Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,444)

Search Parameters:
Keywords = analysis laboratory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1194 KB  
Article
Impact of Induced Forward Leg Movements on Kinematics and Kinetics During Quiet Standing in Healthy Young Right-Leg-Dominant Women: A Quasi-Experimental Study
by Michalina Gulatowska, Michalina Błażkiewicz, Anatolii Tsos and Jacek Wąsik
Appl. Sci. 2025, 15(19), 10764; https://doi.org/10.3390/app151910764 (registering DOI) - 6 Oct 2025
Abstract
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg [...] Read more.
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg perturbations during quiet standing. Methods: This investigation used a quasi-experimental repeated-measures design. Sixteen healthy young women (20.1 ± 0.7 years), all right-leg dominant, were tested using the Gait Real-Time Analysis Interactive Laboratory (GRAIL) system. Forward treadmill perturbations were applied to each limb during quiet standing, and joint angles, ground reaction forces, and torques were measured across baseline, perturbation, and response phases. As the data were non-normally distributed, paired comparisons were conducted using the Wilcoxon test, with significance set at p < 0.05 (Bonferroni corrected) and effect sizes (r) reported. Results: Joint angles remained symmetrical between limbs (no significant differences after correction). In contrast, kinetic measures showed clear asymmetries: at baseline, the dominant limb produced greater knee torque (p = 0.0003, r = 0.73), ankle torque (p = 0.0003, r = 0.76), and medio-lateral GRF (p = 0.0003, r = 0.87). During perturbation, it again generated higher knee (p = 0.0036, r = 0.43) and ankle torques (p = 0.0003, r = 0.53), with larger medio-lateral GRF (p = 0.0003, r = 0.87). In the response phase, the dominant limb showed greater hip torque (p = 0.0033, r = 0.43) and a small dorsiflexion shift at the ankle (p = 0.0066, r = 0.41). Anterior–posterior GRF changes were minor and non-significant after correction. Conclusions: Induced forward leg movements caused limb-specific kinetic adjustments while maintaining overall kinematic symmetry. The dominant leg contributed more actively to balance recovery, highlighting its role in stabilizing posture under small perturbations. These findings are specific to the studied demographic and should not be generalized to males, older adults, left-dominant individuals, or clinical populations without further research. Full article
(This article belongs to the Special Issue Applied Biomechanics: Sports Performance and Rehabilitation)
Show Figures

Figure 1

25 pages, 2706 KB  
Article
Fatigue Load Analysis of Yawed Wind Turbines Considering Geometric Nonlinearity of Blades
by Dereje Haile Hirgeto, Guo-Wei Qian, Xuan-Yi Zhou and Wei Wang
Energies 2025, 18(19), 5290; https://doi.org/10.3390/en18195290 - 6 Oct 2025
Abstract
Fatigue damage of yawed wind turbine components can be caused by repeated long-term unsteady asymmetric inflow loads across the rotor swept area, necessitating fatigue load analysis to ensure the in-operation safety of wind turbines. This study investigates the impact of geometric nonlinearity on [...] Read more.
Fatigue damage of yawed wind turbine components can be caused by repeated long-term unsteady asymmetric inflow loads across the rotor swept area, necessitating fatigue load analysis to ensure the in-operation safety of wind turbines. This study investigates the impact of geometric nonlinearity on the fatigue loads of wind turbine components. The geometrically exact beam theory (GEBT), implemented in BeamDyn of OpenFAST, is employed to model full geometric nonlinearity. For comparison, ElastoDyn in OpenFAST, which uses the generalized Euler–Bernoulli beam theory for straight isotropic beams, is also utilized. Aeroelastic simulations were conducted for the national renewable energy laboratory (NREL 5 MW) and international energy agency (IEA) 15 MW wind turbines. Fatigue loads, quantified by the damage equivalent load (DEL) based on Palmgren–Miner’s rule, were analyzed for critical components, including blade out-of-plane (OOP) moments, low-speed shaft (LSS) torque, LSS bending moment (LSSBM), and tower base bending moment (TBBM). Results indicate that geometric nonlinearity significantly influences fatigue damage in critical turbine components, with significant differences observed between BeamDyn and ElastoDyn simulations. Full article
(This article belongs to the Special Issue New Trends in Wind Energy and Wind Turbines)
19 pages, 1699 KB  
Article
Real-World Patterns and Outcomes of Anticoagulation Therapy in Pulmonary Embolism: An Observational Dual-Centre Registry Analysis
by Ivana Jurin, Josip Pejić, Karlo Gjuras, Fran Šaler, Tea-Terezija Cvetko, Nevenka Piskač Živković, Zdravko Mitrović, Šime Manola, Marin Pavlov, Aleksandar Blivajs, Kristina Marić Bešić, Dalibor Divković and Irzal Hadžibegović
J. Cardiovasc. Dev. Dis. 2025, 12(10), 394; https://doi.org/10.3390/jcdd12100394 - 6 Oct 2025
Abstract
Background: Pulmonary embolism (PE) is a major cause of cardiovascular morbidity and mortality. Guidelines favor direct oral anticoagulants (DOACs) over vitamin K antagonists (VKAs), but real-world Croatian data are scarce. Methods: A prospective dual-center registry included 773 patients discharged with acute PE between [...] Read more.
Background: Pulmonary embolism (PE) is a major cause of cardiovascular morbidity and mortality. Guidelines favor direct oral anticoagulants (DOACs) over vitamin K antagonists (VKAs), but real-world Croatian data are scarce. Methods: A prospective dual-center registry included 773 patients discharged with acute PE between 2013 and 2024. Clinical, laboratory, and socioeconomic data were collected. The primary outcome was all-cause mortality; secondary outcomes were recurrent venous thromboembolism (VTE) and major bleeding. Results: DOAC users were younger, with higher education and income, than VKA or heparin patients. Median follow-up was 1106 days. Mortality reached 60.3% with VKA, 26.0% with DOAC, and 84.1% with heparin (p < 0.001). VTE recurrence did not differ significantly. Major bleeding occurred in 9.3% of VKA versus 2.9% of DOAC patients (p = 0.003). Adjusted analysis showed a lower mortality risk with DOAC versus VKA (HR 0.62, 95% CI 0.48–0.80, p < 0.001), while heparin predicted higher mortality (HR 3.63, 95% CI 2.54–5.21, p < 0.001). Higher PESI class independently increased mortality and recurrence. Conclusion: In the first Croatian PE cohort, DOACs were linked to reduced mortality and bleeding risk compared with VKAs, with similar recurrence. Clinical, socioeconomic, and policy factors strongly influenced prescribing patterns and outcomes. Full article
Show Figures

Graphical abstract

16 pages, 2904 KB  
Article
Morphological and Structural Analysis of Pyrolytic Carbon from Simple Thermal Methane Pyrolysis
by Michał Wojtasik, Wojciech Krasodomski, Grażyna Żak, Katarzyna Wojtasik and Wojciech Pakieła
Appl. Sci. 2025, 15(19), 10742; https://doi.org/10.3390/app151910742 - 6 Oct 2025
Abstract
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), [...] Read more.
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), process efficiency (36.1%), and very high selectivity (98.9%) towards hydrogen production, highlighting its potential as a CO2-free hydrogen generation method. Distinct carbon morphologies were observed depending on the formation areas within the reactor: a predominant flake-like silver carbon formed on reactor walls at temperatures between 600 and 980 °C (accounting for 91% of the solid product) and a minor powdery carbon formed near 980–1000 °C (9% of the solids). The powdery carbon exhibited a high specific surface area (125.3 m2/g), substantial mesoporosity (60%), and porous spherical aggregates, indicating an amorphous structure. In contrast, flake-like carbon demonstrated a low surface area (1.99 m2/g), high structural order confirmed by Raman spectroscopy, and superior thermal stability, making it suitable for advanced applications requiring mechanical robustness. Additionally, polycyclic aromatic hydrocarbons were detected in cooler zones of the reactor, suggesting side reactions in low-temperature areas. The study underscores the impact of temperature zones on carbon structure and properties, emphasizing the importance of precise thermal control to tailor carbon materials for diverse industrial applications while producing clean hydrogen. Full article
Show Figures

Figure 1

15 pages, 1255 KB  
Article
Concurrent Validity of the Optojump Infrared Photocell System in Lower Limb Peak Power Assessment: Comparative Analysis with the Wingate Anaerobic Test and Sprint Performance
by Aymen Khemiri, Yassine Negra, Halil İbrahim Ceylan, Manel Hajri, Abdelmonom Njah, Younes Hachana, Mevlüt Yıldız, Serdar Bayrakdaroğlu, Raul Ioan Muntean and Ahmed Attia
Appl. Sci. 2025, 15(19), 10741; https://doi.org/10.3390/app151910741 - 6 Oct 2025
Abstract
Aim: This study analyzed the concurrent validity of the Optojump infrared photocell system for estimating lower limb peak power by comparing it with the 15 s Wingate anaerobic test (WAnT) and examining relationships with sprint performance indicators. Methods: Twelve physically active university students [...] Read more.
Aim: This study analyzed the concurrent validity of the Optojump infrared photocell system for estimating lower limb peak power by comparing it with the 15 s Wingate anaerobic test (WAnT) and examining relationships with sprint performance indicators. Methods: Twelve physically active university students (ten males, two females; age: 23.39 ± 1.47 years; body mass: 73.08 ± 9.19 kg; height: 173.67 ± 6.97 cm; BMI: 24.17 ± 1.48 kg·m−2) completed a cross-sectional validation protocol. Participants performed WAnT on a calibrated Monark ergometer (7.5% body weight for males, 5.5% for females), 30 s continuous jump tests using the Optojump system (Microgate, Italy), and 30 m sprint assessments with 10 m and 20 m split times. Peak power was expressed in absolute (W), relative (W·kg−1), and allometric (W·kg−0.67) terms. Results: Thirty-second continuous jump testing produced systematically higher peak power values across all metrics (p < 0.001). Mean differences indicated large effect sizes: relative power (Cohen’s d = 0.99; 18.263 ± 4.243 vs. 10.99 ± 1.58 W·kg−1), absolute power (d = 0.86; 1381.71 ± 393.44 vs. 807.28 ± 175.45 W), and allometric power (d = 0.79). Strong correlations emerged between protocols, with absolute power showing the strongest association (r = 0.842, p < 0.001). Linear regression analysis revealed that 30 s continuous jump-derived measurements explained 71% of the variance in Wingate outcomes (R2 = 0.710, p < 0.001). Sprint performance showed equivalent predictive capacity for both tests (Wingate: R2 = 0.66; 30 s continuous jump: R2 = 0.67). Conclusions: The Optojump infrared photocell system provides a valid and practical alternative to laboratory-based ergometry for assessing lower limb anaerobic power. While it systematically overestimates absolute values compared with the Wingate anaerobic test, its strong concurrent validity (r > 0.80), large effect sizes, and equivalent predictive ability for sprint performance (R2 = 0.66–0.71) confirm its reliability as a field-based assessment tool. These findings underscore the importance of sport-specific, weight-bearing assessment technologies in modern sports biomechanics, providing coaches, practitioners, and clinicians with a feasible method for monitoring performance, talent identification, and training optimization. The results further suggest that Optojump-based protocols can bridge the gap between laboratory precision and ecological validity, supporting both athletic performance enhancement and injury prevention strategies. Full article
(This article belongs to the Special Issue Advances in Sports Science and Biomechanics)
Show Figures

Figure 1

26 pages, 39341 KB  
Article
Recognition of Wood-Boring Insect Creeping Signals Based on Residual Denoising Vision Network
by Henglong Lin, Huajie Xue, Jingru Gong, Cong Huang, Xi Qiao, Liping Yin and Yiqi Huang
Sensors 2025, 25(19), 6176; https://doi.org/10.3390/s25196176 - 5 Oct 2025
Abstract
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high [...] Read more.
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high labor cost, and accuracy relying on human experience, making it difficult to meet the practical needs of efficient and intelligent customs quarantine. To address this issue, this paper develops a rapid identification system based on the peristaltic signals of wood-boring pests through the PyQt framework. The system employs a deep learning model with multi-attention mechanisms, namely the Residual Denoising Vision Network (RDVNet). Firstly, a LabVIEW-based hardware–software system is used to collect pest peristaltic signals in an environment free of vibration interference. Subsequently, the original signals are clipped, converted to audio format, and mixed with external noise. Then signal features are extracted through three cepstral feature extraction methods Mel-Frequency Cepstral Coefficients (MFCC), Power-Normalized Cepstral Coefficients (PNCC), and RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) and input into the model. In the experimental stage, this paper compares the denoising module of RDVNet (de-RDVNet) with four classic denoising models under five noise intensity conditions. Finally, it evaluates the performance of RDVNet and four other noise reduction classification models in classification tasks. The results show that PNCC has the most comprehensive feature extraction capability. When PNCC is used as the model input, de-RDVNet achieves an average peak signal-to-noise ratio (PSNR) of 29.8 and a Structural Similarity Index Measure (SSIM) of 0.820 in denoising experiments, both being the best among the comparative models. In classification experiments, RDVNet has an average F1 score of 0.878 and an accuracy of 92.8%, demonstrating the most excellent performance. Overall, the application of this system in customs timber quarantine can effectively improve detection efficiency and reduce labor costs and has significant practical value and promotion prospects. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

24 pages, 7435 KB  
Article
Analysis of the Multimedia, Crossmedia and Transmedia Elements in Spanish Journalistic Media Projects During the Period 2020–2022
by Ana Serrano-Tellería and Arnau Gifreu-Castells
Journal. Media 2025, 6(4), 169; https://doi.org/10.3390/journalmedia6040169 - 5 Oct 2025
Abstract
This paper presents a qualitative exploratory study based on the analysis of a representative sample of 35 projects carried out during the period 2020–2022 by six Spanish newspapers: elDiario.es, ABC, IDEAL, El Correo, ElConfidencial.com and El País. This study aims to detect and [...] Read more.
This paper presents a qualitative exploratory study based on the analysis of a representative sample of 35 projects carried out during the period 2020–2022 by six Spanish newspapers: elDiario.es, ABC, IDEAL, El Correo, ElConfidencial.com and El País. This study aims to detect and analyze the main elements of multimedia, crossmedia and transmedia content in the selected projects using an original analysis sheet designed for this research. In relation to the categories proposed in the categorization model, in this work we will focus on analyzing two in particular: authorship and information architecture. The projects were selected based on criteria of appropriateness, quality and innovation, as well as the results of semi-structured interviews with the heads and innovation managers (laboratories) of the media included in the framework of the projects ‘NEWSNET: News, Networks, and Users in the Hybrid Media System: Transformation of the Media Industry and the News in the Post-Industrial Era’ and ‘IAMEDIA: Impact of Artificial Intelligence and Algorithms on Online Media, Journalist and Audiences’. The aim of the qualitative analysis is to propose a list of aspects, characteristics, and fundamentals in the ideation, elaboration, and distribution of these types of products. We conclude that the results of applying the designed analysis sheet help us to understand these processes and also to propose alternatives and improvements in its design and implementation Full article
Show Figures

Figure 1

15 pages, 7489 KB  
Article
Characteristics of the Gold-Decorated Wooden Sculptures of Qing Dynasty Collected in Qianjiang Cultural Administration Institute, Chongqing, China
by Yani An, Keyou Fang, Menghua Pang and Xiaopan Fan
Coatings 2025, 15(10), 1163; https://doi.org/10.3390/coatings15101163 - 5 Oct 2025
Abstract
Two gold-decorated wooden sculptures of Qing Dynasty collected in Qianjiang Cultural Administration Institute, Chongqing, China, holds significant cultural value. Although in appearance they were preserved completely, the wooden bodies exhibited a certain degree of decay with severe peeling of the surface painted layer [...] Read more.
Two gold-decorated wooden sculptures of Qing Dynasty collected in Qianjiang Cultural Administration Institute, Chongqing, China, holds significant cultural value. Although in appearance they were preserved completely, the wooden bodies exhibited a certain degree of decay with severe peeling of the surface painted layer and gold lacquer layer. In this study, the samples from the sculptures were characterized by microscopy, SED–EDS (Scanning Electron Microscopy and Energy Dispersive Spectrometer) analysis, and Raman spectroscopy, while the preservation state of wooden core was assessed through the fluorescence microscopy and NREL (National Renewable Energy Laboratory) chemical analysis methods. Findings reveal that the raw material for wooden sculpture is cypress, and holocellulose content of wooden core is as low as 32%. The raw materials for red pigment include cinnabar (HgS) and hematite (Fe2O3). There are multiple layers of lacquer and gold can be observed. There is a layer made of clay, gypsum, or brick ash beneath the lacquer layer and colored layer. The gold layer on the surface adopted traditional Chinese gilding technique which is called sticking gold. This study provides insights into the material properties and technological features of these wooden sculptures, offering a reference for future protection of similar sculptures. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

19 pages, 2759 KB  
Article
Carbon-Source Effects on Growth and Secondary Metabolism in the Marine Bacteroidota Tenacibaculum mesophilum and Fulvivirga kasyanovii
by Luis Linares-Otoya, Virginia Linares-Otoya, Gladys Galliani-Huamanchumo, Terecita Carrion-Zavaleta, Jose Condor-Goytizolo, Till F. Schäberle, Mayar L. Ganoza-Yupanqui and Julio Campos-Florian
Mar. Drugs 2025, 23(10), 394; https://doi.org/10.3390/md23100394 - 4 Oct 2025
Abstract
Marine Bacteroidota are recognized bacterial producers of bioactive metabolites, yet their biosynthetic potential remains cryptic under standard laboratory conditions. Here, we developed chemically defined media for Fulvivirga kasyanovii 48LL (Cytophagia) and Tenacibaculum mesophilum fLL (Flavobacteriia) to evaluate the effect of environmentally relevant carbon [...] Read more.
Marine Bacteroidota are recognized bacterial producers of bioactive metabolites, yet their biosynthetic potential remains cryptic under standard laboratory conditions. Here, we developed chemically defined media for Fulvivirga kasyanovii 48LL (Cytophagia) and Tenacibaculum mesophilum fLL (Flavobacteriia) to evaluate the effect of environmentally relevant carbon sources on growth and secondary metabolism. F. kasyanovii utilized 31 of 34 tested carbon sources whereas T. mesophilum grew on only five substrates, underscoring a distinct nutritional preferences. Substrate significantly influenced the antibacterial activity of F. kasyanovii extracts. Growth on β-1,3-glucan, glycerol, poly(β-hydroxybutyrate) (PHB), fish gelatin, or pectin resulted in extracts generating the largest inhibition zones (10–13 mm) against Bacillus subtilis or Rossellomorea marisflavi. Genome analysis revealed F. kasyanovii to be enriched in biosynthetic gene clusters (BGCs), notably harboring a ~570 kb genomic island comprising five large NRPS/PKS-type clusters. Quantitative PCR confirmed carbon-source-dependent regulation of these operons: glucose induced BGC1, BGC3, and BGC4, while κ-carrageenan and PHB upregulated BGC2. Conversely, yeast–peptone medium (analogous to standard marine broth) repressed transcription across all active clusters. These findings demonstrate that naturally occurring carbon sources can selectively activate cryptic BGCs and modulate antibacterial activity in F. kasyanovii, suggesting that similar strategy can be used for natural-product discovery in marine Bacteroidota. Full article
(This article belongs to the Special Issue Fermentation Processes for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

13 pages, 276 KB  
Case Report
Spotted Fever Rickettsioses in Panama: New Cases and the Gaps That Hinder Its Epidemiological Understanding
by Sergio Bermúdez, Ericka Ferguson Amores, Naty Aguirre, Michelle Hernández, Boris Garrido, Lillian Domínguez, Yamitzel Zaldívar, Claudia González, Jorge Omar Castillo, Alexander Martínez-Caballero, Ambar Moreno, Mabel Martínez-Montero, Ambar Poveda, Domicio Espino, Karina Baker and Franklyn Samudio
Pathogens 2025, 14(10), 1006; https://doi.org/10.3390/pathogens14101006 - 4 Oct 2025
Abstract
Rickettsia rickettsii is the most virulent agent of the genus Rickettsia that causes one of the most relevant vector-borne diseases in the Americas (RRSF). RRSF manifests with many non-specific acute clinical symptoms complicating its diagnosis and can lead to death if not treated [...] Read more.
Rickettsia rickettsii is the most virulent agent of the genus Rickettsia that causes one of the most relevant vector-borne diseases in the Americas (RRSF). RRSF manifests with many non-specific acute clinical symptoms complicating its diagnosis and can lead to death if not treated appropriately. RRSF has been reported in Canada, the United States of America, Mexico, Costa Rica, Panama, Colombia, Brazil, and Argentina. In addition to R. rickettsii, mild and severe spotted fever group rickettsioses (SFGR) have been reported in the Americas; however, the true prevalence of these diseases is unknown. In Panama, RRSF have been reported in four of 14 provinces during two outbreak periods: five cases including two fatalities were identified in 1950–1951, and 23 cases including 17 fatalities between 2004 and 2025. This paper presents the clinical characterization of a fatal case of RRSF in Coclé province and a severe case of SFGR in a mountainous area of the Gnäbe Buglé Indigenous Comarca (GBIC). Laboratory confirmation was performed by molecular analysis of tissues obtained from necropsies in the case of RRSF and by immunofluorescence assay (IFA) in the case of SFGR. Furthermore, this paper identifies existing gaps in the initial clinical suspicion and pertinent to SFGR in Panama, which may be applicable to other countries in the region. In the last 21 years, cases have occurred upon contact with ticks in rural areas (13), urban and suburban locations (7), rural woodlands (2), and forests (1). Provinces with more cases are Panamá (7 of 23, 6 died), Coclé (5 of 23, 5 died), Colón (3 of 23, 1 died), Panamá Oeste (1 of 23, 1 died), and GBIC (7 of 23, 4 died), including a cluster of seven cases in 2019. Therefore, Coclé province is considered one of the endemic areas for RRSF in Panama, while the latest cases from the GBIC since 2019 indicate that mountainous areas are an eco-epidemiological scenario to include in the transmission of these diseases. Although this disease has a low prevalence, patients who present symptoms commonly associated with more common diseases such as dengue, other arboviruses, malaria, and leptospirosis, among others, should be included in the diagnostic suspicion. Without diagnostic suspicion and adequate treatment, the patient can die. Full article
(This article belongs to the Collection Advances in Tick Research)
23 pages, 2985 KB  
Review
Analysis of the Durability of Thermal Insulation Properties in Inverted Foundation Slab Systems of Single-Family Buildings in Poland
by Barbara Francke, Dorota Kula and Eugeniusz Koda
Buildings 2025, 15(19), 3579; https://doi.org/10.3390/buildings15193579 - 4 Oct 2025
Abstract
This manuscript is aimed at analyzing how operating factors may affect the durability of thermal insulation in building partitions located underground. It examines the durability of inverted insulation systems where thermal insulation is installed above the waterproofing layer and used in residential foundation [...] Read more.
This manuscript is aimed at analyzing how operating factors may affect the durability of thermal insulation in building partitions located underground. It examines the durability of inverted insulation systems where thermal insulation is installed above the waterproofing layer and used in residential foundation slabs. The article demonstrates that, despite their popularity due to cost efficiency, the long-term success of these systems depends on thorough investigations of thermal isolation, especially considering different climate conditions. The analysis was based on an extensive literature review (2016–2024), supplemented with laboratory test results on extruded (XPS) and expanded (EPS) polystyrene boards. Additional tests examined the water penetration mechanism into insulation layers that are in direct contact with groundwater, revealing that cyclic freezing and thawing significantly increase moisture levels. The findings highlight the need for updated region-specific guidelines for the underground insulation in Central and Eastern Europe. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 1603 KB  
Article
EEG-Powered UAV Control via Attention Mechanisms
by Jingming Gong, He Liu, Liangyu Zhao, Taiyo Maeda and Jianting Cao
Appl. Sci. 2025, 15(19), 10714; https://doi.org/10.3390/app151910714 - 4 Oct 2025
Abstract
This paper explores the development and implementation of a brain–computer interface (BCI) system that utilizes electroencephalogram (EEG) signals for real-time monitoring of attention levels to control unmanned aerial vehicles (UAVs). We propose an innovative approach that combines spectral power analysis and machine learning [...] Read more.
This paper explores the development and implementation of a brain–computer interface (BCI) system that utilizes electroencephalogram (EEG) signals for real-time monitoring of attention levels to control unmanned aerial vehicles (UAVs). We propose an innovative approach that combines spectral power analysis and machine learning classification techniques to translate cognitive states into precise UAV command signals. This method overcomes the limitations of traditional threshold-based approaches by adapting to individual differences and improving classification accuracy. Through comprehensive testing with 20 participants in both controlled laboratory environments and real-world scenarios, our system achieved an 85% accuracy rate in distinguishing between high and low attention states and successfully mapped these cognitive states to vertical UAV movements. Experimental results demonstrate that our machine learning-based classification method significantly enhances system robustness and adaptability in noisy environments. This research not only advances UAV operability through neural interfaces but also broadens the practical applications of BCI technology in aviation. Our findings contribute to the expanding field of neurotechnology and underscore the potential for neural signal processing and machine learning integration to revolutionize human–machine interaction in industries where dynamic relationships between cognitive states and automated systems are beneficial. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Graphical abstract

16 pages, 299 KB  
Review
Mycobacterium tuberculosis Complex Infections in Animals: A Comprehensive Review of Species Distribution and Laboratory Diagnostic Methods
by Ewelina Szacawa, Łukasz Radulski, Marcin Weiner, Krzysztof Szulowski and Monika Krajewska-Wędzina
Pathogens 2025, 14(10), 1004; https://doi.org/10.3390/pathogens14101004 - 4 Oct 2025
Abstract
The Mycobacterium tuberculosis complex (MTBC) represents one of the most significant bacterial pathogen groups affecting both animals and humans worldwide. This review provides a comprehensive analysis of MTBC species distribution across different animal hosts and evaluates current laboratory diagnostic methodologies for pathogen detection [...] Read more.
The Mycobacterium tuberculosis complex (MTBC) represents one of the most significant bacterial pathogen groups affecting both animals and humans worldwide. This review provides a comprehensive analysis of MTBC species distribution across different animal hosts and evaluates current laboratory diagnostic methodologies for pathogen detection and identification. The complex comprises seven primary species: Mycobacterium bovis, M. caprae, M. tuberculosis, M. microti, M. canettii, M. africanum, and M. pinnipedii, each exhibiting distinct host preferences, geographical distributions, and pathogenic characteristics. Despite sharing >99% genetic homology, these species demonstrate variable biochemical properties, morphological features, and pathogenicity profiles across mammalian species. Current diagnostic approaches encompass both traditional culture-based methods and advanced molecular techniques, including whole genome sequencing. This review emphasises the critical importance of rapid, accurate detection methods for effective tuberculosis surveillance and control programmes in veterinary and public health contexts. Full article
11 pages, 1392 KB  
Article
Laboratory Analysis of Backpack Design and Walking Gradient Effects on Gait Kinetics and Kinematics
by Timothy Grigg, Natalia Kabaliuk and Sibi Walter
Sports 2025, 13(10), 350; https://doi.org/10.3390/sports13100350 - 3 Oct 2025
Abstract
Background: Heavy backpacks are carried by hikers during prolonged trekking trips. A backpack’s design could impact a hiker’s gait kinematics and kinetics. Objective: We aimed to assess the impact of backpack designs on lumbar extension (LE) and centre of pressure (COP) during walking. [...] Read more.
Background: Heavy backpacks are carried by hikers during prolonged trekking trips. A backpack’s design could impact a hiker’s gait kinematics and kinetics. Objective: We aimed to assess the impact of backpack designs on lumbar extension (LE) and centre of pressure (COP) during walking. Methods: Participants (n = 8; age = 23 ± 2) attended testing sessions to assess a traditional backpack (TBP) and a balance backpack (BBP) against no backpack (NBP) control while walking on three gradients (flat, 0°; incline, 12°; decline, −12°). Walking tests were conducted on a force plate-embedded treadmill with a motion capture system. Statistical tests assessed the effect of a backpack on LE and COP during carriage. Dunnett’s multiple comparison post hoc test identified significant main effects (5% significance). Results: The observed differences in an individual’s LE and COP across all three gradients were statistically (a = 0.05) significantly less when using a BBP compared to a TBP. Conclusion: Comparative analysis revealed that the BBP’s anterior–posterior loading system closely replicated the gait pattern of unloaded walking across the observed gradients. These findings suggest that hikers using a BBP may exhibit a gait resembling unloaded gait in comparison to a TBP gait. Full article
(This article belongs to the Special Issue Biomechanics and Sports Performances (2nd Edition))
Show Figures

Figure 1

15 pages, 1190 KB  
Article
Tropical Weathering Effects on Neat Gasoline: An Analytical Study of Volatile Organic Profiles
by Khairul Osman, Naadiah Ahmad Mazlani, Gina Francesca Gabriel, Noor Hazfalinda Hamzah, Rogayah Abu Hassan, Dzulkiflee Ismail and Wan Nur Syuhaila Mat Desa
Chemosensors 2025, 13(10), 363; https://doi.org/10.3390/chemosensors13100363 - 3 Oct 2025
Abstract
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most [...] Read more.
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most research on gasoline weathering has been conducted in controlled laboratory settings in temperate climates. However, the effects of tropical conditions on the rate of gasoline weathering and the resulting chemical composition of volatiles remain largely unexplored. Understanding how tropical environmental factors alter gasoline weathering is essential for accurate fire debris interpretation in such regions. This study investigates how tropical climates impact gasoline weathering indoors and outdoors. Weathered samples were prepared by volume reduction method, gradually evaporating gasoline from 10% to 95%. Indoor samples were exposed to room temperature, while outdoor samples were left in open space under natural tropical conditions. Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed chromatographic shifts in heavier compounds (C3–C4 alkylbenzenes) compared to lighter ones like toluene as weathering progressed. Correlation between indoor and outdoor samples was high (>0.970) at 10–50% weathering but declined (<0.600) at 90–95%, indicating differing patterns. All target compounds remained detectable across all samples. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

Back to TopTop