Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = amyloid-β self-assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 26512 KiB  
Article
Insights into Membrane Damage by α-Helical and β-Sheet Peptides
by Warin Rangubpit, Hannah E. Distaffen, Bradley L. Nilsson and Cristiano L. Dias
Biomolecules 2025, 15(7), 973; https://doi.org/10.3390/biom15070973 - 7 Jul 2025
Viewed by 469
Abstract
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane [...] Read more.
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane surface. Peptide M01 [Ac-(FKFE)2-NH2] self-assembles into β-sheet nanofibrils that span both leaflets of the membrane, creating water-permeable channels. The other three peptides adopt α-helical structures at the water–lipid interface. Peptide M02 [Ac-FFKKFFEE-NH2], a sequence isomer of M01, does not form β-sheet aggregates and is too short to span the bilayer, resulting in no observable water permeation across the membrane. Peptides M03 and M04 are α-helical isomers long enough to span the bilayer, with a polar face that allows the penetration of water deep inside the membrane. For the M03 peptide [Ac-(FFKKFFEE)2-NH2], insertion into the bilayer starts with the nonpolar N-terminal amino acids penetrating the hydrophobic core of the bilayer, while electrostatic interactions hold negative residues at the C-terminus on the membrane surface. The M04 peptide, [Ac-FFKKFFEEFKKFFEEF-NH2], is made by relocating a single nonpolar residue from the central region of M03 to the C-terminus. This nonpolar residue becomes unfavorably exposed to the solvent upon insertion of the N-terminal region of the peptide into the membrane. Consequently, higher concentrations of M04 peptides are required to induce water permeation compared to M03. Overall, our comparative analysis reveals how subtle rearrangements of polar and nonpolar residues modulate peptide-induced water permeation. This provides mechanistic insights relevant to amyloid pathology and antimicrobial peptide design. Full article
(This article belongs to the Special Issue New Insights into Protein Aggregation in Condensed and Amyloid States)
Show Figures

Figure 1

21 pages, 7627 KiB  
Article
Oligomer Formation by Physiologically Relevant C-Terminal Isoforms of Amyloid β-Protein
by Rachit Pandey and Brigita Urbanc
Biomolecules 2024, 14(7), 774; https://doi.org/10.3390/biom14070774 - 28 Jun 2024
Viewed by 1448
Abstract
Alzheimer’s disease (AD) is a neurological disorder associated with amyloid β-protein (Aβ) assembly into toxic oligomers. In addition to the two predominant alloforms, Aβ140 and Aβ142, other C-terminally truncated Aβ [...] Read more.
Alzheimer’s disease (AD) is a neurological disorder associated with amyloid β-protein (Aβ) assembly into toxic oligomers. In addition to the two predominant alloforms, Aβ140 and Aβ142, other C-terminally truncated Aβ peptides, including Aβ138 and Aβ143, are produced in the brain. Here, we use discrete molecular dynamics (DMD) and a four-bead protein model with amino acid-specific hydropathic interactions, DMD4B-HYDRA, to examine oligomer formation of Aβ138, Aβ140, Aβ142, and Aβ143. Self-assembly of 32 unstructured monomer peptides into oligomers is examined using 32 replica DMD trajectories for each of the four peptides. In a quasi-steady state, Aβ138 and Aβ140 adopt similar unimodal oligomer size distributions with a maximum at trimers, whereas Aβ142 and Aβ143 oligomer size distributions are multimodal with the dominant maximum at trimers or tetramers, and additional maxima at hexamers and unidecamers (for Aβ142) or octamers and pentadecamers (for Aβ143). The free energy landscapes reveal isoform- and oligomer-order specific structural and morphological features of oligomer ensembles. Our results show that oligomers of each of the four isoforms have unique features, with Aβ142 alone resulting in oligomers with disordered and solvent-exposed N-termini. Our findings help unravel the structure–function paradigm governing oligomers formed by various Aβ isoforms. Full article
(This article belongs to the Special Issue New Insights into Protein Aggregation in Condensed and Amyloid States)
Show Figures

Figure 1

22 pages, 5854 KiB  
Article
ApoE Isoforms Inhibit Amyloid Aggregation of Proinflammatory Protein S100A9
by Shamasree Ghosh, Shanmugam Tamilselvi, Chloe Williams, Sanduni W. Jayaweera, Igor A. Iashchishyn, Darius Šulskis, Jonathan D. Gilthorpe, Anders Olofsson, Vytautas Smirnovas, Željko M. Svedružić and Ludmilla A. Morozova-Roche
Int. J. Mol. Sci. 2024, 25(4), 2114; https://doi.org/10.3390/ijms25042114 - 9 Feb 2024
Cited by 3 | Viewed by 2369
Abstract
Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer’s disease (AD). The amyloid co-aggregation of S100A9 with amyloid-β (Aβ) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one [...] Read more.
Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer’s disease (AD). The amyloid co-aggregation of S100A9 with amyloid-β (Aβ) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD. Full article
Show Figures

Figure 1

16 pages, 6559 KiB  
Article
Aggregation and Oligomerization Characterization of ß-Lactoglobulin Protein Using a Solid-State Nanopore Sensor
by Mitu C. Acharjee, Brad Ledden, Brian Thomas, Xianglan He, Troy Messina, Jason Giurleo, David Talaga and Jiali Li
Sensors 2024, 24(1), 81; https://doi.org/10.3390/s24010081 - 22 Dec 2023
Cited by 3 | Viewed by 1965
Abstract
Protein aggregation is linked to many chronic and devastating neurodegenerative human diseases and is strongly associated with aging. This work demonstrates that protein aggregation and oligomerization can be evaluated by a solid-state nanopore method at the single molecule level. A silicon nitride nanopore [...] Read more.
Protein aggregation is linked to many chronic and devastating neurodegenerative human diseases and is strongly associated with aging. This work demonstrates that protein aggregation and oligomerization can be evaluated by a solid-state nanopore method at the single molecule level. A silicon nitride nanopore sensor was used to characterize both the amyloidogenic and native-state oligomerization of a model protein ß-lactoglobulin variant A (βLGa). The findings from the nanopore measurements are validated against atomic force microscopy (AFM) and dynamic light scattering (DLS) data, comparing βLGa aggregation from the same samples at various stages. By calibrating with linear and circular dsDNA, this study estimates the amyloid fibrils’ length and diameter, the quantity of the βLGa aggregates, and their distribution. The nanopore results align with the DLS and AFM data and offer additional insight at the level of individual protein molecular assemblies. As a further demonstration of the nanopore technique, βLGa self-association and aggregation at pH 4.6 as a function of temperature were measured at high (2 M KCl) and low (0.1 M KCl) ionic strength. This research highlights the advantages and limitations of using solid-state nanopore methods for analyzing protein aggregation. Full article
(This article belongs to the Special Issue Nanosensors for Chemical and Biological Detection)
Show Figures

Graphical abstract

14 pages, 10519 KiB  
Article
Nucleation of α-Synuclein Amyloid Fibrils Induced by Cross-Interaction with β-Hairpin Peptides Derived from Immunoglobulin Light Chains
by Laetitia F. Heid, Tatsiana Kupreichyk, Marie P. Schützmann, Walfried Schneider, Matthias Stoldt and Wolfgang Hoyer
Int. J. Mol. Sci. 2023, 24(22), 16132; https://doi.org/10.3390/ijms242216132 - 9 Nov 2023
Cited by 1 | Viewed by 2136
Abstract
Heterologous interactions between different amyloid-forming proteins, also called cross-interactions, may have a critical impact on disease-related amyloid formation. β-hairpin conformers of amyloid-forming proteins have been shown to affect homologous interactions in the amyloid self-assembly process. Here, we applied two β-hairpin-forming peptides derived from [...] Read more.
Heterologous interactions between different amyloid-forming proteins, also called cross-interactions, may have a critical impact on disease-related amyloid formation. β-hairpin conformers of amyloid-forming proteins have been shown to affect homologous interactions in the amyloid self-assembly process. Here, we applied two β-hairpin-forming peptides derived from immunoglobulin light chains as models to test how heterologous β-hairpins modulate the fibril formation of Parkinson’s disease-associated protein α-synuclein (αSyn). The peptides SMAhp and LENhp comprise β-strands C and C′ of the κ4 antibodies SMA and LEN, which are associated with light chain amyloidosis and multiple myeloma, respectively. SMAhp and LENhp bind with high affinity to the β-hairpin-binding protein β-wrapin AS10 according to isothermal titration calorimetry and NMR spectroscopy. The addition of SMAhp and LENhp affects the kinetics of αSyn aggregation monitored by Thioflavin T (ThT) fluorescence, with the effect depending on assay conditions, salt concentration, and the applied β-hairpin peptide. In the absence of agitation, substoichiometric concentrations of the hairpin peptides strongly reduce the lag time of αSyn aggregation, suggesting that they support the nucleation of αSyn amyloid fibrils. The effect is also observed for the aggregation of αSyn fragments lacking the N-terminus or the C-terminus, indicating that the promotion of nucleation involves the interaction of hairpin peptides with the hydrophobic non-amyloid-β component (NAC) region. Full article
(This article belongs to the Special Issue Alpha-Synuclein Amyloid Fibril Formation: New Molecular Perspectives)
Show Figures

Graphical abstract

10 pages, 2497 KiB  
Communication
Rational Design of Nitrogen-Doped Carbon Dots for Inhibiting β-Amyloid Aggregation
by Hong Liu, Huazhang Guo, Yibin Fang, Liang Wang and Peng Li
Molecules 2023, 28(3), 1451; https://doi.org/10.3390/molecules28031451 - 2 Feb 2023
Cited by 13 | Viewed by 2880 | Correction
Abstract
The fibrillization and abnormal aggregation of β-amyloid (Aβ) peptides are commonly recognized risk factors for Alzheimer’s disease (AD) brain, and require an effective strategy to inhibit the Aβ deposition and treat AD. Herein, we designed and synthesized nitrogen-doped carbon [...] Read more.
The fibrillization and abnormal aggregation of β-amyloid (Aβ) peptides are commonly recognized risk factors for Alzheimer’s disease (AD) brain, and require an effective strategy to inhibit the Aβ deposition and treat AD. Herein, we designed and synthesized nitrogen-doped carbon dots (N-CDs) as an Aβ-targeted probe, which exhibits the capacity of inhibiting the 1–42 Aβ (Aβ1–42) self-assembly in vitro. The N-CDs exhibited orange emission with an emission wavelength of 570 nm, which demonstrates their excellent optical properties with excitation-independent behavior. Meanwhile, the N-CDs have spherical morphologies with an average size of 2.2 nm, whose surface enriches the amino, carboxyl, and hydroxyl groups. These preparties are conducive to improving their biological water solubility and provide a large number of chemical bonds for further interaction with proteins. Contrary to this, the kinetic process, size evolutions, and morphologies changes of Aβ1–42 were inhibited in the presence of N-CDs in the determination of a thioflavin T assay, dynamic light scattering, transmission electron microscope, etc. Finally, the safety application of N-CDs on Aβ1–42-induced cytotoxicity was further demonstrated via in vitro cytotoxicity experiments. This work demonstrates the effective outcome of suppressing Aβ aggregation, which provides a new view into the high-efficiency and low-cytotoxicity strategy in AD theranostics. Full article
(This article belongs to the Special Issue Functional Carbon Quantum Dots: Synthesis and Applications)
Show Figures

Graphical abstract

13 pages, 2501 KiB  
Article
Melatonin Inhibits hIAPP Oligomerization by Preventing β-Sheet and Hydrogen Bond Formation of the Amyloidogenic Region Revealed by Replica-Exchange Molecular Dynamics Simulation
by Gang Wang, Xinyi Zhu, Xiaona Song, Qingwen Zhang and Zhenyu Qian
Int. J. Mol. Sci. 2022, 23(18), 10264; https://doi.org/10.3390/ijms231810264 - 6 Sep 2022
Cited by 11 | Viewed by 2588
Abstract
The pathogenesis of type 2 diabetes (T2D) is highly related to the abnormal self-assembly of the human islet amyloid polypeptide (hIAPP) into amyloid aggregates. To inhibit hIAPP aggregation is considered a promising therapeutic strategy for T2D treatment. Melatonin (Mel) was reported to effectively [...] Read more.
The pathogenesis of type 2 diabetes (T2D) is highly related to the abnormal self-assembly of the human islet amyloid polypeptide (hIAPP) into amyloid aggregates. To inhibit hIAPP aggregation is considered a promising therapeutic strategy for T2D treatment. Melatonin (Mel) was reported to effectively impede the accumulation of hIAPP aggregates and dissolve preformed fibrils. However, the underlying mechanism at the atomic level remains elusive. Here, we performed replica-exchange molecular dynamics (REMD) simulations to investigate the inhibitory effect of Mel on hIAPP oligomerization by using hIAPP20–29 octamer as templates. The conformational ensemble shows that Mel molecules can significantly prevent the β-sheet and backbone hydrogen bond formation of hIAPP20–29 octamer and remodel hIAPP oligomers and transform them into less compact conformations with more disordered contents. The interaction analysis shows that the binding behavior of Mel is dominated by hydrogen bonding with a peptide backbone and strengthened by aromatic stacking and CH–π interactions with peptide sidechains. The strong hIAPP–Mel interaction disrupts the hIAPP20–29 association, which is supposed to inhibit amyloid aggregation and cytotoxicity. We also performed conventional MD simulations to investigate the influence and binding affinity of Mel on the preformed hIAPP1–37 fibrillar octamer. Mel was found to preferentially bind to the amyloidogenic region hIAPP20–29, whereas it has a slight influence on the structural stability of the preformed fibrils. Our findings illustrate a possible pathway by which Mel alleviates diabetes symptoms from the perspective of Mel inhibiting amyloid deposits. This work reveals the inhibitory mechanism of Mel against hIAPP20–29 oligomerization, which provides useful clues for the development of efficient anti-amyloid agents. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biophysics in China)
Show Figures

Figure 1

23 pages, 4315 KiB  
Review
Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies
by Thorbjørn Vincent Sønderby, Zahra Najarzadeh and Daniel Erik Otzen
Molecules 2022, 27(13), 4080; https://doi.org/10.3390/molecules27134080 - 24 Jun 2022
Cited by 36 | Viewed by 5090
Abstract
Functional amyloid is produced by many organisms but is particularly well understood in bacteria, where proteins such as CsgA (E. coli) and FapC (Pseudomonas) are assembled as functional bacterial amyloid (FuBA) on the cell surface in a carefully optimized [...] Read more.
Functional amyloid is produced by many organisms but is particularly well understood in bacteria, where proteins such as CsgA (E. coli) and FapC (Pseudomonas) are assembled as functional bacterial amyloid (FuBA) on the cell surface in a carefully optimized process. Besides a host of helper proteins, FuBA formation is aided by multiple imperfect repeats which stabilize amyloid and streamline the aggregation mechanism to a fast-track assembly dominated by primary nucleation. These repeats, which are found in variable numbers in Pseudomonas, are most likely the structural core of the fibrils, though we still lack experimental data to determine whether the repeats give rise to β-helix structures via stacked β-hairpins (highly likely for CsgA) or more complicated arrangements (possibly the case for FapC). The response of FuBA fibrillation to denaturants suggests that nucleation and elongation involve equal amounts of folding, but protein chaperones preferentially target nucleation for effective inhibition. Smart peptides can be designed based on these imperfect repeats and modified with various flanking sequences to divert aggregation to less stable structures, leading to a reduction in biofilm formation. Small molecules such as EGCG can also divert FuBA to less organized structures, such as partially-folded oligomeric species, with the same detrimental effect on biofilm. Finally, the strong tendency of FuBA to self-assemble can lead to the formation of very regular two-dimensional amyloid films on structured surfaces such as graphite, which strongly implies future use in biosensors or other nanobiomaterials. In summary, the properties of functional amyloid are a much-needed corrective to the unfortunate association of amyloid with neurodegenerative disease and a testimony to nature’s ability to get the best out of a protein fold. Full article
Show Figures

Figure 1

24 pages, 4091 KiB  
Review
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas
by Diti Chatterjee Bhowmick, Zhanar Kudaibergenova, Lydia Burnett and Aleksandar M. Jeremic
Molecules 2022, 27(3), 1021; https://doi.org/10.3390/molecules27031021 - 2 Feb 2022
Cited by 20 | Viewed by 7217
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells [...] Read more.
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed. Full article
Show Figures

Figure 1

18 pages, 4796 KiB  
Review
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges
by Jingyao Li and Fuzhong Zhang
Int. J. Mol. Sci. 2021, 22(19), 10698; https://doi.org/10.3390/ijms221910698 - 2 Oct 2021
Cited by 37 | Viewed by 5139
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. [...] Read more.
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials. Full article
(This article belongs to the Special Issue Amyloid: Structure and Function)
Show Figures

Figure 1

21 pages, 3126 KiB  
Article
Impact of a Single Point Mutation on the Antimicrobial and Fibrillogenic Properties of Cryptides from Human Apolipoprotein B
by Rosa Gaglione, Giovanni Smaldone, Angela Cesaro, Mariano Rumolo, Maria De Luca, Rocco Di Girolamo, Luigi Petraccone, Pompea Del Vecchio, Rosario Oliva, Eugenio Notomista, Emilia Pedone and Angela Arciello
Pharmaceuticals 2021, 14(7), 631; https://doi.org/10.3390/ph14070631 - 29 Jun 2021
Cited by 14 | Viewed by 3434
Abstract
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B [...] Read more.
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity. Full article
Show Figures

Graphical abstract

16 pages, 1947 KiB  
Article
Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner
by Arnaud Marquette, Christopher Aisenbrey and Burkhard Bechinger
Int. J. Mol. Sci. 2021, 22(13), 6725; https://doi.org/10.3390/ijms22136725 - 23 Jun 2021
Cited by 7 | Viewed by 2982
Abstract
The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive [...] Read more.
The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive glutamines which, when exceeding ~ 37 residues, results in the occurrence of the disease. Furthermore, it has also been demonstrated that the 17-residue amino-terminal domain of the protein (htt17), located upstream of this polyglutamine tract, strongly correlates with aggregate formation and pathology. Here, we demonstrate that membrane interactions strongly accelerate the oligomerisation and β-amyloid fibril formation of htt17-polyglutamine segments. By using a combination of biophysical approaches, the kinetics of fibre formation is investigated and found to be strongly dependent on the presence of lipids, the length of the polyQ expansion, and the polypeptide-to-lipid ratio. Finally, the implications for therapeutic approaches are discussed. Full article
(This article belongs to the Special Issue Alzheimer’s Disease: Role and Structure of Soluble Oligomers)
Show Figures

Figure 1

20 pages, 11940 KiB  
Review
Amyloid-Mediated Mechanisms of Membrane Disruption
by Michele F. M. Sciacca, Carmelo La Rosa and Danilo Milardi
Biophysica 2021, 1(2), 137-156; https://doi.org/10.3390/biophysica1020011 - 7 Apr 2021
Cited by 21 | Viewed by 4953
Abstract
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, [...] Read more.
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2 diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic properties of amyloid aggregates are correlated with their ability to damage cell membranes. However, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be completely elucidated. This review aims at describing the mutual relationships linking abnormal protein conformational transition and self-assembly into amyloid aggregates with membrane damage. A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of effective therapies. Full article
Show Figures

Figure 1

17 pages, 1751 KiB  
Article
Extract from the Marine Seaweed Padina pavonica Protects Mitochondrial Biomembranes from Damage by Amyloidogenic Peptides
by Mario Caruana, Angelique Camilleri, Maria Ylenia Farrugia, Stephanie Ghio, Michaela Jakubíčková, Ruben J. Cauchi and Neville Vassallo
Molecules 2021, 26(5), 1444; https://doi.org/10.3390/molecules26051444 - 7 Mar 2021
Cited by 12 | Viewed by 4326
Abstract
The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as [...] Read more.
The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer’s disease (AD) and Parkinson’s disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD. Full article
Show Figures

Figure 1

9 pages, 4394 KiB  
Article
Different Aggregation Pathways and Structures for Aβ40 and Aβ42 Peptides
by Li Wang, Kilho Eom and Taeyun Kwon
Biomolecules 2021, 11(2), 198; https://doi.org/10.3390/biom11020198 - 30 Jan 2021
Cited by 27 | Viewed by 3508
Abstract
Self-aggregation of amyloid-β (Aβ) peptides has been known to play a vital role in the onset stage of neurodegenerative diseases, indicating the necessity of understanding the aggregation process of Aβ peptides. Despite previous studies on the aggregation process of Aβ peptides, the aggregation [...] Read more.
Self-aggregation of amyloid-β (Aβ) peptides has been known to play a vital role in the onset stage of neurodegenerative diseases, indicating the necessity of understanding the aggregation process of Aβ peptides. Despite previous studies on the aggregation process of Aβ peptides, the aggregation pathways of Aβ isoforms (i.e., Aβ40 and Aβ42) and their related structures have not been fully understood yet. Here, we study the aggregation pathways of Aβ40 and Aβ42, and the structures of Aβ40 and Aβ42 aggregates during the process, based on fluorescence and atomic force microscopy (AFM) experiments. It is shown that in the beginning of aggregation process for both Aβ40 and Aβ42, a number of particles (i.e., spherical oligomers) are formed. These particles are subsequently self-assembled together, resulting in the formation of different shapes of amyloid fibrils. Our finding suggests that the different aggregation pathways of Aβ isoforms lead to the amyloid fibrils with contrasting structure. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

Back to TopTop