Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,386)

Search Parameters:
Keywords = and fir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5982 KB  
Article
Morpho-Physiological Responses During Dark-Induced Leaf Senescence in Cunninghamia lanceolata Seedlings
by Zhijun Huang, Qingqing Liu, Xianhua Zou, Liqin Zhu, Xiangqing Ma and Rongzhen Huang
Forests 2025, 16(9), 1372; https://doi.org/10.3390/f16091372 - 26 Aug 2025
Abstract
Low inner leaves in the thick canopy of dense Chinese fir plantations frequently show premature senescence and dieback regardless of age. To elucidate the underlying mechanisms, a 28-day growth chamber experiment was conducted under dark conditions to induce leaf senescence. Changes in leaf [...] Read more.
Low inner leaves in the thick canopy of dense Chinese fir plantations frequently show premature senescence and dieback regardless of age. To elucidate the underlying mechanisms, a 28-day growth chamber experiment was conducted under dark conditions to induce leaf senescence. Changes in leaf area, photosynthetic performance, and the responses of carbon metabolism and the antioxidant defense system were analyzed. Leaf area decreased significantly with time in darkness. The photosystem II reaction center was damaged, and fluorescence parameters and chlorophyll contents decreased, resulting in reduced light energy capture and conversion efficiencies. Photosynthetic rate, apparent quantum yield, stomatal conductance, transpiration rate, and light use efficiency all decreased, while the light compensation point and intercellular CO2 concentration increased. Antioxidant enzyme activities initially increased but eventually collapsed as the stress continued and H2O2 and malondialdehyde accumulated, causing membrane conductivity, i.e., membrane permeability, to increase by 122%. Meanwhile, reduced non-structural carbohydrates, especially total non-structural carbohydrates content, decreased by 45.32%, triggering sugar starvation and accelerating aging. Our study provided new physiological evidence for light-stress response mechanisms in Chinese fir. Specifically, it revealed that dark-induced leaf senescence was mainly caused by irreversible damage to the photosynthetic apparatus and oxidative stress, which together led to carbon starvation and ultimately death. Full article
Show Figures

Figure 1

26 pages, 7505 KB  
Article
Phenolic Compounds Enhance Aluminum Tolerance in Chinese Fir (Cunninghamia lanceolata) by Regulating Reactive Oxygen Species Homeostasis and Cell Wall Properties Under Aluminum Stress
by Shanshan Xu, Jiahui Wei, Xin Wang, Ruobing Zhang, Jiahua Gao, Xiaoling Li, Chen Wang and Yiquan Ye
Plants 2025, 14(17), 2658; https://doi.org/10.3390/plants14172658 - 26 Aug 2025
Abstract
Aluminum (Al) toxicity in acidic soils severely limits the productivity of Chinese fir (Cunninghamia lanceolata) plantations. Despite being a crucial timber species in southern China, the regulatory mechanisms underlying phenolic accumulation and Al tolerance pathways under Al stress in Chinese fir [...] Read more.
Aluminum (Al) toxicity in acidic soils severely limits the productivity of Chinese fir (Cunninghamia lanceolata) plantations. Despite being a crucial timber species in southern China, the regulatory mechanisms underlying phenolic accumulation and Al tolerance pathways under Al stress in Chinese fir remain unidentified. In this study, 5-month-old Chinese fir seedlings were treated with an exogenous phenolic synthesis inhibitor (AIP) and precursor (MJ) to establish the following groups: CK, AIP, MJ, Al, Al+AIP, and Al+MJ. Physiological and biochemical indicator analyses, transcriptome analysis, and protein interaction network predictions were conducted. The findings revealed that phenolic compounds enhance Al tolerance in Chinese fir through two mechanisms: (1) regulation of active oxygen homeostasis (elevating SOD and POD activities, promoting AsA and GSH accumulation, and augmenting total antioxidant capacity); and (2) modulation of cell wall characteristics (increasing pectin content and pectinase activity, and facilitating Al sequestration in the cell wall). Moreover, MJ was found to synergistically enhance these processes, while AIP impeded them. Genes associated with antioxidant enzymes, secondary metabolite synthesis, and cell wall modification were implicated in the regulatory mechanisms. This study provides a theoretical foundation for elucidating the adaptation of Chinese fir to Al toxicity in acidic soil environments, offers insights for enhancing Chinese fir productivity in acidic soils, and presents a novel target for breeding trees with stress resistance. Full article
Show Figures

Figure 1

17 pages, 3606 KB  
Article
Kalman–FIR Fusion Filtering for High-Dynamic Airborne Gravimetry: Implementation and Noise Suppression on the GIPS-1A System
by Guanxin Wang, Shengqing Xiong, Fang Yan, Feng Luo, Linfei Wang and Xihua Zhou
Appl. Sci. 2025, 15(17), 9363; https://doi.org/10.3390/app15179363 - 26 Aug 2025
Abstract
High-dynamic airborne gravimetry faces critical challenges from platform-induced noise contamination. Conventional filtering methods exhibit inherent limitations in simultaneously achieving dynamic tracking capability and spectral fidelity. To overcome these constraints, this study proposes a Kalman–FIR fusion filtering (K-F) method, which is validated through engineering [...] Read more.
High-dynamic airborne gravimetry faces critical challenges from platform-induced noise contamination. Conventional filtering methods exhibit inherent limitations in simultaneously achieving dynamic tracking capability and spectral fidelity. To overcome these constraints, this study proposes a Kalman–FIR fusion filtering (K-F) method, which is validated through engineering implementation on the GIPS-1A airborne gravimeter platform. The proposed framework employs a dual-stage strategy: (1) An adaptive state-space framework employing calibration coefficients (Sx, Sy, Sz) continuously estimates triaxial acceleration errors to compensate for gravity anomaly signals. This approach resolves aliasing artifacts induced by non-stationary noise while preserving low-frequency gravity components that are traditionally attenuated by conventional FIR filters. (2) A window-optimized FIR post-filter explicitly regulates cutoff frequencies to ensure spectral compatibility with downstream processing workflows, including terrain correction. Flight experiments demonstrate that the K-F method achieves a repeat-line internal consistency of 0.558 mGal at 0.01 Hz—a 65.3% accuracy improvement over standalone FIR filtering (1.606 mGal at 0.01 Hz). Concurrently, it enhances spatial resolution to 2.5 km (half-wavelength), enabling the recovery of data segments corrupted by airflow disturbances that were previously unusable. Implemented on the GIPS-1A system, K-F enables precision mineral exploration and establishes a noise-suppressed paradigm for extreme-dynamic gravimetry. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

23 pages, 7350 KB  
Article
Mechanisms of Spatial Coupling Between Plantation Species Distribution and Historical Disturbance in the Complex Topography of Eastern Yunnan
by Xiyu Zhang, Chao Zhang and Lianjin Fu
Remote Sens. 2025, 17(17), 2925; https://doi.org/10.3390/rs17172925 - 22 Aug 2025
Viewed by 243
Abstract
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir ( [...] Read more.
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir (Cunninghamia lanceolata), Armand pine (Pinus armandii), and Yunnan pine (Pinus yunnanensis) plantations in the mountainous eastern Yunnan Plateau. We developed a Spatial Coupling Framework of Disturbance Legacy (SC-DL) to systematically elucidate the spatial associations between contemporary species distribution patterns and historical disturbance regimes. Using the Google Earth Engine (GEE) platform, we reconstructed pixel-level disturbance trajectories by integrating long-term Landsat time series (1993–2024) and applying the LandTrendr algorithm. By fusing multi-source remote sensing features (Sentinel-1/2) with terrain factors, employing RFE, and performing a multi-model comparison, we generated 10 m-resolution species distribution maps for 2024. Spatial overlay analysis quantified the cumulative proportion of the historically disturbed area and the spatial aggregation patterns of historical disturbances within current species ranges. Key results include the following: (1) The model predicting disturbance year achieved high accuracy (R2 = 0.95, RMSE = 2.02 years, MAE = 1.15 years). The total disturbed area from 1993 to 2024 was 872.7 km2, exhibiting three distinct phases. (2) The random forest (RF) model outperformed other classifiers, achieving an overall accuracy (OA) of 95.17% and a Kappa coefficient (K) of 0.93. Elevation was identified as the most discriminative feature. (3) Significant spatial differentiation in disturbance types emerged: anthropogenic disturbances (e.g., logging and reforestation/afforestation) dominated (63.1% of total disturbed area), primarily concentrated within Chinese fir zones (constituting 70.2% of disturbances within this species’ range). Natural disturbances accounted for 36.9% of the total, with fire dominating within the Yunnan pine range (79.3% of natural disturbances in this zone) and drought prevailing in the Armand pine range (71.3% of natural disturbances in this zone). (4) Cumulative disturbance characteristics differed markedly among species zones: Chinese fir zones exhibited the highest cumulative proportion of disturbed area (42.6%), with strong spatial aggregation. Yunnan pine zones followed (36.5%), exhibiting disturbances linearly distributed along dry–hot valleys. Armand pine zones showed the lowest proportion (20.9%), characterized by sparse disturbances within fragmented, high-altitude habitats. These spatial patterns reflect the combined controls of topographic adaptation, management intensity, and environmental stress. Our findings establish a scientific basis for identifying disturbance-prone areas and inform the development of differentiated precision management strategies for plantations. Full article
Show Figures

Figure 1

23 pages, 12646 KB  
Article
Titanite Textures, U-Pb Dating, Chemistry, and In Situ Nd Isotopes of the Lalingzaohuo Mafic Magmatic Enclaves and Host Granodiorites in the East Kunlun Orogen Belt: Insights into Magma Mixing Processes
by Zisong Zhao, Bingzhang Wang, Shengwei Wu and Jiqing Li
Minerals 2025, 15(9), 886; https://doi.org/10.3390/min15090886 - 22 Aug 2025
Viewed by 243
Abstract
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In [...] Read more.
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In this study, we present new data on the complex zoning patterns, in situ U–Pb ages, trace element compositions, and Nd isotopic characteristics of titanite grains from the MMEs and host granodiorite of Laningzaohuo Zhongyou pluton. Whole-rock geochemical data indicate that the pluton is composed of volcanic arc-related, calc-alkaline, metaluminous I-type granodiorite. Titanite in the MMEs and the granodiorite yield similar U–Pb ages of ~244 Ma but display distinct textural and compositional features. Titanite from the granodiorite is typically euhedral, characterized by magmatic core and mantle with deuteric rim, and exhibits sector and fir-tree zoning in the core. In contrast, titanite from the MMEs is generally anhedral, also showing magmatic core and mantle as well as deuteric rims, but exhibits oscillatory zoning and incomplete sector and fir-tree zoning in the core. Titanite cores in the MMEs have εNd(t) ranging from −2.5 to −3.4, comparable to those of the coeval gabbro and MMEs elsewhere in the EKOB. These cores also show higher LREE/HREE ratios compared to titanite cores in the granodiorite, suggesting crystallization from mixed magmas with greater contributions from enriched lithospheric mantle sources. Titanite mantles in the MMEs yield εNd(t) of −4.0 to −4.8, slightly lower than the cores in the MMEs but higher than those of titanite cores and mantles in the granodiorite (−4.6 to −5.5). The mantle can be interpreted as crystallized from mixed magmas with less mafic components. Titanite rims in the MMEs have εNd(t) of −5.0 to −5.7, identical to those in the granodiorite, and have REE concentrations and Th/U and Nb/Ta ratios consistent with the titanite rims in the granodiorite, clearly indicative of crystallization from evolved, hydrated, granodioritic magmas. Plagioclase in the MMEs exhibits disequilibrium textures such as sieve texture and reverse zoning, with An36–66, contrasting with the more uniform An contents (An35–37) in the granodiorite. This suggests that plagioclase in the MMEs crystallized in an environment influenced by both mafic and felsic magmas. Amphibole thermobarometry indicates that amphibole in the MMEs crystallized at ~788 °C and ~295 MPa, slightly higher than the crystallization conditions in the granodiorite (~778 °C and ~259 MPa). We thus propose that the chemical and textural differences between titanite in the MMEs and granodiorite suggest that the MMEs formed within a mushy hybrid layer generated by injection of upwelling basaltic magma into a pre-existing granitic magma chamber. Titanite cores and mantles in the MMEs likely crystallized from variably mixed magmas. They subsequently underwent resorption and disequilibrium growth within the hybrid layer, and were eventually overgrown by rims formed from evolved interstitial granitic melts within the mushy enclaves. These findings demonstrate that the complex zoning and geochemical titanite in the MMEs provide valuable insights into magma mixing processes. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 3443 KB  
Article
Intelligent Soft Sensors for Inferential Monitoring of Hydrodesulfurization Process Analyzers
by Željka Ujević Andrijić, Srečko Herceg, Magdalena Šimić and Nenad Bolf
Actuators 2025, 14(8), 410; https://doi.org/10.3390/act14080410 - 19 Aug 2025
Viewed by 203
Abstract
This work presents the development of soft sensor models for monitoring the operation of online process analyzers used to measure the sulfur content in the product of the refinery hydrodesulfurization process. Since sulfur content often fluctuates over time, soft sensor models must account [...] Read more.
This work presents the development of soft sensor models for monitoring the operation of online process analyzers used to measure the sulfur content in the product of the refinery hydrodesulfurization process. Since sulfur content often fluctuates over time, soft sensor models must account for these frequency fluctuations. We have therefore developed dynamic data-driven models based on linear and nonlinear system identification techniques (finite impulse response—FIR, autoregressive with exogenous inputs—ARX, output error—OE, nonlinear ARX—NARX, Hammerstein–Wiener—HW) and machine learning techniques, including models based on long short-term memory (LSTM) and gated recurrent unit (GRU) networks, as well as artificial neural networks (ANNs). The core steps in model development included the selection and preprocessing of continuously measured plant process data, collected from a full-scale industrial hydrodesulfurization unit under normal operating conditions. The developed soft sensor models are intended to support or replace process analyzers during maintenance periods or equipment failures. Moreover, these models enable the application of inferential control strategies, where unmeasured process variables—such as sulfur content—can be estimated in real time and used as feedback for advanced process control. Full article
(This article belongs to the Special Issue Analysis and Design of Linear/Nonlinear Control System)
Show Figures

Figure 1

25 pages, 6271 KB  
Article
UAV-LiDAR-Based Study on AGB Response to Stand Structure and Its Estimation in Cunninghamia Lanceolata Plantations
by Yuqi Cao, Yinyin Zhao, Jiuen Xu, Qing Fang, Jie Xuan, Lei Huang, Xuejian Li, Fangjie Mao, Yusen Sun and Huaqiang Du
Remote Sens. 2025, 17(16), 2842; https://doi.org/10.3390/rs17162842 - 15 Aug 2025
Viewed by 314
Abstract
Forest spatial structure is of significant importance for studying forest biomass accumulation and management. However, above-ground biomass (AGB) estimation based on satellite remote sensing struggles to capture forest spatial structure information, which to some extent affects the accuracy of AGB estimation. To address [...] Read more.
Forest spatial structure is of significant importance for studying forest biomass accumulation and management. However, above-ground biomass (AGB) estimation based on satellite remote sensing struggles to capture forest spatial structure information, which to some extent affects the accuracy of AGB estimation. To address this issue, this study focused on Chinese fir (Cunninghamia lanceolata) plantations in Zhejiang Province. Using UAV-LiDAR (unmanned aerial vehicle light detection and ranging) data and a seed-point-based individual tree segmentation algorithm, information on individual fir trees was obtained. Building on this foundation, structural parameters such as neighborhood comparison (U), crowding degree (C), uniform angle index (W), competition index (CI), and canopy openness (K) were calculated, and their distribution characteristics analyzed. Finally, these parameters were integrated with UAV-LiDAR point cloud features to build machine learning models, and a geographical detector was used to quantify their contribution to AGB estimation. The research findings indicate the following: (1) The studied stands exhibited a random spatial pattern, moderate competition, and sufficient growing space. (2) A significant correlation existed between the U and AGB (r > 0.6), followed by CI. The optimal stand structure for AGB accumulation was C = 0.25, U < 0.5, CI in (0, 0.8], and K > 0.3. (3) The four machine learning models constructed by coupling spatial structure with point cloud features all improved the accuracy of AGB estimation for the fir forest to some extent. Among them, the XGBoost model performed best, achieving a model accuracy (R2) of 0.92 and a relatively low error (RMSE = 14.02 kg). (4) Geographical detector analysis indicated that U and CI contributed most to AGB estimation, with q-values of 0.44 and 0.37, respectively. Full article
Show Figures

Figure 1

22 pages, 5768 KB  
Article
Modernizing Romanian Forest Management by Integrating Geographic Information System (GIS) for Smarter, Data-Informed Decision-Making
by Florica Matei, Ioana Pop, Tudor Sălăgean, Jutka Deak, Horia-Dan Vlasin, Luisa Andronie, Lucia Adina Truță, Mircea Nap, Silvia Chiorean, Sorin T. Șchiop and Ioana Buia
Forests 2025, 16(8), 1326; https://doi.org/10.3390/f16081326 - 14 Aug 2025
Viewed by 264
Abstract
Traditional Forest Management Plans (FMPs), which often span hundreds of pages on paper, present significant challenges due to their extensive length and lack of clear spatiotemporal context. This study aimed to integrate complex data from FMPs into an interactive, spatially referenced database. Using [...] Read more.
Traditional Forest Management Plans (FMPs), which often span hundreds of pages on paper, present significant challenges due to their extensive length and lack of clear spatiotemporal context. This study aimed to integrate complex data from FMPs into an interactive, spatially referenced database. Using Gârda Forest in Romania’s Apuseni Mountains as a case study, we gathered raw data, developed the geodatabase’s spatial and alphanumerical components, and conducted spatial analyses related to ecological and production factors. Our GIS was designed to accommodate multiple attributes within the compartment layer’s attribute table. Unlike previous studies, we incorporated the full range of information from the Compartment Description, not just isolated management aspects. This comprehensive approach enabled spatial analysis to highlight, in maps, key features across the 50 compartments (totaling 752.5 ha) including dominant species (Norway spruce, silver fir, beech), target species composition (Norway spruce as the predominant target), land protection needs (required for 4% of the area), median forest volume (1565 m3 per compartment), elevation range (1020–1420 m), compartments with production functions, and silvicultural treatments. These thematic maps provide a tool for further analyses and clear spatial visualization. Our GIS-based methodology supports rapid condition assessments and aids forest professionals and decision-makers in promoting sustainable forest management. Full article
Show Figures

Figure 1

11 pages, 2092 KB  
Article
Regeneration and Herbivory Across Multiple Forest Types Within a Megafire Burn Scar
by Devri A. Tanner, Kordan Kildew, Noelle Zenger, Benjamin W. Abbott, Neil Hansen, Richard A. Gill and Samuel B. St. Clair
Fire 2025, 8(8), 323; https://doi.org/10.3390/fire8080323 - 14 Aug 2025
Viewed by 408
Abstract
Human activities are increasing the occurrence of megafires that alter ecological dynamics in forest ecosystems. The objective of this study was to understand the impacts of a 610 km2 megafire on patterns of tree regeneration and herbivory across three forest types (aspen/fir, [...] Read more.
Human activities are increasing the occurrence of megafires that alter ecological dynamics in forest ecosystems. The objective of this study was to understand the impacts of a 610 km2 megafire on patterns of tree regeneration and herbivory across three forest types (aspen/fir, oak/maple, and pinyon/juniper). Seventeen transect pairs in adjacent burned/unburned forest stands (6 aspen/fir, 5 oak/maple, and 6 pinyon/juniper) were measured. Sapling density, meristem removal, and height were measured across the transect network over a three-year period from 2019 to 2021. Tree species able to resprout from surviving roots (oak and aspen) generally responded positively to fire while species that typically regenerate by seeding showed little post-fire regeneration. Browse pressure was concentrated on deciduous tree species and was greater in burned areas but the effect diminished over the three-year study period. Meristem removal by herbivores was below the critical threshold, resulting in vertical growth over time. Our results indicate that forest regeneration within the megafire scar was generally positive and experienced sustainable levels of ungulate browsing that were likely to result in forest recruitment success. Full article
Show Figures

Figure 1

13 pages, 1201 KB  
Article
Post-Fire Succession in an Old-Growth Coast Redwood (Sequoia sempervirens) Forest
by Mojgan Mahdizadeh and Will Russell
Fire 2025, 8(8), 322; https://doi.org/10.3390/fire8080322 - 14 Aug 2025
Viewed by 479
Abstract
In 2020, a high-intensity wildfire burned over 35,000 ha in the Santa Cruz Mountains of California, including over 1700 ha of old-growth coast redwood forest. This event created a unique opportunity to evaluate post-fire succession. We compared vegetation recovery in high versus low/moderate [...] Read more.
In 2020, a high-intensity wildfire burned over 35,000 ha in the Santa Cruz Mountains of California, including over 1700 ha of old-growth coast redwood forest. This event created a unique opportunity to evaluate post-fire succession. We compared vegetation recovery in high versus low/moderate severity burned areas using data collected one year and four years following the fire. Random plot sampling was conducted at Big Basin Redwoods State Park to assess the regeneration of trees, shrubs, and herbaceous species. Descriptive and inferential statistical analyses were used to assess recovery over time and across burn severities. Results indicate significant increases in shrub cover and richness over time, with a positive association between shrub recruitment and high-severity fire. Notably, the fire-adapted species blue blossom (Ceanothus thyrsiflorus Eschsch.), which was not recorded one year following the fire, dominated the shrub layer after four years, particularly in higher severity areas. Herbaceous species also exhibited an increase in cover and richness over time, though a substantial portion of that increase was based on non-native species recruitment. Analysis did not indicate a significant relationship between fire severity and herbaceous species recovery, however. The regeneration of tree species occurred both through seedling recruitment and basal sprouting. The recruitment of basal sprouts was prolific following the fire, particularly for coast redwood. The number of basal sprouts declined significantly during the time frame of this study, as the sprouts became larger and began to self-thin. Seedling abundance, on the other hand, exhibited an approximately 30-fold increase. Seedling recruitment was primarily driven by coast redwood (Sequoia sempervirens [Lamb. ex D.Don] Endl) and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) and was positively correlated with low/moderate fire severity. These findings underscore the complex interactions shaping post-fire forest dynamics and highlight the importance of understanding such patterns to inform management strategies that support the resiliency of coast redwood forests in an era of increasing wildfires. Full article
Show Figures

Figure 1

14 pages, 1691 KB  
Article
Non-Destructive Permittivity and Moisture Analysis in Wooden Heritage Conservation Using Split Ring Resonators and Coaxial Probe
by Erika Pittella, Giuseppe Cannazza, Andrea Cataldo, Marta Cavagnaro, Livio D’Alvia, Antonio Masciullo, Raissa Schiavoni and Emanuele Piuzzi
Sensors 2025, 25(16), 4947; https://doi.org/10.3390/s25164947 - 10 Aug 2025
Viewed by 394
Abstract
This study presents a wireless, non-invasive sensing system for monitoring the dielectric permittivity of materials, with a particular focus on applications in cultural heritage conservation. The system integrates a passive split-ring resonator tag, electromagnetically coupled to a compact antipodal Vivaldi antenna, operating in [...] Read more.
This study presents a wireless, non-invasive sensing system for monitoring the dielectric permittivity of materials, with a particular focus on applications in cultural heritage conservation. The system integrates a passive split-ring resonator tag, electromagnetically coupled to a compact antipodal Vivaldi antenna, operating in the reactive near-field region. Both numerical simulations and experimental measurements demonstrate that shifts in the antenna’s reflection coefficient resonance frequency correlate with variations in the dielectric permittivity of the material under test. A calibration curve was established using reference materials—including low-density polyvinylchloride, polytetrafluoroethylene, polymethyl methacrylate, and polycarbonate—and validated through precise permittivity measurements. The system was subsequently applied to wood samples (fir, poplar, beech, and oak) at different humidity levels, revealing a sigmoidal relationship between moisture content and permittivity. The behavior was also confirmed using a portable and low-cost setup, consisting of a point-like coaxial sensor that could be easily moved and positioned as needed, enabling localized measurements on specific areas of interest of the sample, together with a miniaturized Vector Network Analyzer. These results underscore the potential of this portable, contactless, and scalable sensing platform for real-world monitoring of cultural heritage materials, enabling minimally invasive assessment of their structural and historical integrity. Moreover, by enabling the estimation of moisture content through dielectric permittivity, the system provides an effective method for early detection of water-induced deterioration in wood-based heritage items. This capability is particularly valuable for preventive conservation, as excessive moisture—often indicated by permittivity values above critical thresholds—can trigger biological or structural degradation. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 2801 KB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 - 6 Aug 2025
Viewed by 351
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

15 pages, 428 KB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 608
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

9 pages, 2739 KB  
Article
Study on Measurement Methods for Moisture Content Inside Wood
by Takuro Mori, Ayano Ariki, Yutaro Enatsu, Yuri Sadakane and Kei Tanaka
Buildings 2025, 15(15), 2719; https://doi.org/10.3390/buildings15152719 - 1 Aug 2025
Viewed by 212
Abstract
There has been growing interest in constructing mid- and high-rise wooden buildings in recent years. To ensure the feasibility of these structures, it is necessary to provide evidence that their long-term reliability can be guaranteed. While long-term testing is typically necessary, a continuous [...] Read more.
There has been growing interest in constructing mid- and high-rise wooden buildings in recent years. To ensure the feasibility of these structures, it is necessary to provide evidence that their long-term reliability can be guaranteed. While long-term testing is typically necessary, a continuous monitoring system for the moisture content of wood materials used in buildings has been proposed as an alternative. The proposed method measures the change in the local moisture content using the equilibrium moisture content calculated from the temperature and humidity measured using temperature and humidity sensors. The study used Japanese cypress specimens with dimensions of 50 mm, 75 mm, and 100 mm cubes and Douglas fir specimens of 50 mm cubes. The moisture content was measured under various external environments. Results showed that this system effectively captured changes in local moisture content, reflecting fluctuations in temperature and humidity in a controlled thermo-hygrostat over a three-day moisture absorption environment (20 °C, 95% humidity). Additionally, it was observed that higher moisture content levels yielded correspondingly higher local moisture content measurements compared to those obtained using the oven-drying method. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 10103 KB  
Article
Design Technique and Efficient Polyphase Implementation for 2D Elliptically Shaped FIR Filters
by Doru Florin Chiper and Radu Matei
Sensors 2025, 25(15), 4644; https://doi.org/10.3390/s25154644 - 26 Jul 2025
Viewed by 314
Abstract
This paper presents a novel analytical approach for the efficient design of a particular class of 2D FIR filters, having a frequency response with an elliptically shaped support in the frequency plane. The filter design is based on a Gaussian shaped prototype filter, [...] Read more.
This paper presents a novel analytical approach for the efficient design of a particular class of 2D FIR filters, having a frequency response with an elliptically shaped support in the frequency plane. The filter design is based on a Gaussian shaped prototype filter, which is frequently used in signal and image processing. In order to express the Gaussian prototype frequency response as a trigonometric polynomial, we developed it into a Fourier series up to a specified order, given by the imposed approximation precision. We determined analytically a 1D to 2D frequency transformation, which was applied to the factored frequency response of the prototype, yielding directly the factored frequency response of a directional, elliptically shaped 2D filter, with specified selectivity and an orientation angle. The designed filters have accurate shapes and negligible distortions. We also designed a 2D uniform filter bank of elliptical filters, which was then applied in decomposing a test image into sub-band images, thus proving its usefulness as an analysis filter bank. Then, the original image was accurately reconstructed from its sub-band images. Very selective directional elliptical filters can be used in efficiently extracting straight lines with specified orientations from images, as shown in simulation examples. A computationally efficient implementation at the system level was also discussed, based on a polyphase and block filtering approach. The proposed implementation is illustrated for a smaller size of the filter kernel and input image and is shown to have reduced computational complexity due to its parallel structure, being much more arithmetically efficient compared not only to the direct filtering approach but also with the most recent similar implementations. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop