, T.; Xiao, E.; Wei, Q.; Zhao, C. Human collagen decorating microneedle patches for transdermal therapy. J. Polym. Sci. 2024, 62, 3171–3182. [Google Scholar] [CrossRef]
- An, H.; Gu, Z.; Huang, Z.; Huo, T.; Xu, Y.; Dong, Y.; Wen, Y. Novel microneedle platforms for the treatment of wounds by drug delivery: A review. Colloids Surf. B Biointerfaces 2024, 233, 113636. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiao, Y.; Zhang, Y.; Meng, Z.; Zhao, C.; Qiu, F.; Li, C.; Feng, Z. Study on the Effect of Type III Recombinant Humanized Collagen on Human Vascular Endothelial Cells. Tissue Eng. Part C Methods 2024, 30, 53–62. [Google Scholar] [CrossRef]
- Ge, Y.; Guo, G.; Liu, K.; Yang, F.; Li, Y.; Wang, Y.; Zhang, X. A strategy of functional crosslinking acellular matrix in blood-contacting implantable devices with recombinant humanized collagen type III (rhCOLIII). Compos. Part B Eng. 2022, 234, 109667. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Lu, L.; He, Q.; Xi, B.; Yu, H.; Luo, R.; Wang, Y.; Zhang, X. A tailored extracellular matrix (ECM)—Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen. Biomaterials 2021, 276, 121055. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Yang, L.; Luo, R.; Guo, G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. Adv. Mater. 2022, 34, e2201971. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Li, Z.; Xia, H.; Wang, Z.; Deng, J.; Li, L.; Huang, R.; Ye, T.; Huang, Y.; Yang, Y. An endometrial biomimetic extracellular matrix (ECM) for enhanced endometrial regeneration using hyaluronic acid hydrogel containing recombinant human type III collagen. Int. J. Biol. Macromol. 2024, 268, 131723. [Google Scholar] [CrossRef]
- You, S.; Liu, S.; Dong, X.; Li, H.; Zhu, Y.; Hu, L. Intravaginal Administration of Human Type III Collagen-Derived Biomaterial with High Cell-Adhesion Activity to Treat Vaginal Atrophy in Rats. ACS Biomater. Sci. Eng. 2020, 6, 1977–1988. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Zhu, Y.; Li, H.; He, F.; Liu, S.; Yang, X.; Wang, L.; Zeng, H.; Dai, J.; Hu, L. Recombinant humanized collagen remodels endometrial immune microenvironment of chronic endometritis through macrophage immunomodulation. Regen. Biomater. 2023, 10, rbad033. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Wang, T.; Yang, T.; Yang, X.; Guo, K.; Hu, L.; Ming, J. Recombinant humanized collagen type III with high antitumor activity inhibits breast cancer cells autophagy, proliferation, and migration through DDR1. Int. J. Biol. Macromol. 2023, 243, 125130. [Google Scholar] [CrossRef]
- Gadiya, M.; Chakraborty, G. Signaling by discoidin domain receptor 1 in cancer metastasis. Cell Adhes. Migr. 2018, 12, 315–323. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Zhang, S.; Wang, X.; Dou, H.; Yu, X.; Zhang, Z.; Yang, S.; Xiao, M. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol. Cancer 2023, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.S.; Huang, P.H. Discoidin domain receptor 2 signaling networks and therapy in lung cancer. J. Thorac. Oncol. 2014, 9, 900–904. [Google Scholar] [CrossRef]
- Zeng, H.; Li, H.; Wang, L.; You, S.; Liu, S.; Dong, X.; He, F.; Dai, J.; Wei, Q.; Dong, Z.; et al. Recombinant humanized type III collagen inhibits ovarian cancer and induces protective anti-tumor immunity by regulating autophagy through GSTP1. Mater. Today Bio 2024, 28, 101220. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Hu, C.; Liu, W.; Wu, C.; Lu, L.; Yang, L.; Wang, Y. Injectable multifunctional hyaluronic acid/methylcellulose hydrogels for chronic wounds repairing. Carbohydr. Polym. 2022, 289, 119456. [Google Scholar] [CrossRef]
- Tomita, M. Development of Large Scale Silkworm-rearing Technologies for the GMP Production of Biologics. Yakugaku Zasshi 2018, 138, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Rutschmann, C.; Baumann, S.; Cabalzar, J.; Luther, K.B.; Hennet, T. Recombinant expression of hydroxylated human collagen in Escherichia coli. Appl. Microbiol. Biotechnol. 2014, 98, 4445–4455. [Google Scholar] [CrossRef]
- de Kanter, A.J.; Jongsma, K.R.; Verhaar, M.C.; Bredenoord, A.L. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. Tissue Eng. Part B Rev. 2023, 29, 167–187. [Google Scholar] [CrossRef]
References | Focus | Key Findings |
---|---|---|
[26] | Atomization effects on collagen III | Nozzle size/pressure alter molecular properties; enhanced tissue engineering suitability |
[21] | 30-year collagen research review | Production/safety advances; tailored properties for tissue repair and regeneration |
[3] | Tissue engineering applications | Promote cell proliferation and regeneration in skin, bone, cartilage, and vascular tissues |
[28,29] | Atrophic scars; cell behavior | p38 MAPK pathway activation; improved fibroblast activity and wound healing |
[27] | Triple helix structural properties | Structure enables cell adhesion/migration for tissue regeneration applications |
[30] | Regulatory challenges | Safety requirements and regulatory framework needs for collagen-based devices |
Reference | Research Focus | Key Findings |
---|---|---|
[31] | Collagen degradation and photoaging | UV-induced oxidative stress accelerates degradation; antioxidants and growth factors mitigate photoaging |
[35] | Bioengineered human skin | Bioengineered skin using human–mouse models reduces complications and improves wound healing outcomes |
[33] | Collagen-based biomaterials | Hydrogels/scaffolds enhanced with bioactive molecules improve tissue repair outcomes |
[34] | Tissue-engineered skin models | Cellular/acellular approaches with 3D culture systems improve skin regeneration |
[40] | Collagen-coated microneedle patches | Enhance drug absorption, minimize skin irritation, and optimize therapeutic diffusion |
[36] | Injectable collagen–chitosan hydrogels | Promote wound closure, collagen deposition, and angiogenesis; antibacterial properties using collagen-coated microneedles |
[41] | Microneedles with recombinant collagen | Enable controlled therapeutic release for chronic wounds; optimize local environment |
[37] | Triple-helical collagen gels for sunburn | Reduce inflammation; improve collagen deposition and re-epithelialization |
[38] | Recombinant collagen for oral ulcers | Accelerates wound closure, promotes cell proliferation and migration, and restores tissue structure |
[39] | Responsive hydrogels for diabetic wounds | Improve wound closure, angiogenesis, and tissue regeneration using spatiotemporal collagen release |
[32] | Recombinant collagen for UV damage | Enhances collagen deposition, skin elasticity; reduces inflammation markers as treatments for skin rejuvenation and repair |
Reference | Focus of Study | Methodology | Key Findings |
---|---|---|---|
[42] | Recombinant collagen III–endothelial cell interactions | Biochemical assays and cellular imaging techniques | Recombinant collagen positively influences endothelial cell proliferation and migration, supporting vascular repair |
[43] | Crosslinked recombinant collagen III for blood-contacting devices | Hydrogel fabrication, hemocompatibility testing, and animal studies | Crosslinked matrices improve cell adhesion and endothelialization, and reduce thrombosis risk |
[32] | Injectable hydrogels for cardiac regeneration | In vitro/in vivo studies on apoptosis reduction and angiogenesis | Responsive hydrogels improve cardiac function, reduce scarring, and promote vascularization |
[44] | Cardiovascular stent modification with hyaluronic acid–collagen III | In vitro/in vivo studies on matrix-mimetic coatings | Matrix-mimetic coatings enhance cell adhesion and proliferation and reduce inflammation |
[45] | Biomaterials for cardiovascular disease treatment | Systematic review of innovations in cardiovascular therapies | Biodegradable materials and smart devices improve outcomes and patient recovery |
Reference | Focus Area | Methodology | Key Findings |
---|---|---|---|
[46] | Biomimetic matrix for endometrial regeneration | In vitro/in vivo studies on endometrial cell activities post-injury | Hyaluronic acid–collagen hydrogel promotes cell activities and enhances tissue regeneration |
[47] | Recombinant collagen III for vaginal atrophy | Rat model of vaginal atrophy; assessed tissue morphology and cellular markers | Significant improvement in vaginal environment with increased epithelial thickness and fibroblast activation |
[48] | Recombinant collagen for chronic endometritis | In vitro/in vivo approaches; evaluated macrophage polarization and immune microenvironment | Shift from M1 to M2 macrophage phenotype; reduced inflammatory cytokines and enhanced tissue repair |
[45] | Injectable collagen hydrogel for pelvic floor dysfunction | Preclinical studies; evaluated hydrogel properties and efficacy in rat model | Improved pelvic floor function; reduced adverse tissue remodeling and enhanced collagen deposition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, I.W.K.; Lee, K.W.A.; Yoon, S.E.; Song, J.K.; Chan, L.K.W.; Lee, C.H.; Jeong, E.; Kim, J.-H.; Yi, K.-H. Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review. Life 2025, 15, 582. https://doi.org/10.3390/life15040582
Jie IWK, Lee KWA, Yoon SE, Song JK, Chan LKW, Lee CH, Jeong E, Kim J-H, Yi K-H. Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review. Life. 2025; 15(4):582. https://doi.org/10.3390/life15040582
Chicago/Turabian StyleJie, Isaac Wong Kai, Kar Wai Alvin Lee, Song Eun Yoon, Jong Keun Song, Lisa Kwin Wah Chan, Cheuk Hung Lee, Eunji Jeong, Jin-Hyun Kim, and Kyu-Ho Yi. 2025. "Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review" Life 15, no. 4: 582. https://doi.org/10.3390/life15040582
APA StyleJie, I. W. K., Lee, K. W. A., Yoon, S. E., Song, J. K., Chan, L. K. W., Lee, C. H., Jeong, E., Kim, J.-H., & Yi, K.-H. (2025). Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review. Life, 15(4), 582. https://doi.org/10.3390/life15040582