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Abstract: The fibrillization and abnormal aggregation of β-amyloid (Aβ) peptides are commonly
recognized risk factors for Alzheimer’s disease (AD) brain, and require an effective strategy to inhibit
the Aβ deposition and treat AD. Herein, we designed and synthesized nitrogen-doped carbon dots
(N-CDs) as an Aβ-targeted probe, which exhibits the capacity of inhibiting the 1–42 Aβ (Aβ1–42)
self-assembly in vitro. The N-CDs exhibited orange emission with an emission wavelength of 570
nm, which demonstrates their excellent optical properties with excitation-independent behavior.
Meanwhile, the N-CDs have spherical morphologies with an average size of 2.2 nm, whose surface
enriches the amino, carboxyl, and hydroxyl groups. These preparties are conducive to improving
their biological water solubility and provide a large number of chemical bonds for further interaction
with proteins. Contrary to this, the kinetic process, size evolutions, and morphologies changes of
Aβ1–42 were inhibited in the presence of N-CDs in the determination of a thioflavin T assay, dynamic
light scattering, transmission electron microscope, etc. Finally, the safety application of N-CDs on
Aβ1–42-induced cytotoxicity was further demonstrated via in vitro cytotoxicity experiments. This
work demonstrates the effective outcome of suppressing Aβ aggregation, which provides a new view
into the high-efficiency and low-cytotoxicity strategy in AD theranostics.
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1. Introduction

Alzheimer’s disease (AD), a common neurodegenerative disorder, is one of the major
causative factors to induce progressive dementia [1]. Notably, AD is reported to affect
more than 50 million people, with its prevalence continuing to grow in part because of
the aging worldwide population [2]. The symptoms of the disease begin with mildly
impaired memory function and evolve towards severe cognitive loss, inevitably terminat-
ing in complete incapacity and death [3]. Typically, its pathogenesis is characterized by
extracellular aggregates of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles
of hyperphosphorylated Tau [4]. As a principal variant of the Aβ peptides in humans [5],
Aβ1–42 contains all amino acid sequences and relatively accurately simulates the action
of Aβ [6], but also serves as the most common variant in human cerebrospinal fluid [7].
Growing evidence suggests that there are currently no available treatments that can change
the course of an illness or the rate of decline [8]. Clinically effective treatment methods
include cholinesterase inhibitors for patients with any stage of AD and memantine for
people with moderate-to-severe AD [9]. Nevertheless, these medications can only enhance
the quality of life when prescribed at the appropriate time during an illness [10]. Thus,
there is an urgent need to explore a novel pathway for preventing or treating AD.
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Increasing attention has been paid to nanomedicine due to nanomaterials’ great
biocompatibility [11–13], stable physiochemical properties [14–16], photoluminescence
properties [17–19], edge effect [20], and low cytotoxicity [21,22]. Recent studies have
exhibited promising results with regard to the probability of using carbon nanomaterials
for amyloid fibrillogenesis [23,24]. The conjugated structure of graphene oxide helps it bind
tightly to Aβ through hydrophobic interactions and π-π packing interactions. For instance,
thioflavin-S-modified graphene oxide under infrared laser irradiation could dissociate
amyloid aggregation due to its high near-infrared absorbance, indicating the possibility
of the photothermal treatment of AD [25]. Beyond the graphene oxide, a nano-chaperone
based on a mixed-shell polymeric micelle was applicable in selectively capturing Aβ
peptides, thus inhibiting Aβ aggregation [26]. However, it cannot be neglected that the
hampering effect of the blood-brain barrier (BBB) acts as an obstacle to the transport of these
nanomaterials from the vascular compartment to the brain [27]. In addition, as amyloid
plaques accompanied by high levels of metal ions (e.g., copper, zinc, iron), coordination
compounds [28], gold nanoparticles [29], and metallosupramolecular complexes [30] were
synthesized and positive effects were noted on their association of metal ions with β-
amyloidosis. Nevertheless, the inhibitors containing metallic elements are toxic to the body
at a high dose [31]. Fortunately, carbon dots (CDs) can be an ideal candidate, with greater
biocompatibility and a nontoxic nature due to their ability to cross the BBB [32], in addition
to the lack of metals [33]. Therefore, amongst all nanoparticle species, the employment of
CDs can be inspiring news for inhibiting the aggregation of the Aβ peptide and envisioning
its clinical use as an anti-AD drug.

Here, the newly discovered functions of nitrogen-doped carbon dots (N-CDs) inhibited
Aβ aggregation was designed and prepared with 1,2,3-benzenetricarboxylic acid and o-
phenylenediamine by a one-pot solvothermal method. The N-CDs display excellent optical
performance and narrow size distribution. Furthermore, the kinetic process, size evolutions,
and morphologies of Aβ1–42 with or without the presence of N-CDs were displayed by
a thioflavin T (ThT) assay, dynamic light scattering (DLS), and transmission electron
microscope (TEM), respectively. The morphology and spectroscopic characterizations of
N-CDs were also shown. Moreover, the safety application of N-CDs on Aβ1–42-induced
cytotoxicity was further demonstrated via in vitro cytotoxicity experiments.

2. Results and Discussion
2.1. Characterization of N-CDs

To synthesize CDs, 1,2,3-benzenetricarboxylic acid and o-phenylenediamine were
treated as precursors under a solvothermal condition at 180 ◦C for 12 h. The product
solution was removed in large size and solvent, then transferred to the normal saline
phase, and the pH was adjusted to 5 (Figure 1). The N-CDs presents an orange emission.
As shown in Figure 2a, the UV-vis absorption and photoluminescence (PL) spectroscopy
were explored. The N-CDs displayed an absorption peak at 420 nm and their absorption
edge extend to 510 nm. The maximum photoluminescence excitation (PLE) and emission
wavelength were 380 and 570 nm, respectively. The N-CDs demonstrated stable emission-
independent PL behaviors from 360 to 540 nm excitation (Figure 2b). Furthermore, the
N-CDs illustrated a monoexponential fluorescence lifetime of 3.21 ns (Figure 2c).
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Figure 1. Schematic route for the synthesis of N-CDs.
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Figure 2. (a) The UV-vis, PL, and PLE spectra, (b) the PL spectra at different excitation wavelengths,
and (c) the time-resolved PL spectrum of N-CDs.

The morphology and structure were further represented by N-CDs. As illustrated
in Figure 3a, the TEM image showed that the N-CDs has spherical morphologies with an
average size of 2.2 nm. The D band (1362 cm−1) and G band (1580 cm−1) were found in its
Raman spectrum (Figure S1), and the intensity ratio ID/IG was 0.73. The ratio indicates that
N-CDs consist of a predominantly graphene structure and other disorder structures. [17,34]
In addition, the surface properties of the N-CDs were further characterized by FT-IR and
XPS spectra. The FT-IR spectrum (Figure 3b) of the N-CDs exhibited several peaks for
O-H/N-H/C-H stretches at 2900–3410 cm−1, C=O, C=N, C-N, and C-O stretches at 1710,
1550, 1270, and 1110 cm−1, respectively. The summary of the FT-IR spectrum indicates
the presence of N-C and O-C bonds from the amino, carboxyl, hydroxyl, and amide bond
groups of N-CDs, which is further verified by its XPS measurement. The XPS survey show
the N-CDs’ composition of C (77.06 at.%), N (10.31 at.%), and O (12.63 at.%) in Figure 3c.
The XPS C1s spectrum (Figure 3d) displayed sp2 C (C-C/C=C) at 284.8 eV, sp3 C (including
C-N and C-O) at 285.58 and 286.76 eV, a carbonyl group C (C=O or C=N) at 289.31 eV, and
π-π* satellite at 291.98 eV. As shown in Figure 3e, the XPS N1s spectrum revealed the four
N sources, including pyridinic N (398.56 eV), amine N (399.01 eV), pyrrolic N (400.11 eV),
and graphitic N (400.81 eV). In Figure 3f, the XPS O1s spectrum was distributed to C=O,
O=C-NH, and C-O, at 530.88, 532.30, and 533.82 eV, respectively. The dominant hydroxyl,
amino, and carboxyl groups on the N-CDs’ surface support better aqueous solubility and
further interact with protein via chemical bonds. Previous reports had demonstrated that
inhibition can occur by distinct binding patterns between Aβ monomers and the surfaces
of the CDs with hydrophilic/hydrophobic groups (Table S1) [35,36].



Molecules 2023, 28, 1451 4 of 10Molecules 2024, 29, x FOR PEER REVIEW 2 of 2 
 

 

 

Figure 3. (a) TEM image and its corresponding lateral size distribution, (b) FT-IR spectrum, (c) sur-

vey XPS spectrum, (d) high-resolution C1s spectrum, (e) high-resolution N1s spectrum, and (f) high-

resolution O1s spectrum of N-CDs. 

Reference 

1. Liu, H.; Guo, H.; Fang, Y.; Wang, L.; Li, P. Rational Design of Nitrogen-Doped Carbon Dots for Inhibiting β-Amyloid Aggrega-

tion. Molecules 2023, 28, 1451. https://doi.org/10.3390/molecules28031451 

Figure 3. (a) TEM image and its corresponding lateral size distribution, (b) FT-IR spectrum, (c) survey
XPS spectrum, (d) high-resolution C1s spectrum, (e) high-resolution N1s spectrum, and (f) high-
resolution O1s spectrum of N-CDs.

2.2. Inhibition on Aβ1–42 Aggregation Self-Assembly with N-CDs

Nanomaterial-based approaches could offer promising directions in addressing the
challenges in current therapeutic/diagnostic bio-reagent applications [37,38]. In the present
study, the modulation effects of the special N-CDs on the amyloid peptide assemblies are
presented according to the ThT assay, DLS, and TEM. As shown in Figure 4a, the effect of
N-CDs on the assembly of Aβ1–42 peptides was first employed by a ThT fluorescence assay,
which is a widely used method for monitoring amyloid aggregation and the fluorescence
intensity increases with the augment of conjugates in the normal condition [39]. Compared
to Aβ1–42 alone (the first column), the fluorescence intensity was significantly lower when
Aβ1–42 peptides were incubated with N-CDs after 24 h incubation (second to fifth column).
Furthermore, the value was even lower after increasing the dosage of N-CDs.
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Figure 4. Aβ1–42 aggregation was inhibited by N-CDs. (a) The thioflavin T fluorescence intensity
in the presence or absence of N-CDs at the concentration of 0.75, 1.5, 3, and 6 mg/mL after 24 h
incubation. *** p < 0.001, * p < 0.05 vs. Aβ1–42 alone (1st column). (b) DLS spectra of Aβ1–42 peptide
with or without N-CDs (6 mg/mL) at the beginning and after 24 h incubation. The aggregation of the
Aβ1–42 peptide was inhibited in the presence of N-CDs after 24 h incubation compared with the free
Aβ1–42 peptide (* p < 0.05).
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The side effect of CDs on modulating the Aβ1–42 peptide assembly was explored
through DLS measurement. As shown in Figure 4b, the solution of Aβ1–42 was incubated
with and without N-CDs in a PBS buffer at 37 ◦C for 24 h. The pure Aβ1–42 has an obvious
agglomeration phenomenon after 24 h. However, the aggregation of the Aβ1–42 peptide
was inhibited in the presence of N-CDs after 24 h incubation compared with the free Aβ1–42
peptide (67.58 ± 15.84 vs. 364.20 ± 138.90, p < 0.05). Our results clearly show at least a
fivefold reduction owing to N-CDs. Such an obvious phenomenon proves that N-CDs
acting as an Aβ-targeted probe is feasible.

To further verify the inhibitory effect of N-CDs, the morphology of the Aβ1–42 peptide
in the presence or absence of N-CDs was also investigated in Figure 5. Figure 5a shows
the initial morphology of the Aβ1–42 peptide. In the absence of N-CDs, Aβ1–42 peptides
formed a typical structure for amyloid fibrils (Figure 5b), whereas the formation of the
fibril was remarkably lower in the presence of N-CDs compared with the absence group
(Figure 5c). The TEM data further supported the results with the ThT fluorescence assay
and DLS, indicating that N-CDs could conspicuously influence the aggregation of the
Aβ1–42 peptide. Previous studies also showed that various carbon materials including
fullerene, carbon nanotubes, and graphene oxide were applied to inhibit the Aβ1–42 peptide
aggregation [40,41]. As a newly prepared nano-material, we proved that the inhibiting
affectivity of the special N-CDs plays a dominant role in the process of inhibiting the
aggregation based on the above analysis in this work.
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2.3. Aβ-Induced Cell Viability Was Reversed by N-CDs

To explore whether N-CDs can improve cell viability induced by Aβ1–42, Figure 6
demonstrates that the cellular reduction in the Aβ1–42 group was reversed by N-CDs as
measured by MTT assay in a dose-dependent manner. As compared to the control, the cell
viability was lower in the purely Aβ1–42-treated group (64.81% ± 3.41%, p < 0.001, third
column), indicating that Aβ1–42 causes a noticeable negative effect on N2a cells. Contrary
to this, while N-CDs were added into the plates pre-incubated with Aβ1–42 for 24 h, the
cell viability was significantly higher (fourth to seventh columns). Notably, the ability of
N-CDs to increase cell viability (95.82% ± 0.79% vs. 64.81% ± 3.41%, p < 0.001) suggested
that the N-CDs can afford to be an available drug target in blocking Aβ1–42 assembly.
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incubation. (*** p < 0.001 vs. Control; ### p < 0.001 vs. purely Aβ1–42-treated group).

3. Materials and Methods
3.1. Materials

1,2,3-benzenetricarboxylic acid hydrate was purchased from TCI. o-phenylenediamine,
ethanol, and hydrochloric acid (HCl) were acquired from Adams (Shanghai Titan Scientific
Co., Ltd., Shanghai, China). These chemical reagents were utilized without further purifica-
tion. Aβ1–42 peptide was purchased from Sigma (Sigma-Aldrich, St. Louis, MO, USA) and
re-suspend according to the manufacturer’s protocols.

3.2. Synthesis of N-CDs

Briefly, a 1:1 mass ratio of 1,2,3-benzenetricarboxylic acid (50 mg, 0.24 mmol) and
o-phenylenediamine (50 mg, 0.46 mmol) were dispersed in 10 mL ethanol by ultrasound.
The mixture solution was then transferred to 25 mL of a poly-(tetrafluoroethylene) (Teflon)-
lined autoclave and reacted at 180 ◦C for 12 h. The primary product was filtered and
the solvent was removed. The normal saline was then added to the above, and adjusted
to pH = 5 with 0.1 M HCl. The final concentration of the N-CDs solution is 6 mg/mL.
Meanwhile, the N-CDs powder was acquired for further characterization after purifying
by dialysis (MWCO 3500) for one week.

3.3. Thioflavin T (ThT) Assay

ThT powder (Shanghai Aladdin Biology, Shanghai, China) was dissolved into phos-
phate buffer saline (PBS) at a concentration of 1 mM and filtered by a 0.22 mm filter
membrane before use. The re-suspended Aβ1–42 peptide solution was then re-dissolved
into PBS buffer at a concentration of 100 µM. The Aβ1–42 solutions were then incubated
with ThT solution and N-CDs at a concentration of 6, 3, 1.5, and 0.75 mg/mL 37 ◦C for 24 h.
Aβ1–42 solutions prepared with the same amount of PBS were used as the control. The ThT
fluorescence intensity was recorded at the beginning and end of incubation by a microplate
reader (Spectramax M5, San Jose, CA, USA) at an excitation and emission wavelength of
450 and 482 nm, respectively.
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3.4. Cell Viability Detected by MTT Assay

Mouse neuroblastoma Neuro-2a cells were first cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) added with 10% fetal bovine serum (FBS) (Shanghai Fuheng
Biology, Shanghai, China) at 37 ◦C in a humidified (5% CO2, 95% air) incubator. Cells were
seeded into 96-well microplates with a density of 8000 cells per well, cultured overnight, and
then treated with Aβ1–42 (100 µM), N-CDs (6 mg/mL), or Aβ1–42 (100 µM)/N-CDs mixtures
at a concentration of 6, 3, 1.5, and 0.75 mg/mL. After being incubated for another 24 h,
a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Beyotime
Institute of Biotechnology, Shanghai, China) was added to assess the cell viability according
to the manufacturer’s protocols.

3.5. Characterization

PL and UV-vis absorption spectra were characterized by Horiba Duetta. The time-
resolved PL spectra were obtained with a Horiba FluoroMax with a 455 nm laser. A
transmission electron microscopy (TEM) image was performed by using a Japan Hitachi
HT7700. The Raman spectrum was achieved by an Anton-Paar Cora 5001 with 785 nm
of laser wavelength. The Fourier transform infrared (FT-IR) spectrum was characterized
with a Thermo Scientific iS50 FT-IR. The X-ray photoelectron spectroscopy (XPS) spectrum
was acquired using a Thermo ESCALAB 250Xi spectrometer. Dynamic light scattering
(DLS) is a powerful tool used to monitor particle size evolutions. Aβ1–42 peptides were
mixed with 6 mg/mL N-CDs incubated for 24 h at 37 ◦C and then the size distribution was
measured by a ZetasizerNano ZS nanoparticle size analyzer (Malvern Instruments Ltd.,
Malvern, UK). Aβ1–42 solutions incubated with PBS were also utilized as controls. After
measuring the effect of N-CDs on Aβ1–42 fibrosis by ThT and DLS as shown previously, the
morphologies of the Aβ1–42 aggregates incubated with or without N-CDs were observed
and visualized by TEM (Japan Hitachi HT7700, Japan, Tokyo).

3.6. Statistical Analysis

All analyses were performed using the SPSS software (version 26.0; SPSS, Chicago,
IL, USA). Data are expressed as the mean ± standard error of the mean of at least three
biological replicates for each experiment. Statistical differences were analyzed by Student’s
t-test for comparisons between two groups or by ANOVA followed by Tukey’s multiple
comparison post hoc test for comparisons among more than two groups. A p-value < 0.05
was considered statistically significant.

4. Conclusions

Prompted by the need to pursue an effective treatment of AD, many inhibitors against
Aβ fibration and cytotoxicity were explored [42,43]. As a novel carbon nanomaterial, CDs
have received significant attention in materials science [44,45] and biomedicine [46–48].
In summary, we designed the N-CDs prepared by 1,2,3-benzenetricarboxylic acid and
o-phenylenediamine for inhibiting Aβ aggregation. The N-CDs exhibited orange emission
with an emission wavelength of 570 nm, which demonstrates its excellent optical properties
with excitation-independent behavior. Meanwhile, the N-CDs has a spherical morphology
with an average size of 2.2 nm, whose surface enriches the amino, carboxyl, and hydroxyl
groups. These properties are conducive to improving its biological water solubility and
providing a large number of chemical bonds for further interaction with proteins. Contrary
to this, the kinetic process, size evolutions, and morphology changes of Aβ1–42 were
inhibited in the presence of N-CDs in the determination of thioflavin T assay, dynamic
light scattering, transmission electron microscope, etc. Finally, the safety application of
N-CDs on Aβ1–42 was further demonstrated via in vitro cell viability experiments. Those
discoveries make it reasonable to speculate that the N-CDs can inhibit Aβ1–42 aggregation
and alleviate Aβ-induced cytotoxicity. Our work improves the probability of the use of the
particular nanostructures on Aβ monomers aggregating into fibrils in the future.
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