Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges †
Abstract
:1. Introduction
2. Plant (Cellulose Base) Fibers and Composites
2.1. Origin, Physical Properties, and Classification of Plant-Based Fibers
2.2. Natural Fiber Processing
2.3. Natural Fibers Composites Manufacture, Consumption Pattern and Importance
2.3.1. Classification
- ⮚
- Biobased (ISO 16620:2015): This label is applied to materials derived from renewable resources, emphasizing their reduced reliance on fossil fuels and their potential positive impact on carbon emissions.
- ⮚
- Biodegradable (ISO 14852:2018): Composites falling under this category possess the ability to break down naturally through biological processes, minimizing waste accumulation and environmental burden.
- ⮚
- Compostable (ISO 17088:2012): Materials classified as compostable undergo degradation under specific conditions, ultimately leading to the generation of compost, contributing to sustainable waste management.
2.3.2. Plant Fiber Composites with Polymers
2.3.3. Plant Fiber-Mineral Composites
- ⮚
- Gypsum-bonded composites;
- ⮚
- Cement-bonded composites (made of Portland and magnesia cement);
- ⮚
- Mineral adhesive bonded composites (made of sodium glass and lime);
- ⮚
- Organic resin-bonded composites made up of mineral particles and lignocellulosic;
- ⮚
- Gypsum boards covered in paper and other lignocellulosic materials.
2.3.4. Hybrid Cellulosic Composites
3. Animal (Protein Base) Fibers and Composites
3.1. Origin, Classification, and Physical Properties of Animal Fibers
3.2. Applications and Importance of Animal Fibers
4. Mineral Fibers: Origin and Applications
5. Natural Fibers and Nanomaterials: Importance and Applications
5.1. Introduction
5.2. Plant Fibers and Nanocomposites
5.3. Animal and Mineral Fibers and Nanocomposites
6. Conclusions and Challenges
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadolph, S.; Marcketti, S. Textiles, 12th ed.; Pearson Education: Boston, MA, USA, 2016; pp. 1–90. [Google Scholar]
- Britannica, The Editors of Encyclopaedia. “Natural Fibre”. Encyclopedia Britannica. Available online: https://www.britannica.com/topic/natural-fiber (accessed on 18 February 2023).
- Sanjay, M.R.; Arpitha, G.R.; Laxmana Naik, L.; Gopalakrishna, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016, 7, 108–114. [Google Scholar] [CrossRef]
- Kumar, R.; Ul Haq, M.I.; Raina, A.; Anand, A. Industrial applications of natural fibre-reinforced polymer composites—Challenges and opportunities. Int. J. Sustain. Eng. 2019, 12, 212–220. [Google Scholar] [CrossRef]
- Kozlowski, R.; Wladyka-Przybylak, M.; Helwig, M.; Kurzydloski, K.J. Composites Based on Lignocellulosic Raw Materials. Mol. Cryst. Liq. Cryst. 2004, 418, 131–151. [Google Scholar] [CrossRef]
- Suchtelen, J.V. Product Properties a New Application of Composite Materials. Philips Res. Rep. 1972, 27, 28–37. [Google Scholar]
- Pai, A.R.; Jagtap, R.N. Surface morphology & mechanical properties of some unique natural fiber reinforced polymer composites- A review. J. Mater. Environ. Sci. 2015, 6, 902–917. [Google Scholar]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A. Soft body armour. Text. Prog. 2019, 51, 139–224. [Google Scholar] [CrossRef]
- Mahesh, V.; Joladarashi, S.; Kulkarni, S.M. A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def. Technol. 2021, 17, 257–277. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Salauddin, M.; Raihan, M.; Chowdhury, I.Z.; Ahmed, F.; Shimo, S.S. Bast fiber reinforced green polymer composites: A review on their classification, properties, and applications. J. Nat. Fibers 2022, 19, 8006–8021. [Google Scholar] [CrossRef]
- Kannan, G.; Thangaraju, R. Recent Progress on Natural Lignocellulosic Fiber Reinforced Polymer Composites: A Review. J. Nat. Fibers 2022, 19, 7100–7131. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Puttegowda, M.; Mavinkere Rangappa, S.; Siengchin, S. A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polym. Compos. 2021, 42, 6239–6264. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Puttegowda, M.; Parameswaranpillai, J.; Siengchin, S.; Ozbakkaloglu, T.; Wang, H. Chapter 1—Introduction to plant fibers and their composites. In Plant Fibers, Their Composites, and Applications, 1st ed.; Rangappa, S.M., Parameswaranpillai, J., Siengchin, S., Ozbakkaloglu, T., Wang, H., Eds.; Woodhead Publishing, Elsevier: Cambridge, MA, USA, 2022; pp. 1–24. [Google Scholar]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Ferrero, F.; Periolatto, M. Modification of Surface Energy and Wetting of Textile Fibers. In Wetting and Wettability, 1st ed.; Aliofkhazraei, M., Ed.; InTech: Rijeka, Croatia, 2015; pp. 139–168. [Google Scholar]
- Zin, M.H.; Abdan, K.; Mazlan, N.; Zainudin, E.S.; Liew, K.E. The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012035. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Aravinthan, T.; Cardona, F.; Lau, K.-T. Effects of Natural Fibre Surface on Composite Properties: A Review. Energy Environ. Sustain. 2011, 94–99. Available online: https://core.ac.uk/download/pdf/11046989.pdf (accessed on 26 November 2023).
- Divya, S.; Devi, Y.; Indran, S.; Raja, S.; Sumesh, K.R. Chapter 2—Extraction and modification of natural plant fibers—A comprehensive review. In Plant Fibers, Their Composites, and Applications, 1st ed.; Rangappa, S.M., Parameswaranpillai, J., Siengchin, S., Ozbakkaloglu, T., Wang, H., Eds.; Woodhead Publishing, Elsevier: Cambridge, MA, USA, 2022; pp. 25–50. [Google Scholar]
- Jaiswal, D.; Devnani, G.L. Extraction of Natural Fibers. In Natural Fiber Composites, 1st ed.; Sinha, S., Devnani, G.L., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 69–96. [Google Scholar]
- Indran, S.; Raja, S.; Divya, D.; Rajeshkumar, G. Chapter 19—Novel plant their composites and applications. In Plant Fibers, Their Composites, and Applications, 1st ed.; Rangappa, S.M., Parameswaranpillai, J., Siengchin, S., Ozbakkaloglu, T., Wang, H., Eds.; Woodhead Publishing, Elsevier: Cambridge, MA, USA, 2022; pp. 437–456. [Google Scholar]
- Devnani, G.L.; Sinha, S.; Kuma, R.D.; Pandey, S.K. Traditional and Advance Characterization Techniques for Natural Fibers. In Natural Fiber Composites, 1st ed.; Sinha, S., Devnani, G.L., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 97–122. [Google Scholar]
- Shukla, N. Surface Treatment of Natural Fibers (Chemical Treatment). In Natural Fiber Composites; Sinha, S., Devnani, G.L., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 123–156. [Google Scholar]
- Chandgude, S.; Salunkhe, S. Biofiber-reinforced polymeric hybrid composites: An overview on mechanical and tribological performance. Polym. Compos. 2020, 41, 3908–3939. [Google Scholar] [CrossRef]
- Devnani, G.L.; Agrawal, H.; Singh, D.; Patel, S.K. Physical and Biological Treatment. In Natural Fiber Composites, 1st ed.; Sinha, S., Devnani, G.L., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 157–174. [Google Scholar]
- Vinoth, V.; Sathiyamurthy, S.; Ananthi, N.; Elaiyarasan, U. Chemical treatments and mechanical characterisation of natural fibre reinforced composite materials—A review. Int. J. Mater. Eng. Innov. 2022, 13, 208–221. [Google Scholar] [CrossRef]
- Pankaj; Jawalkar, C.S.; Kant, S. Critical review on chemical treatment of natural fibers to enhance mechanical properties of bio composites. Silicon 2022, 14, 5103–5124. [Google Scholar] [CrossRef]
- Sathishkumar, T.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R.; Rajini, N. Characterization of natural fiber and composites—A review. J. Reinf. Plast. Compos. 2013, 32, 1457–1476. [Google Scholar] [CrossRef]
- Ramu, S.; Senthilkumar, N. Approaches of material selection, alignment and methods of fabrication for natural fiber polymer composites: A review. J. Appl. Nat. Sci. 2022, 14, 490–499. [Google Scholar] [CrossRef]
- Naik, V.; Kumar, M.; Kaup, V. A review on natural fiber composite materials in automotive applications. Eng. Sci. 2022, 18, 1–10. [Google Scholar] [CrossRef]
- Kim, N.K.; Dutta, S.; Bhattacharyya, D. A review of flammability of natural fibre reinforced polymeric composites. Compos. Sci. Technol. 2018, 162, 64–78. [Google Scholar] [CrossRef]
- Odesanya, K.O.; Ahmad, R.; Jawaid, M.; Bingol, S.; Adebayo, G.O.; Wong, Y.H. Natural Fibre-Reinforced Composite for Ballistic Applications: A Review. J. Polym. Environ. 2021, 29, 3795–3812. [Google Scholar] [CrossRef]
- Sydow, Z.; Bieńczak, K. The overview on the use of natural fibers reinforced composites for food packaging. J. Nat. Fibers 2019, 16, 1189–1200. [Google Scholar] [CrossRef]
- Sinha, A.K.; Bhattacharya, S.; Narang, H.K. Abaca fibre reinforced polymer composites: A review. J. Mater. Sci. 2021, 56, 4569–4587. [Google Scholar] [CrossRef]
- Balda, S.; Sharma, A.; Capalash, N.; Sharma, P. Banana fibre: A natural and sustainable bioresource for eco-friendly applications. Clean Technol. Environ. Policy 2021, 23, 1389–1401. [Google Scholar] [CrossRef]
- Badanayak, P.; Jose, S.; Bose, G. Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. J. Nat. Fibers 2023, 20, 2168821. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Zamani, M.H.; Estaji, S.; Tayouri, M.I.; Arjmand, M.; Jafari, S.H.; Nouranian, S.; Khonakdar, H.A. Mechanical properties of bamboo fiber-reinforced polymer composites: A review of recent case studies. J. Mater. Sci. 2022, 57, 3143–3167. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Bak, M.; Alpár, T. A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Adv. 2021, 11, 10548–10571. [Google Scholar] [CrossRef]
- Wankhede, B.; Bisaria, H.; Ojha, S.; Dakre, V.S. A review on cotton fibre-reinforced polymer composites and their applications. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 1347–1362. [Google Scholar] [CrossRef]
- Li, H.; Tang, R.; Dai, J.; Wang, Z.; Meng, S.; Zhang, X.; Cheng, F. Recent progress in flax fiber-based functional composites. Adv. Fiber Mater. 2022, 4, 171–184. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Dahal, R.K.; Acharya, B.; Dutta, A. Mechanical, thermal, and acoustic properties of hemp and biocomposite materials: A review. J. Compos. Sci. 2022, 6, 373. [Google Scholar] [CrossRef]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- Palanikumar, K.; Natarajan, E.; Markandan, K.; Ang, C.K.; Franz, G. Targeted pre-treatment of hemp fibers and the effect on mechanical properties of polymer composites. Fibers 2023, 11, 43. [Google Scholar] [CrossRef]
- Pokharel, A.; Falua, K.J.; Babaei-Ghazvini, A.; Acharya, B. Biobased polymer composites: A review. J. Compos. Sci. 2022, 6, 255. [Google Scholar] [CrossRef]
- Shahinur, S.; Alamgir Sayeed, M.M.; Hasan, M.; Sayem, A.S.M.; Haider, J.; Ura, S. Current development and future perspective on natural jute fibers and their biocomposites. Polymers 2022, 14, 1445. [Google Scholar] [CrossRef]
- Devarajan, B.; LakshmiNarasimhan, R.; Venkateswaran, B.; Mavinkere Rangappa, S.; Siengchin, S. Additive manufacturing of jute fiber reinforced polymer composites: A concise review of material forms and methods. Polym. Compos. 2022, 43, 6735–6748. [Google Scholar] [CrossRef]
- Sahu, P.; Gupta, M. Sisal (Agave sisalana) fibre and its polymer-based composites: A review on current developments. J. Reinf. Plast. Compos. 2017, 36, 1759–1780. [Google Scholar] [CrossRef]
- Joshi, S.; Patel, S. Review on mechanical and thermal properties of pineapple leaf fiber (PALF) reinforced composite. J. Nat. Fibers 2022, 19, 10157–10178. [Google Scholar] [CrossRef]
- Imraan, M.; Ilyas, R.A.; Norfarhana, A.S.; Bangar, S.P.; Knight, V.F.; Norrrahim, M.N.F. Sugar palm (Arenga pinnata) fibers: New emerging natural fibre and its relevant properties, treatments and potential applications. J. Mater. Res. Technol. 2023, 24, 4551–4572. [Google Scholar] [CrossRef]
- Jian, B.; Mohrmann, S.; Li, H.; Li, Y.; Ashraf, M.; Zhou, J.; Zheng, X. A review on flexural properties of wood-plastic composites. Polymers 2022, 14, 3942. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. A comprehensive review on construction applications and life cycle sustainability of natural fiber biocomposites. Sustainability 2022, 14, 15905. [Google Scholar] [CrossRef]
- Rabbi, M.S.; Islam, T.; Islam, G.M.S. Injection-molded natural fiber-reinforced polymer composites—A review. Int. J. Mech. Mater. Eng. 2021, 16, 15. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, L.; Patel, V.K.; Kumar, V.; Kumar, A.; Yadav, A.; Winczek, J. Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites. Polymers 2021, 13, 1369. [Google Scholar] [CrossRef]
- Akter, M.; Uddin, M.H.; Anik, H.R. Plant fiber-reinforced polymer composites: A review on modification, fabrication, properties, and applications. Polym. Bull. 2023; in press. [Google Scholar] [CrossRef]
- Akhil, U.V.; Radhika, N.; Saleh, B.; Aravind Krishna, S.; Noble, N.; Rajeshkumar, L. A comprehensive review on plant-based natural fiber reinforced polymer composites: Fabrication, properties, and applications. Polym. Compos. 2023, 44, 2598–2633. [Google Scholar] [CrossRef]
- Tonga, D.A.; Akbar, M.F.; Shrifan, N.H.M.M.; Jawad, G.N.; Ghazali, N.A.; Mohamed, M.F.P.; Al-Gburi, A.J.A.; Ab Wahab, M.N. Nondestructive evaluation of fiber-reinforced polymer using microwave techniques: A review. Coatings 2023, 13, 590. [Google Scholar] [CrossRef]
- Kozlowski, R.M.; Maria, M.-T. (Eds.) Handbook of Natural Fibres, Processing and Applications, 2nd ed.; Woodhead Publishing Series in Textiles; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2. [Google Scholar]
- Nawab, Y.; Saouab, A.; Imad, A.; Shaker, K. (Eds.) Natural Fibers to Composites: Process, Properties, Structures, 1st ed.; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Campilho, R.D.S.G. (Ed.) Natural Fiber Composites, 1st ed.; CRC Press, Taylor & Francis: London, UK, 2015. [Google Scholar] [CrossRef]
- AL Oqla, F.M.; Salid, M.L. Materials Selection for Natural Fibers Composite, 1st ed.; Woodhead Publishing, Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Palanisamy, S.; Kalimuthu, M.; Nagarajan, R.; Fernandes Marlet, J.M.; Santulli, C. Physical, chemical, and mechanical characterization of natural bark fibers (NBFs) reinforced polymer composites: A bibliographic review. Fibers 2023, 11, 13. [Google Scholar] [CrossRef]
- Wei, J.; Ma, S.; D’Shawn, G.T. Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corros. Sci. 2016, 106, 1–15. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Moujoud, Z.; Sair, S.; Ait Ousaleh, H.; Ayouch, I.; El Bouari, A.; Tanane, O. Geopolymer composites reinforced with natural fibers: A review of recent advances in processing and properties. Constr. Build. Mater. 2023, 388, 131666. [Google Scholar] [CrossRef]
- de Lima, T.E.S.; de Azevedo, A.R.G.; Marvila, M.T.; Candido, V.S.; Fediuk, R.; Monteiro, S.N. Potential of using amazon natural fibers to reinforce cementitious composites: A review. Polymers 2022, 14, 647. [Google Scholar] [CrossRef]
- Ahmad, J.; Majdi, A.; Deifalla, A.F.; Ben Kahla, N.; El-Shorbagy, M.A. Concrete reinforced with sisal fibers (SSF): Overview of mechanical and physical properties. Crystals 2022, 12, 952. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Kasal, B. A review of coir fibre and coir fibre reinforced cement-based composite materials (2000–2021). J. Clean. Prod. 2022, 338, 130676. [Google Scholar] [CrossRef]
- Shah, I.; Jing, L.; Fei, Z.M.; Yuan, Y.S.; Farooq, M.U.; Kanjana, N. A review on chemical modification by using sodium hydroxide (NaOH) to investigate the mechanical properties of sisal, coir and hemp fiber reinforced concrete composites. J. Nat. Fibers 2022, 19, 5133–5151. [Google Scholar] [CrossRef]
- Abbas, A.-G.N.; Aziz, F.N.A.A.; Abdan, K.; Nasir, N.A.M.; Norizan, M.N. Kenaf fibre reinforced cementitious composites. Fibers 2022, 10, 3. [Google Scholar] [CrossRef]
- Marvila, M.T.; Rocha, H.A.; de Azevedo, A.R.G.; Colorado, H.A.; Zapata, J.F.; Vieira, C.M.F. Use of natural vegetable fibers in cementitious composites: Concepts and applications. Innov. Infrastruct. Solut. 2021, 6, 180. [Google Scholar] [CrossRef]
- Martinelli, F.R.B.; Ribeiro, F.R.C.; Marvila, M.T.; Monteiro, S.N.; Filho, F.D.C.G.; Azevedo, A.R.G.D. A review of the use of coconut fiber in cement composites. Polymers 2023, 15, 1309. [Google Scholar] [CrossRef]
- Lv, C.; Liu, J. Alkaline degradation of plant fiber reinforcements in geopolymer: A review. Molecules 2023, 28, 1868. [Google Scholar] [CrossRef]
- Lv, C.; Shen, H.; Liu, J.; Wu, D.; Qu, E.; Liu, S. Properties of 3D printing fiber-reinforced geopolymers based on interlayer bonding and anisotropy. Materials 2022, 15, 8032. [Google Scholar] [CrossRef]
- Lv, C.; Liu, J.; Guo, G.; Zhang, Y. The mechanical properties of plant fiber-reinforced geopolymers: A review. Polymers 2022, 14, 4134. [Google Scholar] [CrossRef]
- Labib, W.A. Plant-based fibres in cement composites: A conceptual framework. J. Eng. Fibers Fabr. 2022, 17. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Lignocellulosic fiber cement compatibility: A state of the art review. J. Nat. Fibers 2022, 19, 5409–5434. [Google Scholar] [CrossRef]
- Li, Q.; Ibrahim, L.; Zhou, W.; Zhang, M.; Yuan, Z. Treatment methods for plant fibers for use as reinforcement in cement-based materials. Cellulose 2021, 28, 5257–5268. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Yogesha, B. Studies on Natural/Glass Fiber Reinforced Polymer Hybrid Composites: An Evolution. Mater. Today Proc. Part A 2017, 4, 2739–2747. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Nunna, S.; Chandra, P.R.; Shrivastava, S.; Jalan, A. A review on mechanical behaviour of natural fiber based hybrid composites. J. Reinf. Plast. Compos. 2012, 31, 759–769. [Google Scholar] [CrossRef]
- Malik, K.; Ahmad, F.; Yunus, N.A.; Gunister, E.; Ali, S.; Raza, A. Physical and mechanical properties of kenaf/flax hybrid composites. J. Appl. Polym. Sci. 2023, 140, e53421. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Fatimah Athiyah, S.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef]
- Suriani, M.J.; Ilyas, R.A.; Zuhri, M.Y.M.; Khalina, A.; Sultan, M.T.H.; Sapuan, S.M.; Ruzaidi, C.M.; Wan, F.N.; Zulkifli, F.; Harussani, M.M.; et al. Critical review of natural fiber reinforced hybrid composites: Processing, properties, applications and cost. Polymers 2021, 13, 3514. [Google Scholar] [CrossRef]
- Neto, J.S.S.; de Queiroz, H.F.M.; Aguiar, R.A.A.; Banea, M.D. A review on the thermal characterisation of natural and hybrid fiber composites. Polymers 2021, 13, 4425. [Google Scholar] [CrossRef]
- Prem Kumar, R.; Muthukrishnan, M.; Felix Sahayaraj, A. Effect of hybridization on natural fiber reinforced polymer composite materials—A review. Polym. Compos. 2023; in press. [Google Scholar] [CrossRef]
- Jawaid, Μ.; Thariq, M.; Naheed Saba, N. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. In Woodhead Publishing Series in Composites Science and Engineering; Elsevier: Exeter Devon, UK, 2018. [Google Scholar]
- Puttegowda, M.; Rangappa, S.M.; Jawaid, M.; Shivanna, P.; Basavegowda, Y.; Saba, N. 15—Potential of natural/synthetic hybrid composites for aerospace applications. In Composites Science and Engineering, Sustainable Composites for Aerospace Applications; Jawaid, M., Thariq, M., Eds.; Woodhead Publishing Series; Elsevier: Amsterdam, The Netherlands, 2018; pp. 318–351. [Google Scholar]
- Syduzzaman, M.; Faruque, M.A.A.; Bilisik, K.; Naebe, M. Plant-based natural fibre reinforced composites: A review on fabrication, properties and applications. Coatings 2020, 10, 973. [Google Scholar] [CrossRef]
- Mann, G.S.; Azum, N.; Khan, A.; Rub, M.A.; Hassan, M.I.; Fatima, K.; Asiri, A.M. Green composites based on animal fiber and their applications for a sustainable future. Polymers 2023, 15, 601. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk sericin: A promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers 2022, 14, 4931. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak-Niedźwiedzka, D.; Fantilli, A.P. Wool-reinforced cement based composites. Materials 2020, 13, 3590. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.hdwool.com/blog/the-structure-of-wool (accessed on 22 March 2023).
- Rogovina, S.Z.; Prut, E.V.; Berlin, A.A. Composite materials based on synthetic polymers reinforced with natural fibers. Polymer Sci. Ser. A 2019, 61, 417–438. [Google Scholar] [CrossRef]
- Paulraj, P.; Balakrishnan, K.; Rajendran, R.R.M.V.; Alagappan, B. Investigation on recent research of mechanical properties of natural fiber reinforced polymer (NFRP) materials. Mater. Plast. 2021, 5, 100–118. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Jagadeshvaran, P.L.; Bose, S. Evolution of surface engineering in the development of textile-based EMI Shields—A review. ACS Appl. Electron. Mater. 2023, 5, 1947–1969. [Google Scholar] [CrossRef]
- Jia, H.; Liu, K.; Lam, Y.; Tawiah, B.; Xin, J.H.; Nie, W.; Jiang, S. Fiber-based materials for aqueous zinc ion batteries. Adv. Fiber Mater. 2023, 5, 36–58. [Google Scholar] [CrossRef]
- Gupta, S.; Nighojkar, A.; Mayilswamy, N.; Kandasubramanian, B. Recent Trends in the Application of Silk-Based Composites for Remediation of Toxic Contaminants from Wastewater. J. Polym. Environ. 2023, 31, 2243–2272. [Google Scholar] [CrossRef]
- Jain, S.; Vedavyas, V.; Prajwal, R.V.; Shaji, M.; Nath, V.G.; Angappane, S.; Achutharao, G. Silk and its composites for humidity and gas sensing applications. Front. Chem. 2023, 11, 1141259. [Google Scholar] [CrossRef]
- Hardy, J.G.; Scheibel, T.R. Composite materials based on silk proteins. Prog. Polym. Sci. 2010, 35, 1093–1115. [Google Scholar] [CrossRef]
- King, J.A.; Zhang, X.; Ries, M.E. The Formation of All-Silk Composites and Time–Temperature Superposition. Materials 2023, 16, 3804. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Parikh, H.; Qureshi, M.R.N. A review on chicken feather fiber (CFF) and its application in composites. J. Nat. Fibers 2022, 19, 12565–12585. [Google Scholar] [CrossRef]
- Casadesús, M.; Macanás, J.; Colom, X.; Cañavate, J.; Álvarez, M.D.; Garrido, N.; Molins, G.; Carrillo, F. Effect of chemical treatments and additives on properties of chicken feathers thermoplastic biocomposites. J. Compos. Mater. 2018, 52, 3637–3653. [Google Scholar] [CrossRef]
- Shavandi, A.; Ali, M. A Keratin based thermoplastic biocomposites: A review. Rev. Environ. Sci. Bio/Technol. 2019, 18, 299–316. [Google Scholar] [CrossRef]
- Guna, V.; Touchaleaume, F.; Saulnier, B.; Grohens, Y.; Reddy, N. Sustainable bioproducts through thermoplastic processing of wheat gluten and its blends. J. Thermoplast. Compos. Mater. 2023, 36, 1775–1806. [Google Scholar] [CrossRef]
- Salama, A.; Guarino, V. Ionic liquids to process silk fibroin and wool keratin for bio-sustainable and biomedical applications. J. Polym. Environ. 2022, 30, 4961–4977. [Google Scholar] [CrossRef]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef]
- Patil, K.; Rajkhowa, R.; Wang, X.; Lin, T. Review on fabrication and applications of ultrafine particles from animal protein fibres. Fibers Polym. 2014, 15, 187–194. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Y.; Wong, Y.S.; Fuh, J.Y.H. Fibre-based scaffolding techniques for tendon tissue engineering. J. Tissue Eng. Regen. Med. 2018, 12, 1798–1821. [Google Scholar] [CrossRef]
- Sanchez Ramirez, D.O.; Vineis, C.; Cruz-Maya, I.; Tonetti, C.; Guarino, V.; Varesano, A. Wool keratin nanofibers for bioinspired and sustainable use in biomedical field. J. Funct. Biomater. 2023, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Chilakamarry, C.R.; Mahmood, S.; Saffe, S.N.B.M.; Bin Arifin, M.A.; Gupta, A.; Sikkandar, M.Y.; Begum, S.S.; Narasaiah, B. Extraction and application of keratin from natural resources: A review. 3 Biotech 2021, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Kostag, M.; Jedvert, K.; El Seoud, O.A. Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications. Int. J. Biol. Macromol. 2021, 167, 687–718. [Google Scholar] [CrossRef] [PubMed]
- Elango, J.; Lijnev, A.; Zamora-Ledezma, C.; Alexis, F.; Wu, W.; Marín, J.M.G.; Sanchez de Val, J.E.M. The relationship of rheological properties and the performance of silk fibroin hydrogels in tissue engineering application. Process. Biochem. 2023, 125, 198–211. [Google Scholar] [CrossRef]
- Ranganathan, S.; Balagangadharan, K.; Selvamurugan, N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int. J. Biol. Macromol. 2019, 133, 354–364. [Google Scholar] [CrossRef]
- Mu, X.; Fitzpatrick, V.; Kaplan, D.L. From silk spinning to 3D printing: Polymer manufacturing using directed hierarchical molecular assembly. Adv. Healthc. Mater. 2020, 9, 1901552. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, M.; Yücel, H.E.; Yıldızhan, F. Evaluation of the Performance of Different Types of Fibrous Concretes Produced by Using Wollastonite. Materials 2022, 15, 6904. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, I.R.; Pemberton, R.; Summerscales, J. Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials. J. Compos. Sci. 2022, 6, 367. [Google Scholar] [CrossRef]
- Barrett, J.C.; Lamb, P.W.; Wiseman, R.W. Multiple Mechanisms for the Carcinogenic Effects of Asbestos and Other Mineral Fibers. Environ. Health Perspect. 1989, 81, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Jamshaid, H.; Mishra, R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Tao, W.; Wang, B.; Wang, N.; Guo, Y.; Li, J.; Zhou, Z. Research progress on basalt fiber-based functionalized composites. Rev. Adv. Mater. Sci. 2023, 62, 20220300. [Google Scholar] [CrossRef]
- Jain, N.; Singh, V.K.; Chauhan, S. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites. J. Mech. Behav. Mater. 2017, 26, 205–211. [Google Scholar] [CrossRef]
- Khandelwal, S.; Rhee, K.Y. Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Compos. Part B Eng. 2020, 192, 108011. [Google Scholar] [CrossRef]
- Yang, G.; Park, M.; Park, S. Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Compos. Commun. 2019, 14, 34–42. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Alyousef, R.; Rashid, R.S.M.; Alabduljabbar, H.; Hung, C.-C. Properties and applications of FRP in strengthening RC structures: A review. Structures 2018, 16, 208–238. [Google Scholar] [CrossRef]
- Mirdarsoltany, M.; Abed, F.; Homayoonmehr, R.; Alavi Nezhad Khalil Abad, S.V. A comprehensive review of the effects of different simulated environmental conditions and hybridization processes on the mechanical behavior of different FRP bars. Sustainability 2022, 14, 8834. [Google Scholar] [CrossRef]
- Karim, M.A.; Abdullah, M.Z.; Deifalla, A.F.; Azab, M.; Waqar, A. An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review. Results Eng. 2023, 18, 101091. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Y.; Liu, Y.; Zhang, M.; Li, L.; Ma, L.; Sun, Y.; Wang, W. A review on basalt fiber composites and their applications in clean energy sector and power grids. Polymers 2022, 14, 2376. [Google Scholar] [CrossRef] [PubMed]
- Saleem, A.; Medina, L.; Skrifvars, M.; Berglin, L. Hybrid polymer composites of bio-based bast fibers with glass, carbon and basalt fibers for automotive Applications—A review. Molecules 2020, 25, 4933. [Google Scholar] [CrossRef] [PubMed]
- Balaji, K.V.; Shirvanimoghaddam, K.; Rajan, G.S.; Ellis, A.V.; Naebe, M. Surface treatment of basalt fiber for use in automotive composites. Mater. Today Chem. 2020, 17, 100334. [Google Scholar] [CrossRef]
- Nayak, S.Y.; Sultan, M.T.H.; Shenoy, S.B.; Kini, C.R.; Samant, R.; Shah, A.U.M.; Amuthakkannan, P. Potential of natural fibers in composites for ballistic Applications—A review. J. Nat. Fibers 2020, 19, 1648–1658. [Google Scholar] [CrossRef]
- Pierdzig, S. Regulations concerning naturally occurring asbestos (NOA) in Germany-testing procedures for asbestos. Environ. Eng. Geosci. 2020, 26, 67–71. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, K.; Tao, G.; Nimbalkar, S.; Peng, P.; Rong, H. Laboratory investigation of microstructure, strength and durability of cemented soil with nano-SiO2 and basalt fibers in freshwater and seawater environments. Constr. Build. Mater. 2023, 392, 132008. [Google Scholar] [CrossRef]
- Li, J.; Si, J.; Luo, F.; Zuo, C.; Zhang, P.; Sun, Y.; Li, W.; Miao, S. Self-compensating geopolymer utilizing nano-clay and chopped basalt fibers. Constr. Build. Mater. 2022, 357, 129302. [Google Scholar] [CrossRef]
- Mahmood, A.; Noman, M.T.; Pechočiaková, M.; Amor, N.; Petrů, M.; Abdelkader, M.; Militký, J.; Sozcu, S.; Hassan, S.Z.U. Geopolymers and fiber-reinforced concrete composites in civil engineering. Polymers 2021, 13, 2099. [Google Scholar] [CrossRef]
- Xiao, J.; Han, N.; Li, Y.; Zhang, Z.; Shah, S.P. Review of recent developments in cement composites reinforced with fibers and nanomaterials. Front. Struct. Civ. Eng. 2021, 15, 1–19. [Google Scholar] [CrossRef]
- Adesina, A. Performance of cementitious composites reinforced with chopped basalt fibres—An overview. Constr. Build. Mater. 2021, 266, 120970. [Google Scholar] [CrossRef]
- Guo, G.; Lv, C.; Liu, J.; Wang, L. Properties of fiber-reinforced one-part geopolymers: A review. Polymers 2022, 14, 3333. [Google Scholar] [CrossRef] [PubMed]
- Al-Kharabsheh, B.N.; Arbili, M.M.; Majdi, A.; Alogla, S.M.; Hakamy, A.; Ahmad, J.; Deifalla, A.F. Basalt fiber reinforced concrete: A compressive review on durability aspects. Materials 2023, 16, 429. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhuo, J.; Zhang, P. A review on durability of nano-SiO2 and basalt fiber modified recycled aggregate concrete. Constr. Build. Mater. 2021, 304, 124659. [Google Scholar] [CrossRef]
- Santulli, C. Mechanical and impact damage analysis on carbon/natural fibers hybrid composites: A review. Materials 2019, 12, 517. [Google Scholar] [CrossRef]
- Szakács, J.; Mészáros, L. Synergistic effects of carbon nanotubes on the mechanical properties of basalt and carbon fiber-reinforced polyamide 6 hybrid composites. J. Thermoplast. Compos. Mater. 2018, 31, 553–571. [Google Scholar] [CrossRef]
- Wong, J.F.; Chan, J.X.; Hassan, A.; Mohamad, Z.; Othman, N. Thermal and flammability properties of wollastonite-filled thermoplastic composites: A review. J. Mater. Sci. 2021, 56, 8911–8950. [Google Scholar] [CrossRef]
- Chan, J.X.; Wong, J.F.; Hassan, A.; Mohamad, Z.; Othman, N. Mechanical properties of wollastonite reinforced thermoplastic composites: A review. Polym. Compos. 2020, 41, 395–429. [Google Scholar] [CrossRef]
- Sowmya, S.; Mathivanan, N.; Chandramouli, A.; Jayakumar, R. Polymer/Ceramic nanocomposite fibers in bone tissue engineering. Adv. Polym. Sci. 2023, 291, 191–211. [Google Scholar] [CrossRef]
- Tripathy, P.; Biswas, S. Mechanical and thermal properties of mineral fiber based polymeric nanocomposites: A review. Polym.-Plast. Technol. Mater. 2022, 61, 1385–1410. [Google Scholar] [CrossRef]
- Badgar, K.; Abdalla, N.; El-Ramady, H.; Prokisch, J. Sustainable Applications of Nanofibers in Agriculture and Water Treatment: A Review. Sustainability 2022, 14, 464. [Google Scholar] [CrossRef]
- Mishra, T.; Mandal, P.; Rout, A.K.; Sahoo, D. A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Compos. Part C Open Access 2022, 9, 100298. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, B. Chapter 6—Synthesis of green nanocomposite material for engineering application. In Micro and Nano Technologies, Sustainable Nanotechnology for Environmental Remediation; Koduru, J.R., Karri, R.R., Mubarak, N.M., Bandala, E.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 135–157. [Google Scholar] [CrossRef]
- Shah, S.S.; Shaikh, M.N.; Khan, M.Y.; Alfasane, M.A.; Rahman, M.M.; Aziz, M.A. Present status and future prospects of jute in nanotechnology: A review. Chem. Rec. 2021, 21, 1631–1665. [Google Scholar] [CrossRef]
- Nafisah, A.R.; Rahmawati, D.; Tarmidzi, F.M.; Zhafirah, D.; Anggraini, D. Cellulose nanofibers from palm oil empty fruit bunches as reinforcement in bioplastic. Solid State Phenom. 2022, 339, 61–68. [Google Scholar] [CrossRef]
- Imran, A.B.; Susan, M.A.B.H. Chapter 5—Natural fiber-reinforced nanocomposites in automotive industry. In Micro and Nano Technologies, Nanotechnology in the Automotive Industry; Song, H., Nguyen, T.A., Yasin, G., Singh, N.B., Gupta, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 85–103. [Google Scholar] [CrossRef]
- Balea, A.; Fuente, E.; Blanco, A.; Negro, C. Nanocelluloses: Natural-based materials for fiber- reinforced cement composites. A critical review. Polymers 2019, 11, 518. [Google Scholar] [CrossRef]
- Kovačević, Z.; Flinčec Grgac, S.; Bischof, S. Progress in biodegradable flame retardant nano-biocomposites. Polymers 2021, 13, 741. [Google Scholar] [CrossRef]
- Azman Mohammad Taib, M.N.; Hamidon, T.S.; Garba, Z.N.; Trache, D.; Uyama, H.; Hussin, M.H. Recent progress in cellulose-based composites towards flame retardancy applications. Polymer 2022, 244, 124677. [Google Scholar] [CrossRef]
- Nasir, M.; Aziz, M.A.; Zubair, M.; Manzar, M.S.; Ashraf, N.; Mu’azu, N.D.; Al-Harthi, M.A. Recent review on synthesis, evaluation, and SWOT analysis of nanostructured cellulose in construction applications. J. Build. Eng. 2022, 46, 103747. [Google Scholar] [CrossRef]
- Biswas, P.K.; Omole, O.; Peterson, G.; Cumbo, E.; Agarwal, M.; Dalir, H. Carbon and cellulose based nanofillers reinforcement to strengthen carbon fiber-epoxy composites: Processing, characterizations, and applications. Front. Mater. 2023, 9, 1089996. [Google Scholar] [CrossRef]
- Shen, Z.; Qin, M.; Xiong, F.; Zou, R.; Zhang, J. Nanocellulose-based composite phase change materials for thermal energy storage: Status and challenges. Energy Environ. Sci. 2023, 16, 830–861. [Google Scholar] [CrossRef]
- Andra, S.; Balu, S.; Jeevanandam, J.; Muthalagu, M. Emerging nanomaterials for antibacterial textile fabrication. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1355–1382. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 2020, 247, 116683. [Google Scholar] [CrossRef] [PubMed]
- Kian, L.K.; Saba, N.; Jawaid, M.; Sultan, M.T.H. A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int. J. Biol. Macromol. 2019, 121, 1314–1328. [Google Scholar] [CrossRef]
- Peranidze, K.; Safronova, T.V.; Kildeeva, N.R. Electrospun nanomaterials based on cellulose and its derivatives for cell cultures: Recent developments and challenges. Polymers 2023, 15, 1174. [Google Scholar] [CrossRef]
- Lugoloobi, I.; Yuanhao, W.; Marriam, I.; Hu, J.; Tebyetekerwa, M.; Ramakrishna, S. Electrospun biomedical nanofibers and their future as intelligent biomaterials. Curr. Opin. Biomed. Eng. 2022, 24, 100418. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S. Nano-cellulose reinforced starch bio composite films- A review on green composites. Int. J. Biol. Macromol. 2021, 185, 849–860. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Adnan, A.; Yahya, E.B.; Olaiya, N.; Safrida, S.; Hossain, M.S.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.; Oyekanmi, A.; et al. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef]
- Zhai, S.; Chen, H.; Zhang, Y.; Li, P.; Wu, W. Nanocellulose: A promising nanomaterial for fabricating fluorescent composites. Cellulose 2022, 29, 7011–7035. [Google Scholar] [CrossRef]
- Zarna, C.; Opedal, M.T.; Echtermeyer, A.T.; Chinga-Carrasco, G. Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications—A review. Compos. Part C Open Access 2021, 6, 100171. [Google Scholar] [CrossRef]
- Rana, A.; Sudhaik, A.; Raizada, P.; Khan, A.A.P.; Van Le, Q.; Singh, A.; Selvasembian, R.; Nadda, A.; Singh, P. An overview on cellulose-supported semiconductor photocatalysts for water purification. Nanotechnol. Environ. Eng. 2021, 6, 40. [Google Scholar] [CrossRef]
- Fortunati, E.; Kenny, J.M.; Torre, L. Lignocellulosic materials as reinforcements in sustainable packaging systems: Processing, properties, and applications. In Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and Other Industrial Applications; Verma, D., Fortunati, E., Jain, S., Zhang, X., Eds.; Woodhead Publishing Series in Composites Science and Engineering, Biomass, Biopolymer-Based Materials, and Bioenergy; Woodhead Publishing: New Delhi, India, 2019; pp. 87–102. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites—A review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef] [PubMed]
- Seydibeyoğlu, M.; Dogru, A.; Wang, J.; Rencheck, M.; Han, Y.; Wang, L.; Seydibeyoğlu, E.A.; Zhao, X.; Ong, K.; Shatkin, J.A.; et al. Review on hybrid reinforced polymer matrix composites with nanocellulose, nanomaterials, and other fibers. Polymers 2023, 15, 984. [Google Scholar] [CrossRef]
- Ganapathy, V.; Muthukumaran, G.; Sudhagar, P.E.; Rashedi, A.; Norrrahim, M.N.F.; Ilyas, R.A.; Goh, K.L.; Jawaid, M.; Naveen, J. Mechanical properties of cellulose-based multiscale composites: A review. Polym. Compos. 2023, 44, 734–756. [Google Scholar] [CrossRef]
- Omran, A.A.B.; Mohammed, A.A.B.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Koloor, S.S.R.; Petrů, M. Micro-and nanocellulose in polymer composite materials: A review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, M.; Chee, S.S.; Asim, M.; Saba, N.; Kalia, S. Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: Properties, environmental aspects and applications. J. Clean. Prod. 2022, 330, 129938. [Google Scholar] [CrossRef]
- Kostag, M.; El Seoud, O.A. Sustainable biomaterials based on cellulose, chitin and chitosan composites—A review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100079. [Google Scholar] [CrossRef]
- Kiseleva, A.P.; Kiselev, G.O.; Nikolaeva, V.O.; Seisenbaeva, G.; Kessler, V.; Krivoshapkin, P.V.; Krivoshapkina, E.F. Hybrid spider silk with inorganic nanomaterials. Nanomaterials 2020, 10, 1853. [Google Scholar] [CrossRef]
- Qin, D.; Li, J.; Li, H.; Zhang, H.; Liu, K. Engineered spidroin-derived high-performance fibers for diverse applications. Nano Res. 2023. [Google Scholar] [CrossRef]
- Jaya Prakash, N.; Wang, X.; Kandasubramanian, B. Regenerated silk fibroin loaded with natural additives: A sustainable approach towards health care. J. Biomater. Sci. Polym. Ed. 2023, 34, 1453–1490. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; El-Samad, L.M.; Gomaa, R.A.; Augustyniak, M.; Hassan, M.A. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int. J. Biol. Macromol. 2023, 250, 126067. [Google Scholar] [CrossRef] [PubMed]
- Canal, C.; Ginebra, M.P. Fibre-reinforced calcium phosphate cements: A review. J. Mech. Behav. Biomed. Mater. 2011, 4, 1658–1671. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, Z.S.; Guan, J.; Wu, S.J. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater. 2021, 125, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Yonesi, M.; Garcia-Nieto, M.; Guinea, G.V.; Panetsos, F.; Pérez-Rigueiro, J.; González-Nieto, D. Silk fibroin: An ancient material for repairing the injured nervous system. Pharmaceutics 2021, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, V.J.; Döbl, A.; Scheibel, T. Silk-based materials for hard tissue engineering. Materials 2021, 14, 674. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Zhou, P.; Xu, M. Mechanical properties and application analysis of spider silk bionic material. E-Polymers 2020, 20, 443–457. [Google Scholar] [CrossRef]
- Mowafi, S.; El-Sayed, H. Production and utilization of keratin and sericin-based electro-spun nanofibers: A comprehensive review. J. Nat. Fibers 2023, 20, 2192544. [Google Scholar] [CrossRef]
- Wang, R.; Tong, H. Preparation Methods and Functional Characteristics of Regenerated Keratin-Based Biofilms. Polymers 2022, 14, 4723. [Google Scholar] [CrossRef]
- Garg, T.; Singh, O.; Arora, S.; Murthy, R.S.R. Scaffold: A novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 2012, 29, 1–63. [Google Scholar] [CrossRef]
- Zhang, X.; Reagan, M.R.; Kaplan, D.L. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 2009, 61, 988–1006. [Google Scholar] [CrossRef]
- Xu, X.; Ren, S.; Li, L.; Zhou, Y.; Peng, W.; Xu, Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J. Biomater. Appl. 2021, 36, 55–75. [Google Scholar] [CrossRef]
- Petre, D.G.; Leeuwenburgh, S.C.G. Use of Fibers in Bone Tissue Engineering. Tissue Eng. Part B Rev. 2022, 28, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Ressler, A. Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers 2022, 14, 3430. [Google Scholar] [CrossRef] [PubMed]
- Qasim, S.B.; Zafar, M.S.; Najeeb, S.; Khurshid, Z.; Shah, A.H.; Husain, S.; Rehman, I.U. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2018, 19, 407. [Google Scholar] [CrossRef] [PubMed]
- Mobaraki, M.; Ghaffari, M.; Yazdanpanah, A.; Luo, Y.; Mills, D.K. Bioinks and bioprinting: A focused review. Bioprinting 2020, 18, e00080. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, J.; Ma, S.; Zhang, K.; Yan, T.; Pan, Z. A Review of Flexible Strain Sensors Based on Natural Fiber Materials. Adv. Mater. Technol. 2023, 8, 2201503. [Google Scholar] [CrossRef]
- Junare, N.; Vakil, M.; Rajpurohit, A.; Ahuja, P.; Joshi, A. 3 dimensional fabrics for ballistic impact response: A critical evaluation. Int. J. Interact. Des. Manuf. 2022, 1–13. [Google Scholar] [CrossRef]
- Hammouche, H.; Achour, H.; Makhlouf, S.; Chaouchi, A.; Laghrouche, M. A comparative study of capacitive humidity sensor based on keratin film, keratin/graphene oxide, and keratin/carbon fibers. Sens. Actuators A Phys. 2021, 329, 112805. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S.; Jawaid, M.; Ozbakkaloglu, T. Bioepoxy based hybrid composites from nano-fillers of chicken feather and lignocellulose ceiba pentandra. Sci. Rep. 2022, 12, 397. [Google Scholar] [CrossRef]
- Vilchez, V.; Dieckmann, E.; Tammelin, T.; Cheeseman, C.; Lee, K. Upcycling poultry feathers with (nano)cellulose: Sustainable composites derived from nonwoven whole feather preforms. ACS Sustain. Chem. Eng. 2020, 8, 14263–14267. [Google Scholar] [CrossRef]
- Zahra, H.; Selinger, J.; Sawada, D.; Ogawa, Y.; Orelma, H.; Ma, Y.; Kumagai, S.; Yoshioka, T.; Hummel, M. Evaluation of keratin-cellulose blend fibers as precursors for carbon fibers. ACS Sustain. Chem. Eng. 2022, 10, 8314–8325. [Google Scholar] [CrossRef]
- Owen, M.M.; Achukwu, E.O.; Romli, A.Z.; Md Akil, H. Recent advances on improving the mechanical and thermal properties of kenaf fibers/engineering thermoplastic composites using novel coating techniques: A review. Compos. Interfaces 2023, 30, 849–875. [Google Scholar] [CrossRef]
- Promhuad, K.; Srisa, A.; San, H.; Laorenza, Y.; Wongphan, P.; Sodsai, J.; Tansin, K.; Phromphen, P.; Chartvivatpornchai, N.; Ngoenchai, P.; et al. Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers 2022, 14, 4274. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesh, P.; Puttegowda, M.; Mavinkere Rangappa, S.; Siengchin, S. Influence of nanofillers on biodegradable composites: A comprehensive review. Polym. Compos. 2021, 42, 5691–5711. [Google Scholar] [CrossRef]
- El Seoud, O.A.; Jedvert, K.; Kostag, M.; Possidonio, S. Cellulose, chitin and silk: The cornerstones of green composites. Emergent Mater. 2022, 5, 785–810. [Google Scholar] [CrossRef]
- Petri Sormunen; Timo Kärki; Recycled construction and demolition waste as a possible source of materials for composite manufacturing. J. Build. Eng. 2019, 24, 100742. [CrossRef]
- Lu, L.; Fan, W.; Meng, X.; Xue, L.; Ge, S.; Wang, C.; Foong, S.Y.; Tan, C.S.; Sonne, C.; Aghbashlo, M.; et al. Current recycling strategies and high-value utilization of waste cotton. Sci. Total Environ. 2023, 856, 158798. [Google Scholar] [CrossRef]
- Wang, W.; Wei, W.; Gao, S.; Chen, G.; Yuan, J.; Li, Y. Agricultural and aquaculture wastes as concrete components: A review. Front. Mater. 2021, 8, 762568. [Google Scholar] [CrossRef]
- Fasake, V.; Dashora, K. A sustainable potential source of ruminant animal waste material (dung fiber) for various industrial applications: A review. Bioresour. Technol. Rep. 2021, 15, 100693. [Google Scholar] [CrossRef]
- Al-Maadeed, M.A.; Labidi, S. 4—Recycled polymers in natural fibre-reinforced polymer composites. In Natural Fibre Composites: Materials, Processes and Properties; Hodzic, A., Shanks, R., Eds.; Woodhead Publishing: New Delhi, India, 2014; pp. 103–114. [Google Scholar]
- Rahman, M.R.; Bin Bakri, M.K.; Matin, M.M.; Nyuk Khui, P.L. Micro and nano effects of recycled plastic waste to reinforce and enhance in biocomposites. In Recycled Plastic Biocomposites; Rahman, M.R., Bin Bakri, M.K., Eds.; Woodhead Publishing: New Delhi, India, 2022; pp. 195–211. [Google Scholar] [CrossRef]
- Li, J.; Lemstra, P.J.; Ma, P. Chapter 7: Can high-performance fibers be(come) bio-based and also biocompostable? Adv. Ind. Eng. Polym. Res. 2022, 5, 117–132. [Google Scholar] [CrossRef]
- Frącz, W.; Janowski, G.; Smusz, R.; Szumski, M. The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mechanical Properties and Quality of Molded Pieces. Polymers 2021, 13, 3934. [Google Scholar] [CrossRef] [PubMed]
- Frącz, W.; Janowski, G.; Pruchniak, M.; Wałek, Ł. The Use of Computed Tomography in the Study of Microstructure of Molded Pieces Made of Poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) Biocomposites with Natural Fiber. Polymers 2021, 13, 2942. [Google Scholar] [CrossRef] [PubMed]
- Frącz, W.; Janowski, G.; Bąk, Ł. Influence of the Alkali Treatment of Flax and Hemp Fibers on the Properties of PHBV Based Biocomposites. Polymers 2021, 13, 1965. [Google Scholar] [CrossRef] [PubMed]
Name of Fiber | Detail |
---|---|
Skin fiber or bast fiber | These fibers are gathered from the bast or skin that surrounds the plant’s stem. These fibers have very high tensile strength as compared to others. These fibers are used to make strong ramie, fabric, yarn, packaging, and paper. Flax, industrial hemp, soybean fiber, jute, kenaf, rattan, and even vine and banana fibers are a few examples. |
Fruit fibers | Coconut (coir) fiber is gathered from the plant’s fruit. |
Grass or reed fiber | Grass and bamboo fibers are two examples. |
Leaf fibers | Fibers gathered from leaves, e.g., abaca and sisal |
Seed fibers | Fibers are taken from the seeds or seed casings. The most popular seed fiber is cotton. |
Stalk fiber | Plant stalks serve as its natural fiber, like wheat or rice straws. |
Wood fiber | Classified either as softwood or hardwood. Such a fiber also exists in tree wood like barley and various plants, such as grass and bamboo. Although kenaf, sisal, jute, and coconut are widely used, cotton, flax, and hemp are the most commonly used natural fibers. Because of their high suppleness and tolerance to a hostile environment, hemp fibers are mostly utilized for ropes and aerofoils. For instance, the heating and sanitary sectors already use hemp fibers as a seal. Figure 1 illustrates the main plants that produce cellulosic base fibers. |
Fiber | Plant Scientific Name | Description |
---|---|---|
Abaca/ Banana | Musa textilis/ Musa basjoo | Abaca is a plant that is related to bananas and is often referred to as Manila hemp. Abaca plants resemble bananas, but unlike bananas, they produce fruit that cannot be commercially produced and is not fit for human eating. Abaca plants, in contrast to bananas, are only grown for their fiber. The abaca fiber has good mechanical properties and resistance to saltwater deterioration. The banana fiber is lightweight and highly strong with strong moisture absorption properties. |
Bamboo | Bambusoideae | Bamboo has a high strength-to-weight ratio, and it is a fast-growing plant. It has attracted huge attention due to its excellent properties. (good durability, tenacity, flexibility and stability properties, excellent permeability, and ultraviolet resistance behavior) and availability. It consumes less water, and no herbicides or pesticides are used during cultivation and is taken at the base, keeping the root intact. Moreover, the fiber surface is rounded and smooth and has a high length-to-diameter ratio. Compared to glass fiber, it is lighter, stiffer, and stronger. The energy required to produce one mat made of bamboo fiber is just 17% compared to that of a mat made of glass fiber, as per the United States Department of Energy Assessment. |
Coir | Cocos nucifera | Due to its superior durability compared to most natural fibers, lack of chemical processing, strong resistance to salt water, and availability, coir is very appealing. |
Cotton | Gossypium | A cotton fiber’s absorbency is superb. In terms of natural and synthetic fiber output worldwide, cotton accounts for 46%. It also offers excellent textile strength. |
Eucalyptus | Eucalyptus globulus Labill | While being abundantly available, eucalyptus fiber has limited resilience to fire and mold damage. These fibers from bark work well as insulation. |
Flax | Linum usitatissimum | Comparing flax fiber to glass fiber, flax fiber has a higher specific tensile. It also has high rigidity, high strength, and low density, as well as swift absorption and desorption of water. |
Hemp | Cannabis sativa L. | Mechanical strength and Young’s modulus of hemp fiber are outstanding, with excellent insulating qualities. Good ultraviolet light blocking and heat-conducting properties, excellent antibacterial properties. |
Jute | Corchronus capsularis | High length-to-diameter ratio, excellent strength-to-weight ratio, and superior insulating capabilities and antistatic properties, low thermal conductivity are all characteristics of jute fiber. |
Kenaf | Hibiscus cannabinus L. | Low density and strong specific mechanical characteristics characterize kenaf fiber. |
Pineapple | Ananas magdalenae | Excellent mechanical, physical, and thermal qualities can be found in pineapple fiber. |
Ramie | Boehmeria nivea | Ramie fiber could outperform as compared to glass fiber with respect to strength and modulus. It has low elasticity and easy dying behavior. It also has swift adsorption and desorption of water. However, because it needs pricey pre-treatments, it is less well-liked than the other natural fibers. |
Sisal | Agave sisalana | Sisal has quick regeneration cycles and is simple to cultivate. The fiber has high tensile strength and tenacity as well as high resistance to alkali, salt water, abrasion, and acid. |
Fiber | Hemicellulose (wt%) | Cellulose (wt%) | Lignin (wt%) |
---|---|---|---|
Bamboo | 30 | 26–43 | 21–31 |
Coir | 0.15–0.25 | 32–43 | 40–45 |
Date palm | 18–25 | 41–46 | 20–27 |
Banana | 38.54 | 43.46 | 9 |
Bagasse (sugar cane) | 16.8 | 55.2 | 25.3 |
Abaca | 20–25 | 56–63 | 7–9 |
Jute | 14–20 | 61–71 | 12–13 |
Sisal | 65 | 9.9 | |
Hemp | 15 | 68 | 10 |
Ramie | 13–16 | 68.6–76.2 | 0.6–0.7 |
Flax | 18.6–20.6 | 71 | 2.2 |
Kenaf | 20.3 | 72 | 9 |
Pineapple | – | 81 | 12.7 |
Cotton | 5.7 | 82.7–90 | <2 |
Fiber | Density (g/cm3) a | Diameter (μm) a | Length (mm) a | Tensile Strength (MPa) a | Young’s Modulus (GPa) a | Elongation at Break (%) a | Moisture Content (%) a |
---|---|---|---|---|---|---|---|
Coir | 1.2 | 7–30 (18.5) | 0.3–3 (1.65) | 175 | 6 | 15–25 (20) | 10 |
Banana | 1.35 | 12–30 (21) | 0.4–0.9 (0.65) | 529–914 (721.5) | 27–32 (29.5) | 5–6 (5.5) | 10–11 (10.5) |
Jute | 1.23 | 5–25 (15) | 0.8–6 (3.4) | 187–773 (480) | 20–55 (37.5) | 1.5–3.1 (2.3) | 12 |
Sisal | 1.2 | 7–47 (27) | 0.8–8 (4.4) | 507–855 (981) | 9–22 (15.5) | 1.9–3 (2.45) | 11 |
Kenaf | 1.2 | 12–36 (24) | 1.4–11 (6.2) | 295–930 (612.5) | 22–60 (41) | 2.7–6.9 (4.8) | 6.2–12 (9.1) |
Bamboo | 0.6–1.1 (0.85) | 25–88 (56.5) | 1.5–4 (2.75) | 270–862 (566) | 18–89 (53) | 1.6–8 (4.65) | 11–17 (14) |
Flax | 1.38 | 5–38 (21.5) | 10–65 (37.5) | 343–1035 (689) | 50–70 (60) | 1.2–3 (2.1) | 7 |
Cotton | 1.21 | 12–35 (23.5) | 15–56 (35.5) | 287–597 (442) | 6–10 (8) | 2–10 (6) | 33–34 (33.5) |
Pineapple | 1.5 | 8–41 (24.5) | 3–8 (5.5) | 170–1627 (898.5) | 60–82 (71) | 1–3 (2) | 14 |
Abaca | 1.5 | 10–30 (20) | 4.6–5.2 (4.9) | 430–813 (621.5) | 31.1–33.6 (32.35) | 2.9 | 14 |
Ramie | 1.44 | 18–80 (49) | 40–250(145) | 400–938 (669) | 61.4–128 (94.7) | 2–4 (3) | 12–17 (14.5) |
Hemp | 1.47 | 10–51 (30.5) | 5–55 (30) | 580–1110 (845) | 30–60 (45) | 1.6–4.5 (3.05) | 8 |
Fiber Source | Percentage (%) in World Production |
---|---|
Bagasse (Sugar cane) | 67.8 |
Bamboo | 27.1 |
Jute | 2.1 |
Kenaf | 0.9 |
Flax | 0.73 |
Grass | 0.6 |
Sisal | 0.3 |
Hemp | 0.2 |
Coir | 0.1 |
Ramie | 0.1 |
Abaca | 0.07 |
Treatment | Example | Specific Effect | General Effect |
---|---|---|---|
Sodium chlorite | Cotton | Bleaching | Improve Young’s modulus, tensile strength, and elongation at break |
Silane | Kenaf and Pineapple Hemp | Silane treatment removes noncellulosic materials from the fibers. Silane treatment Increases tensile modulus. | Improve mechanical and hydrophobic properties by applying the reactions: |
Plasma | Jute fibers | Treatment improves the fiber interfacial adhesion and mechanical properties. | Improve hydrophobicity |
Peroxides | Sugarcane bagasse fiber: KMnO4 Jute: KMnO4 Kenaf: Peroxide treatment | Thermal properties were enhanced for both fibers and resultant composites. Improvement in tensile properties. Physicomechanical properties were enhanced in treated fibers. Increases crystalline index and surface roughness of the fiber. | Reduce the moisture regain as shown by reactions: |
Ozone | Jute fibers | Changes in physical and chemical properties and also lignin degradation. | Affect contact angle and surface energy |
Mercerization | Cotton treated with a caustic (NaOH) solution. | The caustic rearranges the cellulose molecules in the fiber to further improve properties such as fiber strength, shrinkage resistance, luster, and dye affinity. | Improve the mechanical properties and reduce the moisture regain |
Isocyanate | Cellulose | Isocyanate treatment increases storage modulus and Young’s modulus. | Surface modification |
Grafting | Sisal, pineapple | Acrylonitrile (AN) grafting improves tensile strength. | Improve hydrophobicity, UV-protective properties, and mechanical properties |
Enzyme | Hemp fiber: fungal and enzymes treatment | Improves moisture resistance. Increases acid-base characteristics of fibers. Good interfacial adhesion. | Reduce the lignin content |
Benzoylation | sisal fibers: 10% benzoyl chloride and NaOH for 15 min flax fibers: Pretreatment: 18% wt% NaOH for 30 min, filtration, washing with water. Main treatment: 10% benzoyl chloride and NaOH solutions. | Reduces activation of cellulose and lignin OH groups present in the sisal fiber. Increases the compatibility with the polymer matrices. This treatment also reduces the hydroxyl groups present in the flax fibers and reduces the hydrophilic nature. | Improve hydrophobicity by applying the reaction: |
Alkali | Agave, pine, and coir fibers: 2% NaOH for 15 min Sugar palm fiber: 18% NaOH for 30 min Kenaf fiber:2, 5, and 10 wt% NaOH for 1 h | The uniform fiber distribution and morphology were observed without gaps and voids between the matrix and fiber. The fiber color was changed from black to dark brown, and the fiber diameter was reduced. Formation of glycoside bond and hemicellulose removal due to alkali treatment. | Improve fiber-matrix adhesion, heat resistivity, and thermal stability, and reduce the lignin content. Reaction: |
Acetylation | Jute fibers | Treated fibers show optimum tensile properties and provide effective surface area. | Improve flexural and tensile strength by introducing acetyl groups, as shown by the following reaction: |
Polymer | Density (g/cm3) | Glass Transition Temperature (°C) | Melting Temperature (°C) | Thermal Conductivity (W/m.°C) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation (%) |
---|---|---|---|---|---|---|---|
Polyurethane | 0.8–1.4 | −63 | 240 | 0.022 | 10–30 | 0.2–0.3 | 100–380 |
Epoxy | 1.1–1.4 | 50–80 | 177 | 0.14 | 35–100 | 3–6 | 1–6 |
Polylactic acid | 1.2–1.4 | 60–65 | 150–160 | 1.13 | 50 | 3.5 | 6.5 |
Polypropylene | 0.92 | −20 | 130 | 0.1–0.2 | 40 | 1.9 | 15–700 |
Polyethylene | 0.93 | −78 | 105–115 | 0.33–0.51 | 15 | 0.8 | 90–800 |
Polystyrene (PS) | 1.1 | 100 | 240 | 0.03 | 40 | 3 | 1–2.5 |
Polyvinyl Acetate | 1.19 | 30–45 | 200 | 0.31 | 40 | 1.7 | 1.76 |
Polycarbonates | 1.2 | 147 | 157 | 0.19 | 70 | 2.6 | 80–150 |
Polyvinyl Chloride | 1.4 | 82 | 160 | 0.19 | 51 | 2.4 | 50–80 |
Starch | 1.5 | 20–60 | 0 | 0.38 | 5–9 | 0.2–0.3 | 35–100 |
Polyglycolic acid | 1.53 | 35–40 | 225–230 | 0.35 | 70 | 0.3 | 5.5–6.5 |
Fiber | Matrix | Manufacturing Method |
---|---|---|
Bamboo and abaca | Epoxy | Resin transfer molding |
Bamboo fiber | Polylactic acid | Fused deposition modeling |
Calotropis gigantean and palmyra | Phenol-formaldehyde | Hand-layup |
Coir and sugarcane bagasse | Polyurethane | Extrusion |
Flax, hemp, and sisal | Polyurethane | Injection molding |
Flax/basalt | Epoxy | Vacuum bagging technique |
Hemp and wool | Polyester, vinyl ester, and polyurethane | Pultrusion |
Jute | Polyester | Hand-layup fabrication technique |
Jute | Polyurethane | Injection molding and extrusion |
Jute/glass | Epoxy | Hot press compression molding |
Kenaf | Polyester | Vacuum bag resin transfer molding |
Glass and kenaf | Epoxy | Filament winding process |
Neem, glass, and kenaf | Epoxy | Vacuum-assisted compression molding |
Palm leaf stalk, glass, and jute | Polyester | Compression molding |
Pineapple | Epoxy | Hand-layup |
Sisal and Grewia optiva | Polylactic acid | Hot compression |
Sisal/red mud | Polyester | Compression molding |
Soybean hull fiber | Thermoplastic copolyester | Fused filament fabrication |
Wood fiber | Polyhydroxyalkanoate and polylactic acid | Fused deposition modeling |
Wood flour | High-density polyethylene | Extrusion |
Natural Fibers | Component Description | Other Constituents |
---|---|---|
Bast fibers (flax, sisal, kenaf, hemp, jute, etc.) | Carrier for soft amuses and hard, headliners, seat back panels, sear deck trays, door fosters, center consoles, side and back walls, seat backs, pillars, load floor, and trunk trim. Carrier for covered door panels, covered inserts, covered instrument panel components, and carrier for covered inserts | Polypropylene (PP) and polyester |
Coconut | Seat bachnest /surfaces, headrests, interior trim, back rests, seat cushioning, and seat bottoms | Natural rubber |
Cotton | Insulation, soundproofing a trunk panel | PP/PEY |
Fiberwood recycled | Plastic container and seat back panel | PP granules, thermoplastic |
Flax | Pillar panels, floor trays, rear parcel shelves, seatbacks, control consoles, covers, floor panels, and additional interior trim | Mat with PP (floor panels) |
Flax or hemp | Carrier for door panels with coverings | Epoxy resin |
Flax/sisal | Door frames, interior door linings, and door panels | Thermoset resin |
Kenaf | Internal door panel | PP |
Wood | Fiber in the seat back cushion, carriers for covered door panels, foamed instrument panels, covered inserts and components, spare tire, covered seat back panels, covered inserts, and covers | Acrylic fibers and synthetic fiber |
Wood flour | Carrier for covered door panels, carrier for covered inserts, and carrier for armrest | PP or polyolefin (POE) |
Sector | Parts Made of NFC | Materials |
---|---|---|
Door panel | Bamboo mat composite | |
Roof | Jute coir composite | |
Wardrobes | Natural fiber-reinforced boards | |
Bicycle frame | Flax fiber composite | |
Table | Oil palm-based biocomposite | |
Container for perfume | Curaua fiber wood flour-based composites | |
Acoustic | Acoustic absorber | Cotton fiber-rubber granulate composites |
Building materials | Panel | Sisal jute sandwich composites |
Furniture | Chair | Coir fiber polyester composite |
Packaging | Food packaging | Wood fibers with polylactic acid |
Sport | Tennis racket | hemp epoxy composite and flax |
Fiber | Properties | Diameter (μm) | Tensile Strength (MPa) | Elongation at Break (in μm) | Young Modulus (GPa) | Density (g/cm3) |
---|---|---|---|---|---|---|
Wool | Warmth | 16–40 | 120–174 | 25–35 | 2.3–3.4 | – |
Mulberry silkworm fiber | White-tined and more reproducible | 10 | 208.45 | 19.55 | 6.10 | 1.33 |
Eild (Tussah) silkworm fiber | Beige to brownish-tined | 25 | 165.27 | 20.57 | 3.82 | 1.32 |
Twisted B. mori silk | 10 | 248.77 | 33.48 | 5.79 | – | |
Catgut fiber | 790 | 100 | – | |||
Yak fiber | Warmth, odor-resistant softness, breathability | 15–19 | 270.05 | 14.53 | 45.0943 | 3.42 |
Bison | Soft and red-brown | 59 | ||||
Llama | Soft, Fine | 30–40 | ||||
Qiviut | Smooth, long, 8 times warmer than sheep | 15–20 | ||||
Camel hair | Warmth, softness, | 20.04 | 212.15 | 37.05 | 3.87 | – |
Spider silk | Smooth fabric finish with high shine | 10–13 | 875–972 | 17–18 | 11–13 | – |
Angora wool | Thin fibers, softness | 12–16 | ||||
Alpaca | Luxurious, fine, lightweight, soft, glossy | 12–29 | 53.5 | 42.3 | 1.38 |
Amino Acid (mol %) | Cashmere | Wool | Yak |
---|---|---|---|
Glutamine + glutamic acid | 12.4 | 12.1 | 12.5 |
Serine | 12.2 | 10.2 | 10 |
Glycine | 9.9 | 8.1 | 9.8 |
Leucine | 7.5 | 6.9 | 8.3 |
Arginine | 7 | 7.2 | 7.1 |
Proline | 6.7 | 7.5 | 6.6 |
Threonine | 6.6 | 6.5 | 6.6 |
Asparagine + aspartic acid | 6.2 | 6 | 6.7 |
Cystine | 6 | 11.2 | 6.4 |
Alamine | 5.8 | 5 | 5.6 |
Valine | 5.5 | 5.1 | 5.9 |
Tyrosine | 3.5 | 4.2 | 3.4 |
Isoleucine | 3.2 | 2.8 | 3.5 |
Phenylalanine | 2.8 | 2.5 | 3 |
Lysine | 2.8 | 2.3 | 3 |
Histidine | 1.2 | 0.7 | 1 |
Methionine | 0.5 | 0.5 | 0.5 |
Tryptophan | – | 1.2 | – |
Property | Condition | Value |
---|---|---|
Breaking stress | Dry | 250–350 MPa |
Wet | 100–200 MPa | |
Strength loss when wet | 20% | |
Breaking strain | Dry | 28–48% |
Wet | 40–61% | |
Elasticity modulus | Dry | 4.0–5.0 GPa |
Wet | 2.0–3.0 GPa | |
Recovery at strain | 2% | 95–99% |
5% | 60–70% | |
10% | 40–50% | |
Bending modulus | 4.0–5.5 GPa | |
Stretching modulus | 5.0–6.0 GPa | |
Torsion modulus parallel | 1.1–1.3 GPa | |
Stretching modulus in torsion | 3.0–4.0 GPa | |
Shear modulus in torsion | Dry | 1.2 GPa |
Wet | 0.1 GPa |
Amino Acids | Fibroin (%) | Sericin (%) |
---|---|---|
Glycine | 42.75 ± 2.75 | 11.0 ± 3.0 |
Alanine | 25.0 ± 9.0 | 4.0 ± 1.0 |
Serine | 13.0 ± 3.0 | 29.0 ± 8.0 |
Tyrosine | 9.0 ± 4.0 | 4.25 ± 1.75 |
Valin | 3.0 ± 1.0 | 3.5 ± 0.5 |
Aspartic acid | 1.9 ± 0.9 | 15.75 ± 1.75 |
Glutamic acid | 1.35 ± 0.35 | 4.75 ± 1.25 |
Threonine | 1.45 ± 0.45 | 8.25 ± 1.75 |
Arginine | 0.9 ± 0.6 | 4.75 ± 1.25 |
Lysine | 0.9 ± 0.6 | 3.25 ± 0.75 |
Property | Bombyx Mori | Nephila Dragline |
---|---|---|
Degree of crystallinity in % | 38–66 | 20–45 |
Density in g/cm3 | 1.35–1.42 | |
Crystallite size in nm | 1.0–2.5 | 4.7 × 5.3 × 6.0 |
Index of refraction | 1.591 parallel to fiber | 1.538 perpendicular to the fiber |
Maximum application temperature, °C | 170 | 150 |
Thermal degradation, °C | 250 | 234 |
Heat capacity, J/g K | 1.38 | |
Glass transition temperature | 178 °C at 0% RH | 39 °C at 75% RH |
Supercontraction in water | No | ~50% |
Material | Elongation at Break. % | Breaking Strength, MPa | Fracture Toughness, J/m3 |
---|---|---|---|
Rubber | 600 | 100 | 100 |
Artificial web | 35 | 4000 | 160 |
Nylon | 20 | 3000 | 80 |
Silk | 18 | 1500 | 70 |
Revlar | 5 | 4000 | 50 |
High-strength steel | 1 | 5500 | 6 |
Area of Application | Application Form |
---|---|
Architectural and civil | Wall panels and roofs |
Transport industry | Automotive inner insulation parts and aircraft body parts |
Biomedical | Hydrogels, scaffolds, and hydrofilms in tissue engineering, orthopedic and dental implants, and replacements |
Electrical | PCB base materials, electrical insulators, sensor base materials |
Thermal | Flame resistance applications and thermal insulations |
Filtration | Removal of heavy metals, phenols, and mats for air filtration |
Food packaging | Bio-degradable thin films for foods |
Fire safety | protective housing parts, smoke retardant, flame retardant, carbon monoxide absorbent |
Oxides Content (wt. %) | Basalt | Wollastonite | E-Glass |
---|---|---|---|
Na2O + K2O | 2.5–6.0 | 0.364 | 0.29 |
MgO | 3.5–5.0 | 0.47 | 3.3 |
TiO2 | 0.2–3.5 | 0.49 | 0.14 |
Fe2O3 | 7.0–14.0 | 0.17 | 0.28 |
MnO | 0.17–0.22 | - | N/A |
B2O3 | 0.8 | - | 10.3 |
ZrO2 | 0.0 | - | 0.8 |
Al2O3 | 13.3–18.0 | 0.83 | 14.3 |
CaO | 8.0–11.0 | 44.55 | 19.0 |
SiO2 | 47.5–53.0 | 50.78 | 53.4 |
SO3 | - | 0.04 | N/A |
Fiber | Fiber Diameter (μm) | Density (g/cm3) | Tensile Strength (MPa) | Modulus of Elasticity (GPa) | Elongation at Break (%) |
---|---|---|---|---|---|
Basalt | 9–23 | 2.8–3.0 | 3000–4840 | 79.3–93.1 | 3.1 |
E-glass | 9–13 | 2.5–2.6 | 3100–3800 | 72.5–75.5 | 4.7 |
S-glass | 9–13 | 2.46–2.5 | 4590–4830 | 88–91 | 5.6 |
Carbon | 4–7.5 | 1.75–1.9 | 3500–6000 | 230–600 | 1.5–2.0 |
Aramid | 5–18 | 1.44 | 2900–3400 | 70–112 | 2.8–3.6 |
Fiber | Working Temperature Range, ΔΤ (°C) | Thermal Conductivity (W m−1 K−1) | Thermal Expansion Co-Efficient (10−6 °C−1) |
---|---|---|---|
Carbon | −50 to 700 | 5–185 (axial only) | 0.05 (axial only) |
E-glass | −50 to 380 | 0.034–0.040 | 5.40 |
S-glass | −50 to 300 | 0.034–0.040 | 29.00 |
Basalt | −260 to 700 | 0.031–0.038 | 8.00 |
Category | Unit | Basalt Fiber | Glass Fiber |
---|---|---|---|
Source | |||
Carcinogens | kg C2H3Cl eq | 15.2 | –– |
Non-carcinogens | kg C2H3Cl eq | 12.1 | –– |
Respiratory inorganics | kg PM2.5 eq | 0.320 | –– |
Ionizing radiation | Bq C14 eq | 2.30 × 103 | –– |
Ozone layer depletion | kg CFC11 eq | 35.1 × 10−6 | 483 × 10−10 |
Respiratory organics | kg C2H4 eq | 0.175 | –– |
Photochemical oxidant | kg NMVOC | –– | 5.26 |
Human toxicity | kg 1.4-DB eg. | –– | 20.8 |
Aquatic ecotoxicity | kg TEG water | 256 × 103 | –– |
Freshwater aquatic ecotoxicity | kg 1,4-DB eq | –– | 0.461 |
Terrestrial ecotoxicity terrestrial | kg TEG soil | 57.4 × 103 | –– |
Acidification/nutrification | kg SO2 eq | 6.56 | 10.3 |
Land occupation | m2 organic arable | 8.05 | –– |
Aquatic acidification | kg SO2 eq | 1.34 | –– |
Aquatic eutrophication | kg PO4 P-lim | 40.3 × 10−3 | 5.25 × 10−3 |
Global warming | kg CO2 eq | 398 | 1740 |
Non-renewable energy | MJ primary | 6630 | –– |
Fossil depletion | kg oil eq | –– | 578 |
Mineral extraction | MJ surplus | 6.55 | –– |
Wollastonite Replacement Instead of Cement | Effect of Wollastonite |
---|---|
5–10% | Fracture toughness increases up to 34%. |
0–15% | Compressive and flexural strength increases to 12% and 6%, respectively. |
0–50% | Cement hydration increases and workability decreases. |
5–15% | Ductility and crack growth resistance increase. |
10–30% | Drying shrinkage decreases up to 47%, and initial setting time increases. |
0–12% | Flexural and compress strengths increase up to 11% and 8%, respectively; water sorptivity coefficient decreases up to 15%; gas permeability and rapid chloride permeability decrease up to 25% and 4%, respectively. |
0–25% | Water permeability, carbonation depth, chloride diffusion, and porosity decrease. |
0–25% instead of cement | Corrosion resistance enhanced. |
Natural Fibers | Nanofibers |
---|---|
Definition | |
A substrate of natural origin is considered to be a fiber if its length-to-diameter ratio is more than 1:200. | Fibers with nanometric-sized diameters are known as nanofibers. |
The main sources | |
Compared to fiber composites made of petroleum, natural fiber composites are more environmentally friendly. | Nanofibes are often categorized as metal oxides, polymers, metals, carbon, ceramics, and hybrids, according to their composition. |
Main categories of natural fibers | Main types of nano-lignocellulose fibers |
1–Mineral fibers (asbestos, basalt, and brucite) | 1–Lignocelluse nanofiber |
2–Animal fibers (hair, silk, and wool) | 2–Bacterial nanocellulose |
3–Plant fibers (lignocelluloses) | 3–Nanocrystalline cellulose |
4–Nano-fibrillated cellulose | |
Main treatments for natural fibers | Main fabrication techniques of nanofibers |
Chemical (acetylation, alkaline, benzoylation, peroxide, potassium permanganate, silane, and stearic acid) and surface treatments | Hydrothermal, electrospinning, and non-electrospinning methods (such as phase separation drawing, self-assembly, and template synthesis) |
The main applications of natural fibers | The main applications of nanofibers |
Automobile, construction, aerospace, and marine structural industries | Structural applications, 3D printing industry, aerospace, polyurethane matrix, paper, orthopedic, and textile industry |
S.No. | Nanofibers Obtained from Agro-Wastes and Used Method | Comment on Nanofibers |
---|---|---|
1. | A starch/ polyvinyl alcohol nanocomposite film reinforced with cellulose nanofiber from sugarcane bagasse was created using alkaline acid treatment and ultrasonication. | Nanocomposite film-reinforced cellulose nanofiber |
2. | Using bamboo eaters (Phyllostachus pubescens) as lignocellulosic biomass and producing cellulose nanofiber by microwave-assisted ethanol solvent treatment. | Cellulose nanofibers |
3. | Washing the Eucalyptus sawdust with an aqueous surfactant solution will yield lignocellulosic nanofiber. | Bio-nanocomposite films |
4. | Waste products from the production of orange juice can be used to create biodegradable films reinforced with cellulose nanofiber. | Nano-nanocomposite films |
5. | Combining polyvinylpyrrolidone and polyvinyl alcohol with pomegranate (Punica granatum L.) peel extract. | Nanofibers for cosmeceutical purposes |
6. | Quinta wastes mixed with multi-walled C-nano tubes and ZnO can be employed to create natural cellulose fibers. | Bio-nanocomposite |
7. | The electrospinning process produced cellulose nanofibers made from pomegranate peel ethanolic extract. | Cellulose nanofibers |
8. | Pomegranate peel ethanolic extract nanofibers were tested in vitro using the electrospinning process. | Gelatin nanofiber |
9. | To create peach branch-cellulose nanofiber, peach branches are employed in a high-pressure homogenous process. | Nanofiber-reinforced gelatin hydrogel |
10. | Clysical nanocellulose was produced via hydrolysis disintegration using rice and coconut husks. | Mechanically reinforced polymer composites |
11. | Acid hydrolysis was used to create the poly-lactic acid matrix that contains nanocellulose from cotton waste. | Production of nanocellulose |
12. | Waste pineapple leaf is used to create cellulose nanofiber, which is then reinforced into a polystyrene substrate. | Cellulose nanofiber-reinforced polystyrene nanocomposites |
Nanofibers in Medicine | Nanofibers in Pharmacology |
---|---|
Adhesion prevention materials | Anticancer drug delivery |
Artificial bold vessels, cornea, and skin | Antimicrobial drug delivery |
Dialysis membrane | Cell delivery and tissue engineering |
Drug release artificial skin | Anti-inflammatory drugs |
Drug release capsule | Antibiotic drug delivery |
Facemask, skin, and vascular tissue engineering | Growth factor and protein delivery |
Filling agent for artificial bone | Smart active drugs release systems |
Nerve or organ patch | Neuroprotective drugs |
Rhinosinusitis treatment | Nucleic acid delivery |
Surgical adhesive sheet | Miscellaneous drugs delivery |
Transdermal absorbent | Controlled release of gentamicin |
Wound and therapeutic applications | Double-layered planar nanofibrous scaffold abdominal adhesion prevention |
Wound covering and protective agent | Localized chemotherapy |
Wound dressing and healing systems | Transdermal drugs delivery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapliyal, D.; Verma, S.; Sen, P.; Kumar, R.; Thakur, A.; Tiwari, A.K.; Singh, D.; Verros, G.D.; Arya, R.K. Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. J. Compos. Sci. 2023, 7, 506. https://doi.org/10.3390/jcs7120506
Thapliyal D, Verma S, Sen P, Kumar R, Thakur A, Tiwari AK, Singh D, Verros GD, Arya RK. Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. Journal of Composites Science. 2023; 7(12):506. https://doi.org/10.3390/jcs7120506
Chicago/Turabian StyleThapliyal, Devyani, Sarojini Verma, Pramita Sen, Rahul Kumar, Amit Thakur, Anurag Kumar Tiwari, Dhananjay Singh, George D. Verros, and Raj Kumar Arya. 2023. "Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges" Journal of Composites Science 7, no. 12: 506. https://doi.org/10.3390/jcs7120506
APA StyleThapliyal, D., Verma, S., Sen, P., Kumar, R., Thakur, A., Tiwari, A. K., Singh, D., Verros, G. D., & Arya, R. K. (2023). Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. Journal of Composites Science, 7(12), 506. https://doi.org/10.3390/jcs7120506