Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (589)

Search Parameters:
Keywords = amplitude tracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 12164 KiB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Viewed by 161
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 208
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

20 pages, 21323 KiB  
Article
C Band 360° Triangular Phase Shift Detector for Precise Vertical Landing RF System
by Víctor Araña-Pulido, B. Pablo Dorta-Naranjo, Francisco Cabrera-Almeida and Eugenio Jiménez-Yguácel
Appl. Sci. 2025, 15(15), 8236; https://doi.org/10.3390/app15158236 - 24 Jul 2025
Viewed by 124
Abstract
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point [...] Read more.
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point arrives with different delays. The circuit increases the aerial tracking volume relative to that achieved by detectors with theoretical unambiguous detection ranges of ±90°. The phase shift measurement circuit uses an analog phase detector (mixer), detecting a maximum range of ±90°and a double multiplication of the input signals, in phase and phase-shifted, without the need to fulfill the quadrature condition. The calibration procedure, phase detector curve modeling, and calculation of the input signal phase shift are significantly simplified by the use of an automatic gain control on each branch, dwhich keeps input amplitudes to the analog phase detectors constant. A simple program to determine phase shifts and guidance instructions is proposed, which could be integrated into the same flight control platform, thus avoiding the need to add additional processing components. A prototype has been manufactured in C band to explain the details of the procedure design. The circuit uses commercial circuits and microstrip technology, avoiding the crossing of lines by means of switches, which allows the design topology to be extrapolated to much higher frequencies. Calibration and measurements at 5.3 GHz show a dynamic range greater than 50 dB and a non-ambiguous detection range of ±180°. These specifications would allow one to track the drone during the landing maneuver in an inverted cone formed by a surface with an 11 m radius at 10 m high and the landing point, when 4 cm between RF inputs is considered. The errors of the phase shifts used in the landing maneuver are less than ±3°, which translates into 1.7% losses over the detector theoretical range in the worst case. The circuit has a frequency bandwidth of 4.8 GHz to 5.6 GHz, considering a 3 dB variation in the input power when the AGC is limiting the output signal to 0 dBm at the circuit reference point of each branch. In addition, the evolution of phases in the landing maneuver is shown by means of a small simulation program in which the drone trajectory is inside and outside the tracking range of ±180°. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

17 pages, 1642 KiB  
Article
Influence of Time Pressure on Successive Visual Searches
by Alejandro J. Cambronero-Delgadillo, Christof Körner, Iain D. Gilchrist and Margit Höfler
J. Eye Mov. Res. 2025, 18(4), 31; https://doi.org/10.3390/jemr18040031 - 17 Jul 2025
Viewed by 166
Abstract
In the current eye-tracking experiment, we explored the effects of time pressure on visual search performance and oculomotor behavior. Participants performed two consecutive time-pressured searches for a T-shaped target among L-shaped distractors in two separate displays of fifteen items, with the option to [...] Read more.
In the current eye-tracking experiment, we explored the effects of time pressure on visual search performance and oculomotor behavior. Participants performed two consecutive time-pressured searches for a T-shaped target among L-shaped distractors in two separate displays of fifteen items, with the option to self-interrupt the first search (Search 1) to proceed to the second (Search 2). Our results showed that participants maintained high search accuracy during Search 1 across all conditions, but performance noticeably declined during Search 2 with increasing time pressure. Time pressure also led to decreased numbers of fixations and faster response times overall. When both targets where acquired, fixation durations were longer in Search 2 than in Search 1, while saccade amplitudes were shorter in Search 2. Our findings suggest that time pressure leads to the first target being prioritized when targets possess equal value, emphasizing the challenges of optimizing performance in time-sensitive tasks. Full article
Show Figures

Graphical abstract

17 pages, 4656 KiB  
Article
Improved Super-Twisting Sliding Mode Control of a Brushless Doubly Fed Induction Generator for Standalone Ship Shaft Power Generation Systems
by Xueran Fei, Minghao Zhou, Yingyi Jiang, Longbin Jiang, Yi Liu and Yan Yan
J. Mar. Sci. Eng. 2025, 13(7), 1358; https://doi.org/10.3390/jmse13071358 - 17 Jul 2025
Viewed by 209
Abstract
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused [...] Read more.
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused by the parameter perturbation of BDFIG systems, a mismatched uncertain model of the BDFIG is constructed. Additionally, an improved STSM control method is proposed to address the power load variation and compensate for the mismatched uncertainty through virtual control technology. Based on the direct vector control of the control winding (CW), the proposed method ensured that the voltage amplitude error of the power winding could converge to the equilibrium point rather than the neighborhood. Finally, in the experimental investigation of the BDFIG-based ship shaft independent power system, the dynamic performance in the startup and power load changing conditions were analyzed. The experimental results show that the proposed improved STSM controller has a faster dynamic response and higher steady-state accuracy than the proportional integral control and the linear sliding mode control, with strong robustness to the mismatched uncertainties caused by parameter perturbations. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

18 pages, 1264 KiB  
Article
Mitigating the Impact of Electrode Shift on Classification Performance in Electromyography Applications Using Sliding-Window Normalization
by Taichi Tanaka, Isao Nambu and Yasuhiro Wada
Sensors 2025, 25(13), 4119; https://doi.org/10.3390/s25134119 - 1 Jul 2025
Viewed by 372
Abstract
Electromyography (EMG) signals have diverse applications, ranging from prosthetic hands and assistive suits to rehabilitation devices. Nonetheless, their performance suffers from cross-subject generalization issues, electrode shifts, and daily variability. In a previous study, while transfer learning narrowed the classification performance gap to −1% [...] Read more.
Electromyography (EMG) signals have diverse applications, ranging from prosthetic hands and assistive suits to rehabilitation devices. Nonetheless, their performance suffers from cross-subject generalization issues, electrode shifts, and daily variability. In a previous study, while transfer learning narrowed the classification performance gap to −1% in an eight-class scenario under electrode shift, they imposed the burden of additional data collection and re-training. To address this issue in real-time prediction, we investigated a sliding-window normalization (SWN) technique that merges z-score normalization with sliding-window processing to align the EMG amplitude across channels and mitigate the performance degradation caused by electrode displacement. We validated SWN using experimental data from a right-arm trajectory-tracking task involving three motion classes (rest, flexion, and extension of the elbow). Offline analysis revealed that SWN mitigated accuracy degradation to −1.0% without additional data for re-training or multi-condition training, a 6.6% improvement compared with the −7.6% baseline without normalization. The advantage of SWN is that it operates with data from a single electrode position for training, which eliminates both the collection of multi-position training data and the calibration of deep learning models before practical use in EMG applications. Moreover, combining SWN with multi-position training exceeded the classification accuracy of the no-shift condition by 2.4%. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

25 pages, 5596 KiB  
Article
Multi-Information-Assisted Bistatic Active Sonar Target Tracking for Autonomous Underwater Vehicles in Shallow Water
by Zhanpeng Bao, Yonglin Zhang, Yupeng Tai, Jun Wang, Haibin Wang, Chao Li, Chenghao Hu and Peng Zhang
Remote Sens. 2025, 17(13), 2250; https://doi.org/10.3390/rs17132250 - 30 Jun 2025
Viewed by 444
Abstract
Bistatic active sonar enables robust and precise target position and tracking, making it a key technology for autonomous underwater vehicles (AUVs) in underwater surveillance. This paper proposes a multi-information-assisted target tracking algorithm for bistatic active sonar, leveraging spatial and temporal echo signal structures [...] Read more.
Bistatic active sonar enables robust and precise target position and tracking, making it a key technology for autonomous underwater vehicles (AUVs) in underwater surveillance. This paper proposes a multi-information-assisted target tracking algorithm for bistatic active sonar, leveraging spatial and temporal echo signal structures to address the challenges of AUVs in shallow water. First, broadened cluster formations in sonar echoes are analyzed, leading to the integration of a spatial clustering-based data association. This paper departs from conventional methods by fusing target position, echo amplitude, and Doppler information during the movement of AUVs, which can improve the efficiency of association probability computation. The re-derived multi-information-assisted association probability calculation method and algorithmic workflow are explicitly designed for real-time implementation in AUV systems. Simulation experiments verify the feasibility of integrating Doppler and amplitude information. The sea trial data from simulated AUV-deployed bistatic sonar contained only amplitude information due to experimental limitations. By utilizing this amplitude information, the algorithm proposed in this paper demonstrates a 23.95% performance improvement over the traditional probabilistic data association algorithm. The proposed algorithm provides AUVs with enhanced tracking autonomy, significantly advancing their capability in ocean engineering applications. Full article
Show Figures

Figure 1

22 pages, 3021 KiB  
Article
Uncovering the Characteristics of Pupil Cycle Time (PCT) in Neuropathies and Retinopathies
by Laure Trinquet, Suzon Ajasse, Frédéric Chavane, Richard Legras, Frédéric Matonti, José-Alain Sahel, Catherine Vignal-Clermont and Jean Lorenceau
Vision 2025, 9(3), 51; https://doi.org/10.3390/vision9030051 - 30 Jun 2025
Viewed by 451
Abstract
Pupil cycle time (PCT) estimates the dynamics of a biofeedback loop established between pupil size and stimulus luminance, size or colour. The PCT is useful for probing the functional integrity of the retinopupillary circuits, and is therefore potentially applicable for assessing the effects [...] Read more.
Pupil cycle time (PCT) estimates the dynamics of a biofeedback loop established between pupil size and stimulus luminance, size or colour. The PCT is useful for probing the functional integrity of the retinopupillary circuits, and is therefore potentially applicable for assessing the effects of damage due to retinopathies or neuropathies. In previous studies, PCT was measured by manually counting the number of pupil oscillations during a fixed period to calculate the PCT. This method is scarce, requires a good expertise and cannot be used to estimate several PCT parameters, such as the oscillation amplitude or variability. We have developed a computerised setup based on eye-tracking that expands the possibilities of characterising PCT along several dimensions: oscillation frequency and regularity, amplitude and variability, which can be used with a large palette of stimuli (different colours, sizes, shapes or locations), and further allows measuring blinking frequency and eye movements. We used this method to characterise the PCT in young control participants as well as in patients with several pathologies, including age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP), Stargardt disease (SD), and Leber hereditary optic neuropathy (LHON). We found that PCT is very regular and stable in young healthy participants, with little inter-individual variability. In contrast, several PCT features are altered in older healthy participants as well as in ocular diseases, including slower dynamics, irregular oscillations, and reduced oscillation amplitude. The distinction between patients and healthy participants based on the calculation of the area under the curve of the receiver operating characteristics (AUC of ROC) were dependent on the pathologies and stimuli (0.7 < AUC < 1). PCT nevertheless provides relevant complementary information to assess the physiopathology of ocular diseases and to probe the functioning of retino-pupillary circuits. Full article
(This article belongs to the Section Retinal Function and Disease)
Show Figures

Figure 1

33 pages, 5307 KiB  
Article
SiPM Developments for the Time-Of-Propagation Detector of the Belle II Experiment
by Flavio Dal Corso, Jakub Kandra, Roberto Stroili and Ezio Torassa
Sensors 2025, 25(13), 4018; https://doi.org/10.3390/s25134018 - 27 Jun 2025
Viewed by 268
Abstract
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 [...] Read more.
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 modules, each module contains a finely fused silica bar, coupled to microchannel plate photomultiplier tube (MCP-PMT) photo-detectors and readout by high-speed electronics. The MCP-PMT lifetime at the nominal collider luminosity is about one year, this is due to the high photon background degrading the quantum efficiency of the photocathode. An alternative to these MCP-PMTs is multi-pixel photon counters (MPPC), known as silicon photomultipliers (SiPM). The SiPMs, in comparison to MCP-PMTs, have a lower cost, higher photon detection efficiency and are unaffected by the presence of a magnetic field, but also have a higher dark count rate that rapidly increases with the integrated neutron flux. The dark count rate can be mitigated by annealing the damaged devices and/or operating them at low temperatures. We tested SiPMs, with different dimensions and pixel sizes from different producers, to study their time resolution (the main constraint that has to satisfy the photon detector) and to understand their behavior and tolerance to radiation. For these studies we irradiated the devices to radiation up to 5×10111 MeV neutrons equivalent (neq) per cm2 fluences; we also started studying the effect of annealing on dark count rates. We performed several measurements on these devices, on top of the dark count rate, at different conditions in terms of overvoltage and temperatures. These measurements are: IV-curves, amplitude spectra, time resolution. For the last two measurements we illuminated the devices with a picosecond pulsed laser at very low intensities (with a number of detected photons up to about twenty). We present results mainly on two types of SiPMs. A new SiPM prototype developed in collaboration with FBK with the aim of improving radiation hardness, is expected to be delivered in September 2025. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 1378 KiB  
Article
Power Control and Voltage Regulation for Grid-Forming Inverters in Distribution Networks
by Xichao Zhou, Zhenlan Dou, Chunyan Zhang, Guangyu Song and Xinghua Liu
Machines 2025, 13(7), 551; https://doi.org/10.3390/machines13070551 - 25 Jun 2025
Viewed by 408
Abstract
This paper proposes a robust voltage control strategy for grid-forming (GFM) inverters in distribution networks to achieve power support and voltage optimization. Specifically, the GFM control approach primarily consists of a power synchronization loop, a voltage feedforward loop, and a current control loop. [...] Read more.
This paper proposes a robust voltage control strategy for grid-forming (GFM) inverters in distribution networks to achieve power support and voltage optimization. Specifically, the GFM control approach primarily consists of a power synchronization loop, a voltage feedforward loop, and a current control loop. A voltage feedforward control circuit is presented to achieve error-free tracking of voltage amplitude and phase. In particular, the current gain is designed to replace voltage feedback for improving the current response and simplifying the control structure. Additionally, in order to optimize voltage and improve the power quality at the terminal of the distribution network, an optimization model for distribution transformers is established with the goal of the maximum qualified rate of the load-side voltage and minimum switching times of transformer tap changers. An enhanced whale optimization algorithm (EWOA) is designed to complete the algorithm solution, thereby achieving the optimal system configuration, where an improved attenuation factor and position updating mechanism is proposed to enhance the EWOA’s global optimization capability. The simulation results demonstrate the validity and feasibility of the proposed strategy. Full article
Show Figures

Figure 1

19 pages, 3119 KiB  
Article
Retrieval of Internal Solitary Wave Parameters and Analysis of Their Spatial Variability in the Northern South China Sea Based on Continuous Satellite Imagery
by Kexiao Lu, Tao Xu, Cun Jia, Xu Chen and Xiao He
Remote Sens. 2025, 17(13), 2159; https://doi.org/10.3390/rs17132159 - 24 Jun 2025
Viewed by 384
Abstract
The remote sensing inversion of internal solitary waves (ISWs) enables the retrieval of ISW parameters and facilitates the analysis of their spatial variability. In this study, we utilize continuous optical imagery from the FY-4B satellite to extract real-time ISW propagation speeds throughout their [...] Read more.
The remote sensing inversion of internal solitary waves (ISWs) enables the retrieval of ISW parameters and facilitates the analysis of their spatial variability. In this study, we utilize continuous optical imagery from the FY-4B satellite to extract real-time ISW propagation speeds throughout their evolution from generation to shoaling. ISW parameters are retrieved in the northern South China Sea based on the quantitative relationship between sea surface current divergence and ISW surface features in optical imagery. The inversion method employs a fully nonlinear equation with continuous stratification to account for the strongly nonlinear nature of ISWs and uses the propagation speed extracted from continuous imagery as a constraint to determine a unique solution. The results show that as ISWs propagate from deep to shallow waters in the northern South China Sea, their statistically averaged amplitude initially increases and then decreases, while their propagation speed continuously decreases with decreasing depth. The inversion results are consistent with previous in situ observations. Furthermore, a three-day consecutive remote sensing tracking analysis of the same ISW revealed that the spatial variation in its parameters aligned well with the abovementioned statistical results. The findings provide an effective inversion approach and supporting datasets for extensive ISW monitoring. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

27 pages, 3401 KiB  
Article
Human–Seat–Vehicle Multibody Nonlinear Model of Biomechanical Response in Vehicle Vibration Environment
by Margarita Prokopovič, Kristina Čižiūnienė, Jonas Matijošius, Marijonas Bogdevičius and Edgar Sokolovskij
Machines 2025, 13(7), 547; https://doi.org/10.3390/machines13070547 - 24 Jun 2025
Viewed by 258
Abstract
Especially in real-world circumstances with uneven road surfaces and impulsive shocks, nonlinear dynamic effects in vehicle systems can greatly skew biometric data utilized to track passenger and driver physiological states. By creating a thorough multibody human–seat–chassis model, this work tackles the effect of [...] Read more.
Especially in real-world circumstances with uneven road surfaces and impulsive shocks, nonlinear dynamic effects in vehicle systems can greatly skew biometric data utilized to track passenger and driver physiological states. By creating a thorough multibody human–seat–chassis model, this work tackles the effect of vehicle-induced vibrations on the accuracy and dependability of biometric measures. The model includes external excitation from road-induced inputs, nonlinear damping between structural linkages, and vertical and angular degrees of freedom in the head–neck system. Motion equations are derived using a second-order Lagrangian method; simulations are run using representative values of a typical car and human body segments. Results show that higher vehicle speed generates more vibrational energy input, which especially in the head and torso enhances vertical and angular accelerations. Modal studies, on the other hand, show that while resonant frequencies stay constant, speed causes a considerable rise in amplitude and frequency dispersion. At speeds ≥ 50 km/h, RMS and VDV values exceed ISO 2631 comfort standards in the body and head. The results highlight the need to include vibration-optimized suspension systems and ergonomic design approaches to safeguard sensitive body areas and preserve biometric data integrity. This study helps to increase comfort and safety in both traditional and autonomous car uses. Full article
Show Figures

Figure 1

19 pages, 3066 KiB  
Article
A Convex Constraint Approach for High-Type Control Loop Design
by Chao Liu, Xiaoxia Qiu and Yao Mao
Electronics 2025, 14(12), 2491; https://doi.org/10.3390/electronics14122491 - 19 Jun 2025
Viewed by 275
Abstract
This paper proposes a high-type control loop design method for LQR-LMI based on Lyapunov and polyhedral model theory. The high-type control loop design problem is simplified into a convex constraint problem, which achieves superior tracking performance. In this framework, the input amplitude of [...] Read more.
This paper proposes a high-type control loop design method for LQR-LMI based on Lyapunov and polyhedral model theory. The high-type control loop design problem is simplified into a convex constraint problem, which achieves superior tracking performance. In this framework, the input amplitude of the control signal, the poles of the closed-loop system, the suppression of external interference and the perturbation of internal parameters are considered, and the linear matrix inequality (LMI) method is effectively used to solve the problems. In this paper, the polyhedral model control theory is introduced to characterize the uncertainty of the system for the change of model parameters of the controlled plant. Aiming at the problem of external disturbance suppression, the H2/H control method is introduced into the system. These control methods provide the basis for the design of the high-type control loop. Compared with the simulation results of other optimization algorithms, the effectiveness and superiority of the controller parameter tuning rules in the proposed high-type control loop are verified. Full article
Show Figures

Figure 1

21 pages, 6108 KiB  
Article
Torsional Vibration Suppression in Multi-Condition Electric Propulsion Systems Through Harmonic Current Modulation
by Hanjie Jia, Guanghong Hu, Xiangyang Xu, Dong Liang and Changzhao Liu
Actuators 2025, 14(6), 283; https://doi.org/10.3390/act14060283 - 9 Jun 2025
Viewed by 623
Abstract
Electric helicopters represent a pivotal component in the advancement of urban air mobility (UAM), with considerable potential for future development. The electric propulsion system (EPS) is the core component of these systems. However, the inherent complexities of electromechanical coupling can induce excessive torsional [...] Read more.
Electric helicopters represent a pivotal component in the advancement of urban air mobility (UAM), with considerable potential for future development. The electric propulsion system (EPS) is the core component of these systems. However, the inherent complexities of electromechanical coupling can induce excessive torsional vibrations, potentially compromising operational comfort and even threatening flight safety. This study proposes an active torsional vibration suppression method for EPS that explicitly incorporates electromechanical coupling characteristics. A nonlinear dynamic model has been developed, accounting for time-varying meshing stiffness, meshing errors, and multi-harmonic motor excitation. The motor and transmission system models are coupled using torsional angular displacement. A harmonic current command generation algorithm is then formulated, based on the analysis of harmonic torque-to-current transmission characteristics. To achieve dynamic tracking and the real-time compensation of high-order harmonic currents under non-steady-state conditions, a high-order resonant controller with frequency-domain decoupling characteristics was designed. The efficacy of the proposed harmonic current modulation is verified through simulations, showing an effective reduction of torsional vibrations in the EPS under both steady-state and non-steady-state conditions. It decreases the peak dynamic meshing force by 4.17% and the sixth harmonic amplitude by 88.15%, while mitigating overshoot and accelerating vibration attenuation during speed regulation. The proposed harmonic current modulation method provides a practical solution for mitigating torsional vibrations in electric propulsion systems, enhancing the comfort, reliability, and safety of electric helicopters. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

21 pages, 8505 KiB  
Article
Modeling of Electromagnetic Fields of the Traction Network Taking into Account the Influence of Metal Structures
by Iliya Iliev, Andrey Kryukov, Konstantin Suslov, Ekaterina Voronina, Andrey Batukhtin, Ivan Beloev and Yuliya Valeeva
Appl. Sci. 2025, 15(12), 6451; https://doi.org/10.3390/app15126451 - 8 Jun 2025
Viewed by 378
Abstract
The paper addresses the issues of electromagnetic safety in traction networks of 25 kV AC railways. The purpose of the research is to develop digital models to determine the strengths of electromagnetic fields (EMFs) created by traction networks near portal-type metal structures. Such [...] Read more.
The paper addresses the issues of electromagnetic safety in traction networks of 25 kV AC railways. The purpose of the research is to develop digital models to determine the strengths of electromagnetic fields (EMFs) created by traction networks near portal-type metal structures. Such a structure in this study is represented by an overpass located above the tracks. The presence of a conductive structure significantly complicates the picture of EMF distribution in space. In contrast to the plane-parallel EMF of the traction network on interstation tracks in the spans between the supports of the catenary system, the field in this situation becomes three-dimensional. The technology for detecting strength relies on the concept of segments of limited length conductors, some of which may be buried. In order to apply the quasi-stationary zone equations to frequencies of up to 2000 Hz, it is essential to ensure that the size of the set of objects composed of these conductors does not exceed several hundred meters. Based on the modeling results, the dependences of the amplitudes and components of EMF strengths on the z-coordinate passing along the axis of the railway were obtained. In addition, three-dimensional diagrams were constructed to analyze the distribution of EMF in space. The findings of the studies show that the presented technique allows considering the influence of metal structures when modeling the electromagnetic fields of traction networks. It can be used in practice to develop effective measures to enhance electromagnetic safety conditions. Full article
Show Figures

Figure 1

Back to TopTop