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Abstract

Currently, the customs inspection of wood-boring pests in timber still primarily relies on
manual visual inspection, which involves observing insect holes on the timber surface and
splitting the timber for confirmation. However, this method has significant drawbacks such
as long detection time, high labor cost, and accuracy relying on human experience, making
it difficult to meet the practical needs of efficient and intelligent customs quarantine. To
address this issue, this paper develops a rapid identification system based on the peristaltic
signals of wood-boring pests through the PyQt framework. The system employs a deep
learning model with multi-attention mechanisms, namely the Residual Denoising Vision
Network (RDVNet). Firstly, a LabVIEW-based hardware-software system is used to collect
pest peristaltic signals in an environment free of vibration interference. Subsequently, the
original signals are clipped, converted to audio format, and mixed with external noise.
Then signal features are extracted through three cepstral feature extraction methods Mel-
Frequency Cepstral Coefficients (MFCC), Power-Normalized Cepstral Coefficients (PNCC),
and RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) and input into the model.
In the experimental stage, this paper compares the denoising module of RDVNet (de-
RDVNet) with four classic denoising models under five noise intensity conditions. Finally,
it evaluates the performance of RDVNet and four other noise reduction classification models
in classification tasks. The results show that PNCC has the most comprehensive feature
extraction capability. When PNCC is used as the model input, de-RDVNet achieves an
average peak signal-to-noise ratio (PSNR) of 29.8 and a Structural Similarity Index Measure
(SSIM) of 0.820 in denoising experiments, both being the best among the comparative
models. In classification experiments, RDVNet has an average F1 score of 0.878 and an
accuracy of 92.8%, demonstrating the most excellent performance. Overall, the application
of this system in customs timber quarantine can effectively improve detection efficiency
and reduce labor costs and has significant practical value and promotion prospects.

Keywords: residual denoising; feature extraction; comparison experiments; recognition
system

1. Introduction

With the continuous advancement of global trade, the volume of international tim-
ber circulation has significantly increased, leading to a growing risk of the cross-border
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transmission of wood-boring pests. Such pests are highly prone to spreading with cargo
flow during timber transportation. By boring into the internal structure of timber, they
not only severely reduce the economic value of timber but also cause the invasion of alien
harmful species, posing a potential threat to agricultural and forestry ecosystems. Currently,
customs mainly rely on manual visual inspection for timber pest detection. Professional
personnel observe signs of insect holes on the timber surface and make judgments by com-
bining means such as splitting timber. These wood-boring insects are in their infancy and
are weak and difficult to detect, as shown in Figure 1. However, this method has problems
such as long detection time, high labor costs, low efficiency, and being susceptible to sub-
jective experience, making it difficult to meet the needs of rapid quarantine for large-scale
and high-throughput import and export timber. Therefore, achieving the rapid, accurate,
and intelligent detection of wood-boring pests inside timber has become a research hotspot
in the field of pest quarantine [1]. In recent years, the academic community has carried out
extensive explorations on detection technologies for wood-boring pests, particularly focus-
ing on the identification of weak vibration signals generated by their feeding or peristalsis.
The research path has roughly gone through three stages: (1) detection by analyzing the
pulse interval range corresponding to signal characteristic spectrograms or signal-based
algorithms; (2) detection by combining signal characteristic spectrograms with machine
learning methods; and (3) detection by combining signal characteristic spectrograms with

deep learning methods.

Figure 1. Wood boring insects: (a—d) show the shapes of boring insects in different wood species.

In the field of wood-boring pest detection, early studies predominantly employed
methods based on signal characteristic spectrogram analysis and traditional signal process-
ing algorithms, achieving the preliminary identification of pest infestations by extracting
features from weak vibration signals generated by insect activities. For instance, Guo et al.
utilized pickups and recorders to collect crawling sound signals of stored grain pests
(Tribolium confusum and Oryzaephilus surinamensis) and digitally processed the collected
signals via Matlab software [2,3]. Their approach involved low-pass filtering to eliminate
background noise, followed by extracting acoustic functional spectrum features of crawling
sounds and identifying pest species by comparing energy value differences in power spec-
trum pulses among different species. Geng et al.used a microphone to collect adult crawling
sound signals of Tribolium castaneum and Sitophilus oryzae [4,5]. After low-pass filtering and
wavelet threshold denoising, he analyzed the main frequency and sub-frequency character-
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istics in wheat medium. The study revealed that although the main frequencies of power
spectra for different pests were close, the sub-frequency distributions exhibited significant
differences, serving as effective distinguishing criteria. In foreign studies, Mankin et al.
conducted mean spectral energy distribution analysis on crawling and feeding sounds of
larvae such as Rhynchophorus ferrugineus, Monochamus alternatus, and Buprestidae, primarily
using characteristic parameters such as high-frequency pulse energy, pulse burst frequency,
and pulse interval for species differentiation [6]. Dingfeng Lou collected feeding sounds
of six pest species through a microphone in an anechoic chamber, plotted their power
spectral density diagrams, and determined the main energy distribution frequency bands
for species identification [7]. At the signal algorithm level, Mingzhen Zhang recorded
crawling and turning vibration signals of Sitophilus zeamais and Tribolium castaneum on a
film in a soundproof room [8]. He used low-pass filtering and wavelet thresholding for de-
noising, and combined with the FastICA algorithm to achieve signal centering, whitening,
and independent component extraction, thereby separating mixed signals of different pest
species. Shenghuang Liu, for the vibration signals of three species of longhorn beetle lar-
vae, firstly applied Variational Mode Decomposition (VMD) for denoising, then extracted
the energy proportion of each node through three-layer wavelet packet decomposition,
and achieved species identification by integrating the fluctuation duration of time-domain
signals with the main frequency components of the frequency domain [9]. The above
studies indicate that in relatively quiet or ideal experimental environments, methods based
on spectrograms and traditional signal processing algorithms exhibit certain effectiveness
in identifying wood-boring pests. However, in practical applications, due to the complex
and changeable environmental noise, the above methods have limited ability to suppress
real background noise, often leading to a decline in recognition accuracy or even failure.
Therefore, such methods still have significant limitations in terms of noise robustness,
environmental adaptability, and generalization ability in real-world scenarios, necessitating
further optimization and improvement.

Subsequently, studies introducing machine learning methods based on feature spec-
trograms for pest identification gradually attracted attention in the academic community.
Some scholars attempted to combine pest activity signal features with statistical learning
models to enhance the automation and accuracy of identification. For example, Min Guo
collected crawling and turning sound signals of two stored grain pests, Sitophilus zeamais
and Tribolium castaneum in a soundproof environment [10]. She firstly used Mel-frequency
cepstral coefficients (MFCCs) to extract frequency-domain feature parameters, then es-
timated the parameters through a Gaussian Mixture Model (GMM) combined with the
Expectation-Maximization (EM) algorithm, and used a clustering algorithm to classify and
identify pest sound signals. Mingzhen Zhang, for four types of activity sound signals of
two stored grain pests in a soundproof box, used the Isometric Feature Mapping (ISOMAP)
method for manifold dimensionality reduction to extract streamline features in pest sound
signals [11]. Subsequently, a Support Vector Machine (SVM) with a heavy-tailed radial basis
function as the kernel was used to construct a classification model, which trained and tested
streamline features data to achieve the effective differentiation of pest species. Yufei Bu,
from the perspective of time and frequency domains, extracted features such as the pulse
duration and energy distribution range of seven pest species, and used the sum of squared
deviations for the cluster analysis of time-domain data to achieve pest species identification
and classification [12]. Additionally, Ping Han proposed an automatic parameter selection
method for Support Vector Machines (SVMs) based on chaotic optimization, aiming at the
parameter selection problem of SVM models in the sound signal identification of stored
grain pests [13]. This method guides the search process of parameters C and kernel width
o by generating chaotic sequences of logistic mapping and circular mapping and extends
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chaotic variables to the parameter space through “carrier mapping” to achieve the global
optimization of SVM parameter combinations. Experimental results show that this method
not only improves the recognition accuracy but also effectively reduces the number of
models and improves the overall calculation efficiency. Although the above methods have
achieved certain recognition effects in controlled environments, there are still some key
problems in practical applications. Firstly, the assumptions about the distribution of pest
signals in the modeling process of some methods deviate from the real data, leading to
insufficient model generalization ability. Secondly, most algorithms are sensitive to hyper-
parameters, and improper parameter selection may significantly affect the classification
performance. Especially when facing new pests not involved in training or complex envi-
ronmental interferences, the recognition effect is prone to an obvious decline. Therefore,
constructing an identification model that is robust to diverse pest species and has good
adaptability to noise and feature disturbances remains a key challenge in current research.

In research on the integration of signal feature spectrograms and deep learning meth-
ods, a series of breakthroughs have been made in recent years. Some scholars have at-
tempted to introduce neural network architectures to enhance the robustness and accuracy
of pest sound signal identification under complex backgrounds. For example, Ping Han
used the adaptive neural network noise reduction method (Madaline) for signal filtering
and combined it with an adaptive silencer to effectively suppress environmental noise
interference for three typical stored grain pests: Sitophilus oryzae, Sitophilus zeamais, and
Tribolium castaneum [14]. The experiment set up two groups of control signals: one group
was a mixture of pest sounds and noise, and the other was pure noise signals. In the
study, pest spectrograms were input into a Backpropagation neural network (BP neural
network) for training, and pest species classification and identification were achieved
through labeled samples. Xiaoqian Tuo constructed a noise reduction neural network
(Enhance) based on a dilated convolution structure for processing insect sound data under
three types of noise conditions [15]. Subsequently, four recognition models (InsectFrames)
with different output dimensions of convolutional layers were designed to evaluate the
differences in recognition accuracy under different feature expression capabilities. Juhu
Li collected four types of signals: Agrilus planipennis, Cryptorhynchus lapathi, their mixed
sounds, and environmental noise [16]. He extracted cepstral coefficient spectrograms
through the MFCC method and input them into the self-designed deep neural network
model BoreNet for classification and identification. To improve the model’s generaliza-
tion ability, noise-free insect sound fragments were used in the training stage to capture
universal signal features, and noisy insect sound fragments were introduced in the test
stage to simulate practical application scenarios. Weizheng Jiang used sensors to col-
lect signals of the emerald ash borer, Holcocerus insularis, their mixed sounds, and noise
and also extracted MFCC spectrograms as model inputs [17]. He proposed a novel convo-
lutional neural network architecture called the Residual Mixed-domain Attention Module
Network (RMAMNet), which integrates channel attention and temporal attention mecha-
nisms to enhance the model’s ability to learn key features, demonstrating good recognition
stability in multi-source insect sound mixed backgrounds. Haopeng Shi proposed a com-
pact and excellent-performance vibration-enhanced neural network for the larvae of the
wood-boring pest Agrilus planipennis [18]. The network combines frequency-domain en-
hancement and time-domain enhancement modules in a stacked framework. Experimental
results show that the enhanced network significantly improves the recognition accuracy
under noisy backgrounds, exhibiting obvious performance advantages compared to the
undenoised model. Overall, the above studies demonstrate the potential of combining
deep learning with signal feature spectrograms in the identification of wood-boring pests.
However, these methods still have problems such as high model complexity, long inference
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time, and limited generalization ability. Especially under unstructured noise and complex
on-site background conditions, they still face challenges such as accuracy degradation and
insufficient robustness. Therefore, constructing an efficient insect sound detection model
with lightweight structure, strong feature perception ability, and adaptability to complex
environments remains the core problem to be solved in this field.

In terms of detection methods, they are mainly divided into acoustic signal-based
detection methods and vibration-based detection methods. In terms of acoustic detection,
Chunfeng Dou used an NI acquisition card combined with an acoustic emission sensor
SR 150 N to collect acoustic signals [19] and then used wavelet packets to reconstruct the
time—frequency-domain signals of pests. The effect of larval number on the number of
pulses, duration, and amplitude of the signal was studied. Yufei Bu used the AED-2010L
sound detector (built-in sound sensor) combined with the SP-1L probe to collect four
types of acoustic signals of two types of longhorn larvae [20] and distinguished them
by the amplitude, waveform, pulse and energy of the spectrogram of the time domain
map. Senlin Geng used microphones and sound capture cards to collect the sounds of
two types of grain storage pests in the soundproof room [5] and distinguished them by
the power spectrum. In terms of vibration signal detection: Piotr Bilski uses a CCLD
accelerometer and acquisition card to collect vibration signals and distinguish pest signals
from background noise through a Support Vector Machine [21]. Xing Zhang used the SP-1L
piezoelectric sensor probe combined with the self-developed vibration sensor to collect
vibration signals and designed TrunkNet to identify pest vibration signals [22].

Although current methods based on signal feature spectrograms and deep learning
have achieved high accuracy in pest sound signal identification, two prominent issues
remain. On the one hand, existing denoising networks perform insufficiently in handling
non-uniform complex noise, limiting noise reduction effects, and on the other hand, most
methods decouple denoising and classification processes, lacking a unified integrated mod-
eling framework, which affects the robustness and efficiency of the overall identification
system. To address the above issues, this paper proposes an integrated denoising and
classification multi-attention recognition network—the Residual Denoising Vision Network
(RDVNet). The model firstly performs deep denoising processing on pest sound signals
through two groups of residual structures (each composed of four residual blocks), then
inputs the denoised results into a lightweight classification network with a sandwich struc-
ture to complete end-to-end recognition tasks. On the collected actual insect sound dataset,
RDVNet achieved excellent performance in both noise reduction performance and classifi-
cation accuracy, verifying the effectiveness and practicality of the model design. The main
contributions of this paper are as follows: (1) We propose an integrated multi-attention
recognition network, effectively fusing the denoising module and the classification module.
It significantly improves the model’s adaptability to non-uniform noise environments and
recognition accuracy and enhances the network’s perception of key signal features under
complex backgrounds. (2) We introduce a dedicated denoising module into the recogni-
tion model and conduct comparative experiments combined with three types of cepstral
coefficient diagrams (MFCC, RASTA-PLP, and PNCC), verifying that PNCC features have
the best expression effect in noisy environments. RDVNet achieves the best denoising per-
formance among all comparative models. (3) We develop a PyQt-based visual recognition
system, realizing full-process integration from signal collection, preprocessing, and feature
extraction to recognition result display. It significantly improves data processing efficiency
and visual interaction performance and has good practicality and promotion potential.
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2. Experiments and Methods
2.1. Data Acquisition and Processing

To ensure the accuracy and stability of pest creeping signal collection, the experimental
system was built in a relatively quiet and low-vibration indoor environment. The timber
samples used in the experiment were provided by the customs department. Firstly, all
timber samples were preliminarily screened, and their surfaces were manually observed
for the presence of insect holes. After screening out timber samples with obvious insect
holes, they were collectively used for subsequent signal collection experiments. In the
preparation process, an electric drill and an electric saw were used to expand the insect
holes until the presence of insects was observed. Subsequently, two CT1500L piezoelectric
acceleration sensors (Chengke Electronic Technology Co., Ltd., Shanghai, China) were
arranged near the insects in the wormholes. One end of each sensor was fixed at the
position of the insect hole in the depth of the timber, and the other end was connected
to the channel ports of the NI four-channel signal acquisition card through transmission
cables, respectively. The signal acquisition card was connected to the computer through a
USB port to realize the acquisition, transmission, and control of sensor signals. The data
acquisition system was implemented by the LabVIEW software platform [23], and its
operation interface is shown in Figure 2. The system program includes four main functional
modules: virtual channel creation, sampling parameter setting, time—frequency domain
amplitude curve visualization, and real-time data recording and saving. In this Figure, a
represents acceleration, and sampling represents how much data is collected per second.
Sampling point and length per channel mean the number of sample points transferred from
the acquisition card to the software cache each time. FFT and phase represent the frequency
and phase changes after fast Fourier transform. The CT1500L sensor has a sensitivity
of 5000 mV /g and a measurement range of +1 g, with high micro-vibration response
capability. A sampling rate of 32 kHz was chosen for the experiment [24]. The primary
effective frequencies of vibration signals generated by wood pests (such as crawling and
gnawing) are concentrated in the 0-10 kHz range [25]. According to the Nyquist sampling
theorem, the sampling rate should be at least twice the highest frequency component of the
signal. Therefore, choosing 32 kHz ensures that the high-frequency characteristics of insect
vibrations are captured without distortion while also balancing storage and computational
efficiency. Each sampling cycle included 3200 sampling points. The sampling length of each
channel was synchronously set to 3200 points per time, which could effectively capture the
characteristics of weak vibration signals generated by insect activities.

Signal collecting system

channel setting original data
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channel [[omeiion |7

name | [as ‘samping Hz)
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Figure 2. Labview Software System.
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All data collection experiments were conducted in a relatively quiet, low-vibration
indoor environment, away from large machinery and vehicle traffic to minimize external
vibration sources. Anti-seismic facilities are installed at the bottom of the test bench, which
attenuated low-frequency mechanical vibrations transmitted from the ground. A total
of four CT1500L piezoelectric sensors were used in the experiment. Since the maximum
distance at which the sensor can detect pest vibration signals is 200 mm, two sensor
probes are placed in holes drilled at different positions within 200 mm from the pests to
collect data. The other sensors were independently placed on the surface of table as a
control group for environmental background noise. Firstly, we selected the timber sample
to be tested, completed the equipment connection, and determined whether there are
obvious insect hole features on its surface. If insect holes were detected, we carried out
appropriate reaming treatment on the holes.Until the pest is found, holes are drilled at
different locations within 200 mm from the pest and sensor probes are inserted to collect
data. If no insects were found in the sample, we replaced it with other timber for repeated
testing. The collected original pest signals were generated into time-domain waveform
data by the LabVIEW system, followed by format conversion and slicing processing. Each
segment of the signal is uniformly divided into 30 s audio clips. For each audio clip, we
extracted its time-domain amplitude change curve and the frequency-domain amplitude
spectrogram obtained by Short-Time Fourier Transform (STFT) to observe whether there are
obvious pulse characteristics of pest activities. If characteristic pulse signals are detected
in the time-frequency domain, the audio data segment is retained and included in the
dataset as a sample. If no pulse signals are detected, the signal segment will be discarded.
The actual collection process is shown in Figure 3.

(0]
Labview W
software
system
NI i
Acquisition O

card

CTIS00L il

sensor

Wormhole §

OPulse g Y

Figure 3. Data collection during the experiment.

During the data collection process, the LabVIEW main interface displays the signal in-
formation collected by sensors in real time, including the time-domain amplitude variation
curve of the original signal, the frequency-domain amplitude spectrogram processed by the
Fast Fourier Transform (FFT), and the corresponding phase spectrogram. The synchronous
display of the three groups of images indicates that the system acquisition module has
been successfully started and entered the normal operation state. To more realistically
simulate the vibration interference in the actual detection environment, the experiment
synchronously collected the same number of vibration noise signals. The main sources of
noise are the operating sounds of the surrounding machines, the footsteps of people passing
by, and the voices of people, as well as the loud noises from vehicles during their driving.
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Subsequently, the pest peristaltic signals and noise were mixed with five different signal-to-
noise ratios (SNRs), specifically set as —10 dB, —7.5 dB, —5 dB, —2.5 dB, and 0 dB, wherein
the SNR represents the ratio of clean insect sound to noise signal. A negative SNR indi-
cates that the amplitude of pest activity signals is significantly lower than the background
noise, simulating the detection scenario under weak signal conditions. Considering the
limitations of traditional time-frequency domain images in describing signal detail features,
this paper further converts all mixed audio signals into corresponding cepstral coefficient
images, including three types of feature spectrograms, MFCC, PNCC, and RASTA-PLP,
and uses them as inputs to the subsequent deep learning recognition model.

2.2. Cepstral Coefficient Spectrogram Extraction

MEFCC, PNCC, and RASTA-PLP are typical speech design features, rather than end-
to-end methods. In this study, they map the one-dimensional vibration sequence output
by the accelerometer into a two-dimensional feature map, which is then input into the
subsequent network. In the research on vibration signal identification of wood-boring
pests, MFCC is currently one of the most widely used feature spectrogram extraction
methods.The conversion process is as follows: Firstly, the audio is pre-emphasized, framed,
and Hamming-windowed. Then, each frame of the windowed signal is subjected to an
FFT to obtain the spectrum. The power spectrum energy is weighted onto each Mel filter
to obtain the filter bank energy. The Mel filter bank energy is logarithmized, and the
logarithmic energy sequence is subjected to a discrete cosine transform and liftering to
obtain the MFCC cepstrum, as shown in Figure 4. The MFCC maps audio signals to the
frequency-domain space of the Mel filter bank to extract more sensitive cepstral feature
spectrograms, and the specific implementation process can be found in relevant studies [26].
However, the MFCC is relatively sensitive to environmental noise, especially non-stationary
noise and sudden interference, and has limited robustness under complex backgrounds.
To improve the anti-interference ability of the model in actual customs detection scenarios,
this paper firstly introduces two more robust cepstral feature extraction methods: PNCC
and RASTA-PLP. Among them, PNCC has strong suppression ability for non-stationary
noise and transient interference, while RASTA-PLP performs excellently in suppressing
steady-state background noise and channel distortion. Considering that the acoustic
environment at customs sites often includes both steady-state background noise (such as
the continuous operation sound of transportation equipment), non-stationary noise (such
as operational impact sound), and sudden interference, the above two methods can more
comprehensively extract effective features from pest signals.

_______________________
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Figure 4. MFCC conversion process.

The overall processing flow of the two methods is shown in Figure 5, both including the
following steps: common signal preprocessing operations such as pre-emphasis, framing,
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windowing, and Short-Time Fourier Transform (STFT). The main difference between the
two lies in that RASTA-PLP introduces a dual-filtering structure. The first step uses a
Bark filter bank to construct a critical band power spectrum. The second step uses an
IIR band-pass filter to model the dynamic characteristics of the log power spectrum [27],
suppressing steady-state distortion and slowly changing noise backgrounds. The core
transfer function of the RASTA filter is shown in Equation (1), where z represents the unit
delay operator (Z-transform variable) in the complex domain, and H(z) is the transfer
function of the filter. In addition, RASTA-PLP also includes two key links, equal loudness
pre-emphasis and intensity loudness nonlinear mapping, which are used to simulate the
perceptual sensitivity to different frequency bands (such as the 40 dB equal loudness
curve) and the power law relationship between sound intensity and loudness perception,
respectively. Finally, after obtaining the time-domain envelope through inverse Fourier
transform, the Durbin algorithm is used for all-pole modeling of the power spectrum,
constructing a 12th-order linear prediction analysis model, and calculating 16-dimensional
cepstral coefficients for subsequent model training and classification identification [28].

24z z73 2y

H(z) = 0.1-
(2) =01 — =98

1)

In- Strength-
hamming STFT Mapp‘mg ng+IIR Log#+Pre- respons_e |FET+HRSE Rasta-PLP
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NS

tion

Medium-

Figure 5. RASTA-PLP, PNCC conversion process.

PNCC is a robust signal feature extraction method, especially suitable for processing
complex environments with non-stationary noise. The method employs a gammatone filter
bank for initial filtering during the signal preprocessing stage to obtain the power spectral
representation of the signal across frequency bands [29]. Subsequently, PNCC achieves fea-
ture extraction through a series of modeling processes of perceptual mechanisms. The main
steps as follows: (1) Medium-time power analysis: Perform sliding time window averaging
on each band power signal with a window length of 65.6 ms (equivalent to 5 frames) to
smooth short-term fluctuations and suppress short-term unstructured noise. (2) Asymmet-
ric noise suppression: Track the lower envelope of the power signal through an asymmetric
filter with dual-parameter adjustment capability to estimate the minimum energy level
of background noise. This estimated value is subtracted from the original power, and a
half-wave rectification operation is used to truncate negative values to zero, retaining the
effective signal [30]. (3) Temporal masking: This mechanism dynamically tracks the power
peak of each frequency band and suppresses transient signals below a certain proportion of
the peak, further enhancing the signal robustness and highlighting important structural
peak features [31]. (4) Frequency smoothing and power normalization: After completing
the above steps, perform sliding average smoothing on the remaining power spectrum
within the adjacent frequency band range (+4 filter channels), and normalize it with the
long-term average power (time constant approximately 4.6 s) to alleviate the impact of
speech intensity fluctuations over time. (5) The use of 1/15th power compression transform:
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To avoid the problem of logarithmic functions over-amplifying low-power noise, PNCC
uses 1/15th power law compression instead of the traditional logarithmic compression
method, making the spectral intensity distribution after noise suppression more balanced
and contributing to the subsequent improvement of feature stability. (6) Cepstral coefficient
generation: Apply Discrete Cosine Transform (DCT) to the compressed spectrum, extract
the first 13-dimensional static PNCC coefficients [32], and further combine them with first-
and second-order delta dynamic coefficients to finally form a 39-dimensional feature vector
as input for deep learning models [33]. Its core formula is shown in Equation (2), used to
calculate the background noise estimate for the m-th frame and I-th frequency band channel,
where Q[m, I] represents the medium-time power envelope output by the asymmetric filter.

Qoyt[m, l] _ )Lu(%out[m -1, l] + (1 — Aa)?in [1’]’[, l]; if Qin Z Qout )
ApQout[m — 1,11 + (1 = Ay)Qin[m, 1], otherwise

2.3. Development of PyQt Software

During the test, four sensors can be arranged at equal distances on the wood to collect
signals within each range, as shown in the Figure 6, and the system processes the data
into feature maps. The acquisition time is 120 s. The system calls the feature maps of
each sensor and the weight file to perform inference. Each sensor will output a classified
image. The output images are saved in two folders, one is “insect” and the other is “no-
insect”. The proportion of the two folders to the total number is counted. We compare the
proportion of “insect” folders in each sensor with the set threshold. If the insect ratio of a
sensor exceeds the threshold, the wood detected by the sensor is considered to have insects.
Due to the good accuracy of the model and to account for external noise, the threshold is set
to 50% here. The threshold can be adjusted dynamically based on the model’s recognition
performance. Through this PyQt system, users can complete the entire process of data
processing and model testing without manually operating command-line scripts, which

greatly improves the system’s usability and experimental efficiency.

AN

Figure 6. Data collection during actual testing.

To improve data processing efficiency and the visual interactive experience of model
inference, this paper develops a Graphical User Interface (GUI) system based on PyQt,
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realizing full-process visual operations from data preprocessing, feature extraction to
model inference. The system not only enhances the intuitiveness and controllability of
the experimental process but also has good usability and portability. It can generate exe-
cutable software through packaging, facilitating deployment and distribution on different
platforms. Figure 7 shows the modular organizational structure diagram of the system,
and Figure 8 is a schematic diagram of the system’s main interface. The system’s interface is
overall divided into three major functional areas: (1) Data Processing Module: Users firstly
select .tdms files generated by LabVIEW from wood as the input source of pest signals
and choose background noise files for mixing processing. The system verifies the validity
of the selected path. If the path is invalid, it prompts the user to reselect. After correct
selection, users click the “tdms-wav” button, which executes the conversion operation,
converting .tdms files in-to .wav format audio and mixing them with noise files according
to the set signal-to-noise ratio. Subsequently, users can sequentially click the “wav-mfcc”,
“wav-pncc”, and “wav-plp” buttons to complete the batch generation of three types of
cepstral feature spectrograms. (2) Model Input and Inference Module: The system allows
users to select an image folder (containing multiple images) from the generated feature
maps as the inference input while loading the pretrained weight file. After clicking the “In-
ference” button, the system automatically invokes the specified model to perform forward
prediction and records the inference time and classification results. (3) Result Display and
Saving Module: The inference results will be displayed in the middle of the interface in
the form of “image + corresponding predicted category”. Users can save the result images
and choose to exit the system after the task is completed. All output images and results
will be automatically stored in the specified local path for subsequent analysis and reuse.
In the Figure 7: classification result table represents each image obtained by prediction is
described as follows: index, saving path, category, probability
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Figure 7. System block diagram of PyQt.
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Figure 8. PyQt interface display.

3. Image Denoising-Based Vision Recognition Model
3.1. Dataset Partitioning

The pest vibration signals and their mixed noise signals collected in this study were
respectively used to construct the denoising model dataset and the recognition model
dataset, and then the performance of three types of cepstral feature spectrogram extraction
methods was evaluated under various signal-to-noise ratio conditions, including MFCC,
PNCC, and RASTA-PLP. In the experiment, five SNR levels were set, —10 dB, —7.5 dB,
—5dB, —2.5 dB, and 0 dB, to simulate detection scenarios with different intensities of noise
interference in real environments. For each SNR, the above three feature extraction methods
were used to generate corresponding cepstral spectrograms as inputs for subsequent model
training and evaluation. In the denoising model experiment, two types of sample data
were constructed: one type was pure insect vibration audio, and the other type was insect
vibration audio mixed with external noise. In the recognition model experiment, two types
of samples were also constructed: one type was insect vibration audio mixed with external
noise, and the other type was pure noise audio. In each experiment, 5000 feature images
were collected and generated for each type of sample.There are 10,000 images at each
signal-to-noise ratio. The dataset division ratios used for all models are as follows: the
ratio of training set to test set is set to 80%:20%, and the training set is further divided
into a validation set with the ratio of training set: validation set = 80%:20%. To ensure the
consistency of the three types of feature spectrograms during the comparison, the signal
preprocessing parameters were uniformly set as follows: sampling rate—32,000 Hz, Short-
Time Fourier Transform window length—1024 points, and frame step size (Hop Length)—
512 points. The uniform parameter setting facilitates a fair comparison of the denoising
effects and recognition performances of different methods under various SNR conditions.

3.2. Denoising Module

Although significant progress has been made in denoising research on vibration signals
of wood-boring pests in recent years, most existing methods still have certain limitations.
Most existing methods adopt a series structure, only acting on a single dimension of the time
domain or frequency domain, resulting in a single information processing path, feature
redundancy. It weakens interaction between each stage of feature extraction, limiting
the expression ability and generalization performance of the overall model. To solve



Sensors 2025, 25, 6176

13 of 26

the above problems, this paper cites a denoising network with a dual-branch parallel
structure, named de-RDVNet [34], as shown in Figure 9. It takes three types of cepstral
coefficient spectrograms (MFCC, PNCC, and RASTA-PLP) as inputs, fully fusing the multi-
dimensional feature information of pest signals. The model is specially designed for
classification tasks and has the following structural advantages: (1) Multi-scale feature
fusion capability: de-RDVNet includes two different types of modules. The upper branch
adopts Residual Attention Blocks (RABs) to focus on local detail feature extraction, and
the lower branch uses Hybrid Dilated Residual Attention Blocks (HDRABSs) to capture
multi-scale global structural information. The two have significant complementarity in
local-global and multi-scale modeling, which can improve the robustness to different
types of noise. (2) Enhanced attention mechanism: The RAB module introduces a Spatial
Attention Mechanism (SAM), and the HDRAB module introduces a Channel Attention
Mechanism (CAM). They respectively focus on important feature regions in the spatial
and channel dimensions, achieving saliency region enhancement and redundant feature
suppression and improving the discriminability of feature expression. (3) Global feature
fusion and long skip connections: The network uses a cross-branch feature concatenation
strategy for fusion while introducing long skip residual connections within sub-modules,
effectively alleviating the gradient vanishing problem in deep networks, enhancing context
information integration, and improving training stability. (4) Parallel computability: The
dual-branch structure design naturally supports GPU parallel computing, which can
shorten inference time and reduce redundant computational overhead while maintaining
high feature capacity, balancing accuracy and efficiency.
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Figure 9. de-RDVNet model structure.

As shown in Figure 9: The proposed denoising network de-RDVNet is mainly com-
posed of two types of sub-modules, RAB and HDRAB. The entire network adopts a
dual-branch parallel structure to model the feature information in insect signals. All convo-
lution kernels in the network are set to a size of 3 x 3, and the number of channels in each
layer of feature maps is uniformly set to 128. The overall input and output channels of the
network are both 3 (RGB channels), while between the intermediate connection nodes and
the RAB and HDRAB modules, a feature representation with 64 channels is used, aiming
to compress intermediate features and improve computational efficiency. The entire feature
extraction process is as follows: Firstly, the input cepstral coefficient spectrograms (MFCC,
PNCC, or RASTA-PLP) are processed by the initial convolutional layer and then sent to
the two parallel branches of RAB and HDRAB for feature extraction, respectively. In the
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first half of the RAB module, two downsampling operations are set, and the image size is
reduced through a 2 x 2 convolution with stride (stride = 2) to expand the receptive field
and generate low-resolution feature maps. Correspondingly, in the second half of the RAB
module, two upsampling operations are used, specifically 2 x 2 transposed convolution
(stride = 1, padding = 0), combined with tensor dimension transformation to achieve the
reconstruction and restoration of feature maps. Through the symmetric structure of down-
sampling and upsampling, the model can effectively restore the spatial resolution of the
original image while preserving semantic information. Between the RAB and HDRAB
modules, the network designs a long skip connection mechanism, which directly connects
shallow features to deep structures, effectively alleviating the gradient vanishing problem,
enhancing the modeling ability of detail information, and improving the fusion effect be-
tween features. Finally, the feature maps from the RAB and HDRAB branches are subjected
to residual cascade fusion at the end and fused with global feature information in the input
stage. Feature integration and mapping are performed through a convolution block and
residual connection structure to generate the final denoised output image.

As shown in Figure 10a,b, RAB is composed of a residual structure and a Spatial Atten-
tion Module (SAM). The residual structure includes four basic residual blocks, each com-
posed of two standard convolutional layers (Conv) and a Rectified Linear Unit (ReLU) [35],
and realizes cross-layer information fusion through residual connections to extract rich
local spatial features. Each convolutional layer has a kernel size of 3 x 3 and 128 channels.
The SAM module in RAB is used to model the saliency regions in the spatial dimension,
and its structure consists of the following components: Global Max Pooling (GMP), Global
Average Pooling (GAP), 1 x 1 convolution, ReLU activation function, and Sigmoid activa-
tion function. GAP and GMP extract spatial summary features of the entire image from
different statistical perspectives. Then, feature fusion is performed through convolutional
layers and nonlinear activation. Thereafter, the weight map output by the Sigmoid layer is
element-wise multiplied with the feature output by the residual block to achieve feature
weighting enhancement. Finally, the weighted feature output by SAM and the input initial
cepstral feature maps are added through the residual path to form the output features of
the module, thus achieving the unity of local feature extraction, important region enhance-
ment, and global information fusion. HDRAB is specially designed to capture long-range
dependencies and multi-scale contextual information and is composed of a hybrid dilated
residual structure and a Channel Attention Mechanism (CAM). The hybrid dilated residual
structure includes four sub-modules, and each sub-module is composed of two convo-
lutional layers (s-DConv) with different dilation rates and a ReLU activation function.
The dilation rate s ranges from 1 to 4 to construct convolutional layers with different recep-
tive fields and perform cascaded residual learning. This structure can expand the receptive
field without significantly increasing the number of parameters and effectively extract
multi-scale contextual features. The structure of CAM consists of GAP, the convolutional
layer, ReLU, and Sigmoid. GAP is used to extract channel statistical information, then
generate attention weights in the channel dimension through nonlinear transformation,
and perform channel-wise multiplication with input features to highlight feature channels
with strong expression capabilities. Finally, the weighted features and original features are
fused through residual connections to output feature maps with enhanced channel atten-
tion. The designs of RAB and HDRAB realize saliency region modeling from the spatial
dimension and channel dimension, respectively, collaboratively constructing a denoising
module with local-global information coupling capability and feature adaptive regulation
capability, significantly improving the model’s robustness and expression efficiency in
complex backgrounds.
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Figure 10. RAB and HDRAB model structure.

3.3. Residual Denoising Vision Network

Traditional attention mechanisms have been widely applied to image classification
tasks, especially demonstrating excellent feature modeling capabilities in Transformer-
series models. However, existing Transformer models generally have the following prob-
lems: Firstly, each attention head in the Multi-Head Self Attention (MHSA) needs to process
the entire input feature map [36], lacking an effective feature partitioning and division of
labor mechanism, resulting in high computational complexity and large memory consump-
tion. Secondly, when the original Transformer structure faces complex, low-signal-to-noise
ratio scenarios such as wood-boring pest signal identification, it lacks built-in anti-noise
capabilities and struggles to adapt to the fine-grained feature modeling requirements under
high-noise backgrounds. To address this, this paper cites a classification module based on
the aforementioned denoising sub-network de-RDVNet and proposes a Residual Denoising
Vision Network (RDVNet) with anti-noise capability.

Its main features are reflected in the following three aspects: (1) Sandwich Layout: To
enhance the information channel interaction capability of the attention mechanism, this
paper proposes a new module construction method called Sandwich Layout, whose calcula-
tion process is shown in Equation (3). This structure embeds a single MHSA layer between
two Feed-Forward Network (FFN) layers [37]. Compared with the original Transformer
structure, it effectively reduces the memory overhead caused by tensor rearrangement and
element-wise operations in MHSA. By increasing the number of FFN layers, it enhances the
nonlinear interaction between different channels and improves the performance of shallow
attention networks in spatial detail expression. This design not only simplifies structural
complexity but also enhances the model’s ability to model heterogeneous features. (2) RDV
Block (Explicit Decoupling Attention Calculation Structure): RDVNet introduces module-
level partitioned RDV Blocks, which group input features and allocate them to multiple
attention heads, with each head only responsible for processing a subset of input features,
thus achieving explicit attention decomposition calculation. The specific operation is shown
in Equations (4)—(6). Different to traditional MHSA where each head processes complete
features, RDV Block has the following advantages: reducing the computational burden
of each attention head and improving operational efficiency, enhancing global feature
expression capability through cascaded connections of output features among multiple
attention heads, introducing a cross-head information interaction mechanism, which can
proactively remove redundant features and improve the effectiveness of attention repre-
sentation and memory utilization. This structure is particularly suitable for wood-boring
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insect sound identification with abundant background interference information, effectively
highlighting structural movement patterns. (3) Over-Parameter Redistribution Strategy:
Aiming at the difference in parameter sensitivity among different modules in the attention
mechanism, this paper proposes a parameter redistribution strategy to dynamically adjust
the channel resource distribution of different sub-modules—expanding the channel width
of key modules such as the value projection layer to enhance their ability to represent pest
features in high-dimensional space. Meanwhile, compressing the hidden layer dimensions
in the FEN reduces redundant parameters in insensitive modules. This strategy achieves
the compression of model complexity while ensuring performance, not only improving the
model’s feature representation capacity but also optimizing inference speed and memory
efficiency [38].

N N
Xip1=[]®F (cp;% (H CDF(Xi)) ) )

Here, X; denotes the input features of the i-th block. ®F represents the i-th FEN layer.
Q‘){A corresponds to the i-th self-attention layer (MHSA). AV indicates the stacking count of
FEN layers (the default is 1).
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where Xj;: the input feature segment of the j-th head. WiQ, W}j<, and WX the projection
matrices for query, key, and value. WE denotes the output linear projection matrix, and &
is the total number of attention heads. Attn(-) denotes the self-attention computation
(Softmax(QKT)V).

The classification module is shown in the lower half of Figure 11: After completing
the denoising process, the proposed classification module receives the denoised image as
input and first splits and embeds the image into a high-dimensional feature space through
an overlapping image patch embedding module. Specifically, the module consists of three
sets of convolutional units (Conv2d), with each convolutional layer followed by Batch
Normalization and a ReLU activation function [39]. This structure reduces the spatial
resolution of the image through layer-by-layer convolution operations while increasing
the number of channels, thus completing the mapping of the image to high-dimensional
feature embedding and laying the foundation for feature interaction in the subsequent
attention mechanism. The embedded features will be sequentially input into three groups
of trunk structures composed of cascaded attention modules and the FEN, with the specific
structure shown in Figure 12. Each module is wrapped by two fully connected FEN layers
and a multi-head attention module, forming an “FFN-Attention-FFN” sandwich structure
to enhance the cross-channel modeling capability of features. Subsequently, the feature
maps pass through two groups of downsampling modules in sequence, and each group
uses a downsampling layer composed of Conv2d and BatchNorm to achieve further feature
compression. The core of the recognition module is the Token Interaction mechanism, which
includes the following four key steps: (1) Feature partitioning: Divide the feature map into
multiple sub-blocks along the channel dimension, with each sub-block corresponding to an
attention head. (2) Query—Key—Value Projection (QKV Projection): Generate Query vectors
(Q), Key vectors (K), and Value vectors (V) for each sub-block respectively. (3) Attention
calculation: Calculate the attention score between the query and key through dot product,
and weight the value vector after softmax normalization to generate the attention output.
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(4) Feature fusion: The output features of all attention heads are concatenated and integrated
into the final feature representation through a linear projection layer. Finally, the fused
feature map is input into a Global Average Pooling layer and then sequentially passes
through a batch normalization layer and a linear classification layer to complete the final
classification. The calculation process is shown in Equation (7), from which the prediction
scores for each category can be obtained, and the category with the highest score is selected
as the final recognition result output.

y=W-BN(x)+b @)

y represents the classification score, and W is the weight matrix, while b is the bias. BN(x)
normalizes the input features as shown in Equation (8). Firstly, calculate the mean and
variance, and then perform standardization and affine transformation.

BN(x) = v% +B ®)
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3.4. Parameter Settings

For the proposed denoising sub-network module, a combined loss function is adopted
during the training process to simultaneously optimize pixel accuracy and structure preser-
vation capability. Specifically, the model loss consists of two components: the L1 Loss [40],
which is used to measure the pixel-level absolute error between the model’s predicted
image and the real clean image, defined as in Equation (9), and the Structural Similarity
Index Measure (SSIM) loss, which is used to evaluate the consistency of images in terms of
brightness, contrast, and structure, defined as in Equation (10). The final total loss function
is a weighted combination of the two, as shown in Equation (11). This design aims to
balance the detail restoration of images and the preservation of overall structural infor-
mation, improving the subjective and objective quality of denoised images. To optimize
network parameters, the AdamW optimizer is used during training, which combines the
advantages of the traditional Adam optimizer and Weight Decay. Different to conventional
weight decay, AdamW separates the weight decay term from the gradient update process,
enabling the model to have a more stable regularization effect during parameter updates,
improving convergence speed and generalization ability. Additionally, to improve training
efficiency and convergence performance, this paper introduces a cosine annealing learning
rate scheduler, which dynamically adjusts the learning rate in a cosine function manner,
allowing it to gradually decrease during training. Therefore, it maintain stable model
convergence in the later training stages, suppressing the risk of oscillation and overfitting.

1 N
L - .1
L1 N i§:1, |]/z yz| (9)
where N is the total number of pixels, y; is the true value, and ; is the predicted value.

(2pxpy + C1) (20xy + C2)
(13 +p5 +Ci)(0% + 07 +Ca)

SSIM(x,y) = (10)

. . 2 2
Here, jix and iy represent the means of images x and y, respectively, 5 and oy denote
the variances of images x and y, oxy is the covariance between images x and y, and C;
and C; are stabilization constants. oyy is the covariance between unnoised images x and
denoised y.

Lipta1 = - L1 + ‘B : (1 — SSIM) (11)

Among them, « = 0.8, B = 0.2. The parameter update formula for AdamW is shown
in Equation (12) below:
my=P1-m_1+ (1—PB1)- 8

v = P01+ (1 B2)- 87 (12)
mg
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Here, m; and v represent the first-order and second-order moment estimates, respec-
tively, gt denotes the gradient, 8; and B, are the decay coefficients, # is the learning rate,
¢ is the numerical stability parameter, and A is the weight decay coefficient. The cosine
annealing learning rate scheduler is shown in Equation (13):

1 T,
Mt = Nmin + E(Wmax - Umin)(l + Cos(ﬂﬂ?)) (13)

Tmux
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Here, 7; denotes the current learning rate, #min and #max represent the lower and
upper bounds of the learning rate, T, indicates the current iteration count, and Tinax is
the total number of iterations.

In the joint denoising and classification recognition task, the training of RDVNet
uses the common cross-entropy loss function as the objective function to measure the
difference between the model’s output class probability distribution and the true labels.
The denoising module and the classification module jointly use cross entropy loss. The
optimizer is consistent with the denoising module, and the AdamW optimizer is selected
to fully combine the advantages of adaptive gradient updates and weight decay strategies,
improving the model’s generalization ability and convergence stability. The training and
testing of all models were completed on a hardware platform equipped with an NVIDIA
Ge-Force RTX 4060 GPU to ensure that the experiments were carried out in a unified
and reproducible experimental environment, achieving stable training performance and
inference efficiency.

4. Results and Discussion
4.1. Denoising Comparison

In this study, the collected pest vibration signals were respectively converted into
three types of cepstral coefficient spectrograms, MFCC, PNCC, and RASTA-PLP, which
were used to characterize pure insect peristaltic signals and insect peristaltic signals mixed
with noise. To simulate various complex noise backgrounds, datasets under five different
signal-to-noise ratio (SNR) conditions were constructed [41] , specifically —10 dB, —7.5 dB,
—5 dB, —2.5 dB, and 0 dB, and proportionally divided into a training set, validation
set, and test set. In the model evaluation experiment, the proposed denoising network
de-RDVNet was systematically compared with multiple mainstream denoising models,
including, VDNNet, RIDNet, CBDNet, and DeamNet. These networks are representative
of signal denoising tasks and are often used as benchmarks. We used the same AdamW
optimizer, cosine learning rate schedule, batch size, and loss function. We also used the
same input feature map parameters (MFCC, RASTA-PLP, and PNCC). The comparison
content included the differences in denoising performance of each model under the input
of the above cepstral spectrograms and the quality of spectrogram feature restoration.
To comprehensively measure the denoising effect of the model, this paper uses the following
two common image quality evaluation indicators: Peak Signal-to-Noise Ratio (PSNR):
Used to measure the difference between the restored image and the original image, it
is usually used to evaluate the performance of image restoration tasks such as image
compression and denoising. The larger the PSNR value, the closer the restored image is
to the original image, and the better the noise suppression effect. Its calculation formula
is shown in Equation (14). Structural Similarity Index Measure (SSIM): This is based on
the joint modeling of brightness, contrast, and structural information between images [42].
It is used to measure the structural fidelity between the restored image and the reference
image. The range of SSIM values is [0, 1]. When SSIM approaches 1, it indicates that
the structures of the two images are more consistent and the visual similarity is higher.
Its definition is as shown in Equation (10). Through the above two indicators, the image
reconstruction quality and detail restoration ability of each model under different SNR and
feature map input conditions can be quantitatively evaluated, providing a reliable basis for
model performance analysis.

PSNR = 10 - log (22 —1)" (14)
O\ oh D G ) — KGR
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where the numerator represents the maximum possible pixel value of the image, m and
n denote the dimensions of the image, I and K correspond to the denoised image and the
original noisy image, respectively, and B stands for the binary representation of pixel values.
In this study, the spectra used for evaluation were saved as 8-bit integers, so B is 8.

Figure 13 shows the changes in training and testing loss curves of the proposed de-
RDVNet model under the condition of a —10 dB signal-to-noise ratio (SNR) with PNCC
feature maps as input. It can be observed that with the progress of training iterations, both
the training loss and testing loss of the model continuously decrease and tend to stabilize in
the later stage, indicating that the network has good convergence. Among them, the final
training set loss converges to 0.405, and the testing set loss converges to 0.402. The two
curves are highly consistent in the later stage, indicating that the model has excellent
fitting performance and no obvious overfitting phenomenon occurs. Table 1 summarizes
the PSNR and SSIM performances of five comparative networks (including de-RDVNet,
VDNNet, RIDNet, CBDNet, and DeamNet) under five signal-to-noise ratios (from —10 dB
to 0 dB) with three types of feature spectrogram inputs (MFCC, PNCC, and RASTA-PLP).
It can be observed from Table 1 that as the SNR increases (i.e., noise interference weakens),
the PSNR and SSIM values of each model on the three types of feature maps show a gradual
upward trend, which is consistent with the common sense judgment that noise level is
positively correlated with reconstruction quality.
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Figure 13. de-RDVNet on the loss image at —10 dB.

To further compare the overall performance of different networks and feature spec-
trograms across the full SNR range, Table 2 calculates the average PSNR and SSIM values
of each network in Table 1 under five SNR conditions. The results show the following:
(1) Among all comparative networks, de-RDVNet achieves an average PSNR of 29.8 and
SSIM of 0.820 under PNCC feature spectrograms, significantly outperforming other meth-
ods, indicating its superior denoising capability in strong noise backgrounds. DeamNet
follows next. (2) From the perspective of feature spectrograms, PNCC generally obtains the
highest PSNR and SSIM values in all networks. This indicates that PNCC features have the
strongest suppression ability for non-stationary noise in this task, with optimal feature ro-
bustness and representation capability. In summary, de-RDVNet has obvious advantages in
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both structural design and feature adaptation, and especially when combined with PNCC
spectrograms, it can achieve optimal pest signal denoising and reconstruction performance.

Table 1. PSNR and SSIM of feature maps for five networks under different SNRs.

—10dB —7.5dB —5dB —2.5dB 0dB

Model Feature Spectrum
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
MEFCC 21.3 0.620 22.5 0.650 23.6 0.670 24.7 0.680 25.3 0.710
CBDNet RASTA-PLP 222 0.640 23.6 0.660 241 0.680 25.7 0.700 26.1 0.720
PNCC 24.6 0.670 26.6 0.690 25.3 0.710 26.7 0.720 271 0.750
MFCC 21.5 0.630 23.7 0.670 24.3 0.690 25.6 0.700 26.7 0.740
RIDNet RASTA-PLP 222 0.660 24.6 0.690 24.7 0.740 25.8 0.750 27.8 0.760
PNCC 24.0 0.690 26.8 0.730 25.9 0.760 27.8 0.770 28.8 0.780
MFCC 21.6 0.650 24.8 0.680 25.6 0.720 26.3 0.740 28.2 0.770
VDNNet RASTA-PLP 22.7 0.670 25.8 0.700 26.7 0.780 28.0 0.760 29.1 0.800
PNCC 241 0.710 27.6 0.730 27.3 0.800 28.6 0.790 315 0.810
MECC 22.1 0.680 25.0 0.720 26.2 0.740 27.3 0.750 29.9 0.790
DeamNet RASTA-PLP 23.4 0.720 26.3 0.740 27.6 0.800 28.9 0.780 31.8 0.820
PNCC 24.6 0.730 28.1 0.760 28.2 0.810 29.3 0.800 32.1 0.840
MFCC 23.6 0.700 25.7 0.750 28.1 0.790 28.1 0.800 30.1 0.820
de-RDVNet RASTA-PLP 24.6 0.730 27.3 0.780 29.3 0.820 29.3 0.840 32.2 0.850
PNCC 25.7 0.750 29.3 0.780 29.8 0.830 30.1 0.860 33.9 0.880

Table 2. Average PSNR and SSIM of feature maps for five networks under different SNRs.

Model Feature Spectrum Average PSNR Average SSIM
MFCC 235 0.666
CBDNet RASTA-PLP 24.3 0.680
PNCC 26.1 0.708
MEFCC 24.4 0.682
RIDNet RASTA-PLP 25.0 0.720
PNCC 26.7 0.746
MFCC 25.3 0.712
VDNNet RASTA-PLP 26.5 0.742
PNCC 27.9 0.768
MFCC 26.1 0.736
DeamNet RASTA-PLP 27.6 0.772
PNCC 28.5 0.788
MFCC 27.1 0.772
de-RDVNet RASTA-PLP 28.6 0.804
PNCC 29.8 0.820

4.2. Comparison of Classification Models

Based on the aforementioned denoising experiments, PNCC spectrograms are further
selected as feature inputs, and DeamNet, which ranks second in denoising performance, is
used as the pre-denoising module. Combinatorial comparisons are conducted with five
mainstream lightweight classification models, including ShuffleNet, Swin Transformer,
ConvNeXt, MobileViT, and the proposed RDVNet in this paper. These methods cover
both convolutional and Transformer architectures, enabling a comprehensive evaluation
of the relative performance of RDVNet. We used the same AdamW optimizer, batch size,
and loss function. We also used the same input feature map parameters (MFCC, RASTA-
PLP, and PNCC). The aim is to verify the recognition performance differences in different
classification backbones under the same feature map input and pre-denoising conditions.
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As shown in Figure 14, the training loss and testing loss curves of RDVNet during
the classification training process are highly consistent and continue to decline with the
increase in the number of training epochs, indicating that the model has good convergence
and generalization capabilities. After 50 training epochs, the training set loss decreased
to 0.198, and the testing set loss was 0.197. The two are almost the same, indicating that
the network achieves an optimal fitting state without obvious overfitting. In addition,
Figures 11b and 15a show the changing trends of the classification accuracy and F1-score of
the five comparative models under five signal-to-noise ratio conditions. It can be observed
that as the signal-to-noise ratio decreases, the overall trend of each model still shows a
gradual increase in accuracy and F1-score, indicating that the value of the signal-to-noise
ratio will affect the recognition ability of the model. Under all signal-to-noise ratio condi-
tions, RDVNet always maintains the highest classification accuracy and F1-score, with the
accuracy stabilizing above 90.0%, demonstrating excellent anti-noise recognition capabil-
ity. Further averaging the classification performance under the five signal-to-noise ratios
shows that the average F1-score is 0.878, and the average classification accuracy is 92.8%.
In summary, the results show that RDVNet not only performs excellently in denoising tasks,
but also outperforms current mainstream lightweight models in classification performance
when combined with high-robustness feature map inputs, demonstrating good practicality
and promotion value.
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Figure 14. RDVNet in classification loss images at —10 dB.
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Figure 15. Comparison of accuracy and F1 scores for five models under different signal-to-noise ratios.
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4.3. Discussion

The comprehensive experimental results show that the integrated denoising and
recognition model proposed in this paper exhibits superior performance in multi-signal-to-
noise ratio (SNR) environments as follows: (1) In terms of denoising performance, under
five SNR conditions from —10 dB to 0 dB, the proposed denoising sub-network de-RDVNet
outperforms the four comparative mainstream networks (VDNNet, RID-Net, CBDNet,
and DeamNet) in all indicators. Its average peak signal-to-noise ratio (PSNR) is 29.8 and
average Structural Similarity (SSIM) is 0.820 under all conditions, ranking first among the
five types of models. This fully demonstrates that this method has strong comprehensive
capabilities in maintaining image structure and suppressing noise, and the restored image
has the highest similarity to the original clean image. (2) In terms of feature spectrogram
comparison, among the three types of cepstral spectrograms (MFCC, PNCC, and RASTA-
PLP), PNCC shows the highest average PSNR and SSIM in all networks. This indicates
that it has stronger suppression ability and feature fidelity for non-stationary background
noise and is suitable as a robust feature representation for insect peristaltic sounds. (3) In
terms of classification performance: Under the five SNR test conditions, RDVNet’s accuracy
and Fl-score comprehensively outperform the comparative networks. The classification
accuracy under all SNRs exceeds 90.0%, with an average accuracy of 92.8% and an average
Fl1-score of 0.878, verifying its strong classification ability under noisy conditions.

RDVNet achieves optimal results in both denoising and classification tasks, mainly
attributed to the following two structural design advantages: (1) The dual-branch structure
design of de-RDVNet combines Residual Attention Blocks (RABs) and Hybrid Dilated
Residual Attention Blocks (HDRABs), achieving the deep fusion of local and global in-
formation through multi-level skip connections. Meanwhile, dilated convolution and
downsampling operations jointly expand the receptive field, realizing effective differen-
tiation between insect peristaltic signals and background vibration noise in the feature
space, providing a clearer feature foundation for the classification module from the source.
(2) The cascaded group attention mechanism in the main classification module explicitly
introduces information interaction between multiple heads, avoiding the problem of inde-
pendent calculation between attention heads in traditional Transformers. By sharing and
fusing the contextual information of different attention heads, it improves the ability to
capture the overall semantics of features while reducing redundant feature calculations
and enhancing efficiency and generalization ability. In addition, the robustness of PNCC
feature spectrograms was further verified in the experiment. Due to its use of a nonlinear
compression mechanism to suppress non-stationary noise, it has stronger anti-interference
ability compared to other feature spectrograms in this research scenario, thereby signifi-
cantly improving classification accuracy. It should be noted that this paper currently only
models the binary classification problem of “with pest/without pest”, mainly focusing
on the global distinction between insect peristaltic sounds and external noise vibration
sounds in feature frequency bands. Future research can further refine pest categories and
perform recognition modeling under more complex classification systems to improve the
model’s practicality and versatility in multi-pest detection scenarios. It is worth noting
that in extreme noise environments (such as —10 dB), de-RDVNet maintains good image
reconstruction quality (PSNR > 23.0, SSIM 2 0.700) for various feature map inputs, while
RDVNet achieves a classification accuracy of 90.0% and an Fl-score of 0.810, demonstrating
its good anti-noise robustness. Future work will further explore the model’s performance
in a wider SNR range and real field scenarios and consider introducing an adaptive SNR
discrimination mechanism to enhance model adaptability.

Although this study has achieved remarkable results, there are still the following
areas for improvement, and subsequent research will focus on the following directions:
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(1) Improvement in hardware automatic collection: The current system still relies on manual
drilling in the insect hole positioning stage, resulting in limited efficiency for large quantities
of timber. In the future, semi-automatic or fully automatic drilling and sensor placement
platforms can be developed in combination with mechanical arms or automatic positioning
devices to enhance the practical application capability of the system. (2) Lightweight model
deployment: The cur-rent model deployment is based on desktop GPU devices, which is
not suitable for field environments. In the future, model pruning and inference deployment
on embedded platforms such as Jetson and Raspberry Pi can be explored to achieve the
portability and real-time performance of pest detection devices. (3) System cloud extension:
Currently, the PyQt system only supports local interactive operations. In the future, it
can be deployed to cloud platforms through Web front-ends or WeChat mini-programs
to achieve remote data upload, recognition inference, and result return, constructing an
intelligent cloud-based pest identification platform. In summary, the RDVNet model and
integrated system proposed in this paper provide a new idea and tool for the efficient
identification of wood-boring pests, with good application prospects. Future research will
further deepen and optimize in the directions of fine pest classification, lightweight model
deployment, and multi-terminal system interaction.

5. Conclusions

This paper proposes a multi-attention integrated model for wood-boring insects
identification—the Residual Denoising Vision Network (RDVNet), which effectively real-
izes the end-to-end optimization of denoising and classification tasks. The experimental
results show that RDVNet exhibits excellent robustness and discriminative ability under
various noise intensity conditions, significantly outperforming the current four mainstream
denoising and classification models. Meanwhile, PNCC feature spectrograms demonstrate
more comprehensive information expression ability and stronger anti-interference per-
formance in cepstral feature extraction. Specifically, the main contributions of this paper
include the following: (1) High-quality pest signal collection and preprocessing: Based
on the LabVIEW software-hardware integration platform, the high-precision collection of
original insect peristaltic signals is completed in a vibration-isolated environment. Subse-
quently, the original signals are segmented, format-converted, and mixed with background
conveyor belt noise to generate three types of cepstral feature spectrograms: MFCC, RASTA-
PLP, and PNCC. (2) The systematic evaluation of denoising and recognition performance:
Comprehensive comparative experiments are conducted with four classic denoising net-
works (VDNNet, RIDNet, CBDNet, and DeamNet) and four typical classification networks
(ShuffleNet, ConvNeXt, Swin Transformer, and MobileViT) under five signal-to-noise ratio
conditions from —10 dB to 0 dB. The results show that RDVNet achieves optimal denoising
and classification performance. (3) The implementation of the integrated graphical system:
To improve visualization analysis capability and user interaction efficiency, a PyQt-based
graphical user interface system is developed, realizing the full-process operation of pest
vibration signals from collection, processing, feature extraction, and model loading to classi-
fication result output. The system has a user-friendly interface, high functional integration,
and good practicability and scalability.

Author Contributions: H.L.: writing—original draft, methodology, formal analysis; H.X.: writ-
ing—review and editing, validation, software; J.G.: methodology, resources; C.H.: funding acqui-
sition, resources; X.Q.: writing—review and editing, resources, supervision, funding acquisition;
L.Y.: funding acquisition, project administration, resources, investigation; Y.H.: writing—review
and editing, methodology, formal analysis, data curation. All authors have read and agreed to the
published version of the manuscript.



Sensors 2025, 25, 6176 25 of 26

Funding: This research was funded by the National Key Research and Development Program of
China (2021YFD1400100 & 2021YFD1400102) and the Agricultural Science and Technology Innovation
Program (CAAS-ZDRW202505).

Data Availability Statement: The raw/processed data required to reproduce the above findings
cannot be shared at this time, as the data also form part of an ongoing study.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mankin, RW.; Hagstrum, D.W.; Smith, M.T.; Roda, A.L.; Kairo, M.T.K. Perspective and promise: A century of insect acoustic
detection and monitoring. Am. Entomol. 2011, 57, 30—44. [CrossRef]

2. Guo, M,;; Shang, Z. Realization of time-frequency analysis of acoustic signals of grain storage pests based on matlab software. J.
Shaanxi Norm. Univ. Nat. Sci. Ed. 2002, 30, 62—66.

3. Jia, C,; Guo, M. Analyzing the sound of sitophilus oryzae in the grain. Tech. Acoust. 2009, 28 Pt 2, 135-136.

4. Geng, S.; Shang, Z. Characterization of sound power spectra of pest activities in stored grain. |. Shaanxi Norm. Univ. Nat. Sci. Ed.
2006, 34, 4.

5. Geng, S.; Shang, Z. The distinction of insect kind on the characteristic of stored grain insect sound frequency. Syst. Sci. Compr.
Stud. Agric. 2005, 21, 241-243.

6. Mankin, RW.; Mizrach, A.; Hetzroni, A.; Levsky, S.; Nakache, Y.; Soroker, V. Temporal and spectral features of sounds of
wood-boring beetle larvae: Identifiable patterns of activity enable improved discrimination from background noise. Fla. Entomol.
2008, 91, 241-248. [CrossRef]

7. Lou, D. Study on microphones for collecting sound of wood borers. Phytosanitary 2013, 27, 5. [CrossRef]

8. Zhang, M.; Guo, M. Recognition of acoustic signals of two grain storage pest activities based on fast ica algorithm. J. Cent. China
Agric. Univ. 2012, 31, 778-782.

9.  Liu, S. Characteristics of wavelet packets of three species of aspen larvae feeding vibrations and their identification. For. Sci. 2020,
56, 10.

10. Guo, M.; Zhang, M. Research on acoustic signal recognition of grain storage pests based on gmm and clustering methods. .
Nanjing Agric. Univ. 2012, 35, 5.

11.  Zhang, M.; Guo, M. Research on acoustic signal recognition of grain storage pests based on stream learning and svm. J. Yunnan
Univ. Nat. Sci. Ed. 2014, 36, 174-180.

12.  Bu, Y. Acoustic characterization of seven species of forest drying pests. J. Nanjing For. Univ. Nat. Sci. Ed. 2016, 40, 6.

13.  Han, P. Chaotic optimization for sound signal recognition of warehouse pests. Microelectron. Comput. 2012, 29, 5.

14. Han, P. Pattern recognition of pest sounds in storage. Comput. Eng. 2003, 29, 3.

15. Sun, Y,; Tuo, X. Lightweight neural network-based recognition of drilling vibrations of 2 pests. For. Sci. 2020, 56, 9.

16. Li,J; Zhao, X,; Li, X;; Ju, M.; Yang, F. A method for classifying wood-boring insects for pest control based on deep learning using
boring vibration signals with environment noise. Forests 2024, 15, 1875. [CrossRef]

17.  Jiang, W.; Chen, Z.; Zhang, H. A time-frequency domain mixed attention-based approach for classifying wood-boring insect
feeding vibration signals using a deep learning model. Insects 2024, 15, 282. [CrossRef] [PubMed]

18.  Shi, H.; Chen, Z.; Zhang, H.; Li, J; Liu, X,; Ren, L.; Luo, Y. Enhancement of boring vibrations based on cascaded dual-domain
features extraction for insect pest agrilus planipennis monitoring. Forests 2023, 14, 902. [CrossRef]

19. Dou, C; Li,M,; Luo, T,; Deng, T.; Zhu, D. Acoustic emission signal characteristics of larvae of pockmark leopard longhorn in
poplar segments. J. Northeast For. Univ. 2021, 49, 5.

20. Bu Y;Qi, X,; Wen, J.; Xu, Z. Four types of vocal behavior characteristics of two species of longhorn larvae. J. Zhejiang AGF Univ.
2017, 34, 6.

21. Bilski, P,; Bobinski, P.; Krajewski, A.; Witomski, P. Detection of wood boring insects’” larvae based on the acoustic signal analysis
and the artificial intelligence algorithm. Arch. Acoust. 2017, 42, 61-70. [CrossRef]

22. Zhang, X.; Zhang, H.; Chen, Z.; Li, ]. Trunk borer identification based on convolutional neural networks. Appl. Sci. 2023, 13, 863.
[CrossRef]

23.  Ertugrul, N. Towards virtual laboratories: A survey of labview-based teaching/learning tools and future trends. Int. J. Eng. Educ.
2000, 16, 171-180.

24. Zhang, H.; Li, J,; Cai, G.; Chen, Z.; Zhang, H. A CNN-based method for enhancing boring vibration with time-domain
convolution-augmented transformer. Insects 2023, 14, 631. [CrossRef]

25. Sutin, A.; Yakubovskiy, A.; Salloum, H.; Flynn, T.; Sedunov, N.; Nadel, H.; Krishnankutty, S. Sound of wood-boring larvae and its

automated detection. J. Acoust. Soc. Am. 2018, 143 (Suppl. S3), 1795. [CrossRef]


http://doi.org/10.1093/ae/57.1.30
http://dx.doi.org/10.1653/0015-4040(2008)91[241:TASFOS]2.0.CO;2
http://dx.doi.org/10.19662/j.cnki.issn1005-2755.2013.06.008
http://dx.doi.org/10.3390/f15111875
http://dx.doi.org/10.3390/insects15040282
http://www.ncbi.nlm.nih.gov/pubmed/38667411
http://dx.doi.org/10.3390/f14050902
http://dx.doi.org/10.1515/aoa-2017-0007
http://dx.doi.org/10.3390/app13020863
http://dx.doi.org/10.3390/insects14070631
http://dx.doi.org/10.1121/1.5035870

Sensors 2025, 25, 6176 26 of 26

26.

27.
28.

29.
30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.
41.

42.

Hossan, M.A.; Memon, S.; Gregory, M.A. A novel approach for mfcc feature extraction. In Proceedings of the 2010 4th International
Conference on Signal Processing and Communication Systems, Gold Coast, Australia, 13-15 December 2010; pp. 1-5.

Fan, J.; Zhao, C. lir bandpass filter realization. J. Shangrao Norm. Coll. 2010, 30, 25-28. 34.

Wei, Y.; Zhang, X. Extraction of plp parameters for speech features under noisy conditions. J. Taiyuan Univ. Technol. 2009, 40,
222-224.

Wang, Y.; Qian, Z. An Auditory Feature Extraction Algorithm Based on 7-tone Filter-Banks. Electron. Lett. 2010, 38, 525-528.
Xiao, Y.; Ge, L. Automatic recognition method for recorded speech based on pncc features. Autom. Technol. Appl. 2024, 43,
163-167.

Zhang, C. A study of the effectiveness of long-time average power spectra in courtroom speaker identification. J. China Crim.
Police Acad. 2004, 54-56.

Tran, T.D. Fast multiplierless approximation of the dct with the lifting scheme. IEEE Signal Process. Lett. 2000, 7, 141-144.
[CrossRef]

Kim, C.; Stern, R.M. Power-normalized cepstral coefficients (pncc) for robust speech recognition. IEEE/ACM Trans. Audio, Speech,
Lang. Process. 2016, 24, 1315-1329. [CrossRef]

Wu, W,; Liu, S.; Xia, Y,; Zhang, Y. Dual residual attention network for image denoising. Pattern Recognit. 2024, 149, 110291.
[CrossRef]

Li, Y,; Yuan, Y. Convergence analysis of two-layer neural networks with relu activation. arXiv 2017, arXiv:1705.09886.

Tan, H.; Liu, X,; Yin, B.; Li, X. Mhsa-net: Multihead self-attention network for occluded person re-identification. IEEE Trans.
Neural Netw. Learn. Syst. 2022, 34, 8210-8224. [CrossRef] [PubMed]

Zhang, T.; Sun, X.; Zhuang, L.; Dong, X.; Gao, L.; Zhang, B.; Zheng, K. Ffn: Fountain fusion net for arbitrary-oriented object
detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5609913. [CrossRef]

Liu, X.; Peng, H.; Zheng, N.; Yang, Y.; Hu, H.; Yuan, Y. Efficientvit: Memory efficient vision transformer with cascaded group
attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17-24 June 2023; pp. 14420-14430.

Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How does batch normalization help optimization? In Proceedings of the Advances
in Neural Information Processing Systems 31, Montreal, QC, Canada, 2-8 December 2018.

He, X.; Cheng, J. Revisiting 11 loss in super-resolution: A probabilistic view and beyond. arXiv 2022, arXiv:2201.10084

Hore, A.; Ziou, D. Image quality metrics: Psnr vs. ssim. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23-26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2366-2369.

Setiadi, D.RILM. Psnr vs ssim: Imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 2021, 80,
8423-8444. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1109/97.844633
http://dx.doi.org/10.1109/TASLP.2016.2545928
http://dx.doi.org/10.1016/j.patcog.2024.110291
http://dx.doi.org/10.1109/TNNLS.2022.3144163
http://www.ncbi.nlm.nih.gov/pubmed/35312622
http://dx.doi.org/10.1109/TGRS.2023.3276995
http://dx.doi.org/10.1007/s11042-020-10035-z

	Introduction
	Experiments and Methods
	Data Acquisition and Processing
	Cepstral Coefficient Spectrogram Extraction
	Development of PyQt Software

	Image Denoising-Based Vision Recognition Model
	Dataset Partitioning
	Denoising Module
	 Residual Denoising Vision Network
	Parameter Settings

	Results and Discussion
	Denoising Comparison
	Comparison of Classification Models
	Discussion

	Conclusions
	References

