Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = amphibian antimicrobial peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1835 KiB  
Review
Investigating the Antimicrobial Activity of Anuran Toxins
by Manuela B. Pucca, Anne Grace A. C. Marques, Ana Flávia M. Pereira, Guilherme Melo-dos-Santos, Felipe A. Cerni, Beatriz C. S. Jacob, Isabela G. Ferreira, Rafael L. Piccolo, Marco A. Sartim, Wuelton M. Monteiro and Isadora S. Oliveira
Microorganisms 2025, 13(7), 1610; https://doi.org/10.3390/microorganisms13071610 - 8 Jul 2025
Viewed by 404
Abstract
Anurans, commonly known as frogs and toads, comprise a diverse group of amphibians distributed across all continents except Antarctica. This manuscript provides a detailed overview of the global anuran fauna, emphasizing their biology, remarkable adaptations, and ecological importance. A particular focus is placed [...] Read more.
Anurans, commonly known as frogs and toads, comprise a diverse group of amphibians distributed across all continents except Antarctica. This manuscript provides a detailed overview of the global anuran fauna, emphasizing their biology, remarkable adaptations, and ecological importance. A particular focus is placed on their specialized cutaneous glands, which are crucial for defense, communication, and survival. These glands secrete a diverse array of bioactive compounds, including peptides, alkaloids, and other secondary metabolites, shaped by evolutionary pressures. Among these compounds, toxins with potent antimicrobial properties stand out due to their ability to combat a broad spectrum of microbial pathogens. We explore the chemical diversity of these secretions, analyzing their modes of action and their potential applications in combating antibiotic-resistant bacteria and other pathogens. By integrating knowledge, this study underscores the importance of anurans as both ecological keystones and a valuable resource for biotechnological innovations. Furthermore, it highlights the urgent need to conserve anuran biodiversity for harnessing their potential in the development of novel antimicrobial agents to address global health challenges. Full article
(This article belongs to the Special Issue Exploring Antimicrobial Properties of Animal Toxins)
Show Figures

Figure 1

17 pages, 2981 KiB  
Article
Frog Skin Peptides Hylin-a1, AR-23, and RV-23: Promising Tools Against Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae Infections
by Annalisa Chianese, Annalisa Ambrosino, Rosa Giugliano, Francesca Palma, Preetu Parimal, Marina Acunzo, Alessandra Monti, Nunzianna Doti, Carla Zannella, Massimiliano Galdiero and Anna De Filippis
Antibiotics 2025, 14(4), 374; https://doi.org/10.3390/antibiotics14040374 - 3 Apr 2025
Cited by 1 | Viewed by 826
Abstract
Background/Objectives. One of the pressing challenges in global public health is the rise in infections caused by carbapenem-resistant Enterobacteriaceae. Growing bacterial drug resistance, coupled with the slow development of new antibiotics, highlights the critical need to explore and develop new broad-spectrum antimicrobial agents [...] Read more.
Background/Objectives. One of the pressing challenges in global public health is the rise in infections caused by carbapenem-resistant Enterobacteriaceae. Growing bacterial drug resistance, coupled with the slow development of new antibiotics, highlights the critical need to explore and develop new broad-spectrum antimicrobial agents able to inhibit bacterial growth efficiently. In recent years, antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional drugs, owing to their antimicrobial potency, low toxicity, and reduced propensity for fostering resistance. Our research aims to investigate the antibacterial ability of three amphibian AMPs, namely Hylin-a1, AR-23, and RV-23, against both antibiotic-sensitive and carbapenem-resistant strains of Escherichia coli and Klebsiella pneumoniae. Methods. A 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) was performed to identify non-cytotoxic concentrations of peptides. A microdilution assay evaluated the antibacterial effect, determining the peptides’ minimum inhibitory concentration (MIC). In addition, the checkerboard test analyzed the compounds’ synergistic effect with meropenem. Results. We demonstrated that peptides with low toxicity profile and resistance to proteolytic activity exhibited strong antibacterial activity, with MIC ranging from 6.25 to 25 μM. The antibiofilm mechanism of action of peptides was also investigated, suggesting that they had a crucial role during the biofilm formation step by inhibiting it. Finally, we highlighted the synergistic effects of peptides with meropenem. Conclusions. Our study identifies Hylin-a1, AR-23, and RV-23 as promising candidates against Gram-negative bacterial infections with a favorable therapeutic profile. This effect could be related to their great flexibility, as evidenced by circular dichroism data, confirming that the peptides could assume an α-helical conformation interacting with bacterial membranes. Full article
Show Figures

Figure 1

40 pages, 924 KiB  
Review
The Role of Amphibian AMPs Against Oxidative Stress and Related Diseases
by Yudy Lorena Silva Ortíz, Thaís Campos de Sousa, Natália Elisabeth Kruklis, Paula Galeano García, José Brango-Vanegas, Marcelo Henrique Soller Ramada and Octávio Luiz Franco
Antibiotics 2025, 14(2), 126; https://doi.org/10.3390/antibiotics14020126 - 25 Jan 2025
Viewed by 1881
Abstract
Amphibians use their skin as an effective defense mechanism against predators and microorganisms. Specialized glands produce antimicrobial peptides (AMPs) that possess antioxidant properties, effectively reducing reactive oxygen species (ROS) levels. These peptides are promising candidates for treating diseases associated with oxidative stress (OS) [...] Read more.
Amphibians use their skin as an effective defense mechanism against predators and microorganisms. Specialized glands produce antimicrobial peptides (AMPs) that possess antioxidant properties, effectively reducing reactive oxygen species (ROS) levels. These peptides are promising candidates for treating diseases associated with oxidative stress (OS) and redox imbalance, including neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), as well as age-related conditions, like cardiovascular diseases and cancer. This review highlights the multifaceted roles of AMPs and antioxidant peptides (AOPs) in amphibians, emphasizing their protective capabilities against oxidative damage. They scavenge ROS, activate antioxidant enzyme systems, and inhibit cellular damage. AOPs often share structural characteristics with AMPs, suggesting a potential evolutionary connection and similar biosynthetic pathways. Peptides such as brevinin-1FL and Cath-KP demonstrate neuroprotective effects, indicating their therapeutic potential in managing oxidative stress-related diseases. The antioxidant properties of amphibian-derived peptides pave the way for novel therapeutic developments. However, a deeper understanding of the molecular mechanisms underlying these peptides and their interactions with oxidative stress is essential to addressing ROS-related diseases and advancing therapeutic strategies in clinical practice. Full article
(This article belongs to the Special Issue Development of Antimicrobial Peptides from Amphibian, 2nd Edition)
Show Figures

Figure 1

19 pages, 2320 KiB  
Review
LEAP2 in Physiology—A Narrative Review
by Oskar Sosinski, Ewa Pruszynska-Oszmalek, Natalia Leciejewska, Maciej Sassek and Pawel Antoni Kolodziejski
Int. J. Mol. Sci. 2025, 26(1), 377; https://doi.org/10.3390/ijms26010377 - 4 Jan 2025
Cited by 1 | Viewed by 2181
Abstract
Liver Enriched Antimicrobial Peptide 2 (LEAP2) is a fascinating peptide that has gained significant attention since its discovery in 2003. Initially identified as an antimicrobial peptide, LEAP2 has more recently been found to play a key role in the regulation of energy metabolism. [...] Read more.
Liver Enriched Antimicrobial Peptide 2 (LEAP2) is a fascinating peptide that has gained significant attention since its discovery in 2003. Initially identified as an antimicrobial peptide, LEAP2 has more recently been found to play a key role in the regulation of energy metabolism. One of the most notable functions of LEAP2 is its interaction with the ghrelin hormone, which is known for stimulating hunger. LEAP2 acts as an inhibitor of ghrelin, thereby reducing food intake and influencing energy balance. The physiological roles of LEAP2 extend beyond appetite suppression. Studies have shown that LEAP2 has an impact on insulin secretion, suggesting its potential involvement in glucose metabolism and possibly insulin sensitivity, which is crucial in managing conditions like type 2 diabetes. Moreover, LEAP2 levels appear to fluctuate based on factors such as gender, developmental stage, and even interventions like bariatric surgery, which is known for its role in managing obesity and diabetes. Given these findings, LEAP2 shows potential as a therapeutic target, particularly for addressing obesity and metabolic diseases such as type 2 diabetes. Its ability to influence food intake and energy balance makes it a promising candidate for further research into therapies aimed at weight regulation and glycemic control. In the future, LEAP2 could become an important agent in the development of treatments aimed at curbing obesity and its associated metabolic disorders. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 11323 KiB  
Article
Senegalin-2: A Novel Hexadecapeptide from Kassina senegalensis with Antibacterial and Muscle Relaxant Activities, and Its Derivative Senegalin-2BK as a Bradykinin Antagonist
by Yueyang Lu, Yanguo Zhu, Chengbang Ma, Lei Wang, Mei Zhou, Tianbao Chen, Xiaonan Ma, Xu Zhang and Zhimin Fan
Biomolecules 2025, 15(1), 30; https://doi.org/10.3390/biom15010030 - 30 Dec 2024
Cited by 4 | Viewed by 1012
Abstract
The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of Kassina senegalensis frog. Senegalin-2 relaxed rat bladder [...] Read more.
The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of Kassina senegalensis frog. Senegalin-2 relaxed rat bladder smooth muscle (EC50 17.94 nM) and ileum smooth muscle (EC50 135 nM), inhibited S. aureus and MRSA at 2 μM, and exhibited low hemolytic activity with no cytotoxicity. To design effective bradykinin antagonists, Senegalin-2 was conjugated with bradykinin to synthesize Senegalin-2BK. This modification retained potent activity against Gram-positive bacteria. Compared to Senegalin-2, Senegalin-2BK significantly reduced hemolysis and exhibited a more than threefold increase in the selectivity index. Furthermore, Senegalin-2BK contracted the bladder (EC50 2.83 μM) and ileum (EC50 56.64 nM)’s smooth muscle. The pretreatment with 10−7 M Senegalin-2BK reduced the 10−6 M bradykinin contraction on the bladder by over 70%. In conclusion, Senegalin-2 has dual functionalities as an antibacterial agent and muscle relaxant, positioning it as a potential therapeutic candidate for managing overactive bladder. As a synthetically derived bradykinin antagonist and myotropic peptide with antibacterial properties, Senegalin-2BK shows promise in effective therapies for relieving pain, inflammation, and addressing muscular disorders such as urinary retention, constipation, and infections. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Figure 1

64 pages, 4838 KiB  
Review
Antimicrobial Peptides from Frogs of the Glandirana Genus
by Frederick Harris, David A. Phoenix and Sarah R. Dennison
Biologics 2024, 4(4), 444-507; https://doi.org/10.3390/biologics4040027 - 8 Dec 2024
Viewed by 3052
Abstract
Glandirana is a genus of frogs that includes G. rugosa, G. emeljanovi, G. minima, G. tientaiensis, G. susurra, G. nakamurai and G. reliquia. These frogs produce antimicrobial peptides (AMPs), which are endogenous antibiotics that possess antibacterial, antifungal, [...] Read more.
Glandirana is a genus of frogs that includes G. rugosa, G. emeljanovi, G. minima, G. tientaiensis, G. susurra, G. nakamurai and G. reliquia. These frogs produce antimicrobial peptides (AMPs), which are endogenous antibiotics that possess antibacterial, antifungal, antiviral and anti-endotoxin activity and help keep the hosts free from infections. In these activities, microbial death is promoted by membranolytic mechanisms that are mediated by the cationic charge and amphiphilic α-helical structures of these peptides. In general, these peptides are selective for microbes, showing low levels of hemolytic and cytotoxic activity, as well as possessing other biological activities, including anticancer, antioxidative and insulinotrophic action. In this review, a brief overview of AMPs with a focus on those from amphibians is provided, along with the phylogeny and nomenclature of frogs and AMPs from the Glandirana genus. This review then provides a comprehensive, in-depth description of the antimicrobial and other biological activities of all AMPs produced by known frogs of the Glandirana for the period 1994 to 2024. This description includes a detailed discussion of the structure/function relationships and mechanisms involved in the membrane interactions that drive these biological activities, with comparisons between AMPs from the same frog and between frogs across the genus. Based on their biological properties, AMPs from frogs of the Glandirana genus have been proposed for investigation as potential therapeutic agents, such as in the treatment of cancers and diabetes, as well as antimicrobial agents in areas, including crop protection, the food industry and oral hygiene. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

18 pages, 4256 KiB  
Article
Cloning and Functional Analysis of Skin Host Defense Peptides from Yakushima Tago’s Brown Frog (Rana tagoi yakushimensis) and Development of Serum Endotoxin Detection System
by Taichi Aono, Saki Tamura, Yua Suzuki, Taichi Imanara, Ryosei Niwa, Yoshie Yamane, Tetsuya Kobayashi, Sakae Kikuyama, Itaru Hasunuma and Shawichi Iwamuro
Antibiotics 2024, 13(12), 1127; https://doi.org/10.3390/antibiotics13121127 - 24 Nov 2024
Cited by 1 | Viewed by 1596
Abstract
Background/Objective: Amphibian skin is a valuable source of host defense peptides (HDPs). This study aimed to identify HDPs with novel amino acid sequences from the skin of Rana tagoi yakushimensis and analyze their functions. Methods: cDNAs encoding HDP precursors were cloned and sequenced [...] Read more.
Background/Objective: Amphibian skin is a valuable source of host defense peptides (HDPs). This study aimed to identify HDPs with novel amino acid sequences from the skin of Rana tagoi yakushimensis and analyze their functions. Methods: cDNAs encoding HDP precursors were cloned and sequenced using RT-PCR and 3′-RACE. The novel HDPs were synthesized to evaluate their antimicrobial activity, antioxidant activity, and cytotoxicity. Antimicrobial activity was evaluated by way of broth microdilution and endotoxin- and β-glucan-binding capacity using an enzyme-linked endotoxin binding assay (ELEBA) and a modified ELEBA, respectively. Results: Nine cDNAs encoding precursors for various HDP families, including temporin, ranatuerin-2, brevinin-1, amurin-9, and a novel yakushimin peptide, were identified. Brevinin-1TYa exhibited antibacterial activity against Staphylococcus aureus, and brevinin-1TYa and amurin-9TYa induced morphological changes in Escherichia coli and S. aureus. Yakushimin-TYa, amurin-9TYa, and brevinin-1TYa showed concentration-dependent antibacterial effects against the plant pathogens Xanthomonas oryzae pv. oryzae and Clavibacter michiganensis subsp. michiganensis. Amurin-9TYa demonstrated strong binding affinity to lipopolysaccharide, lipoteichoic acid, and β-glucan, exhibited antioxidant activity, and lacked cytotoxicity, making it a promising therapeutic candidate. Moreover, brevinin-1TYa showed strong cytotoxicity, whereas yakushimin-TYa exhibited weak cytotoxicity. Conclusions: These findings highlight the potential of these peptides, particularly amurin-9TYa, for future applications as antimicrobial and therapeutic agents. Full article
(This article belongs to the Special Issue Development of Antimicrobial Peptides from Amphibian, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3279 KiB  
Review
Investigation of the Mechanism of Action of AMPs from Amphibians to Identify Bacterial Protein Targets for Therapeutic Applications
by Carolina Canè, Lidia Tammaro, Angela Duilio and Angela Di Somma
Antibiotics 2024, 13(11), 1076; https://doi.org/10.3390/antibiotics13111076 - 12 Nov 2024
Cited by 4 | Viewed by 2010
Abstract
Antimicrobial peptides (AMPs) from amphibians represent a promising source of novel antibacterial agents due to their potent and broad-spectrum antimicrobial activity, which positions them as valid alternatives to conventional antibiotics. This review provides a comprehensive analysis of the mechanisms through which amphibian-derived AMPs [...] Read more.
Antimicrobial peptides (AMPs) from amphibians represent a promising source of novel antibacterial agents due to their potent and broad-spectrum antimicrobial activity, which positions them as valid alternatives to conventional antibiotics. This review provides a comprehensive analysis of the mechanisms through which amphibian-derived AMPs exert their effects against bacterial pathogens. We focus on the identification of bacterial protein targets implicated in the action of these peptides and on biological processes altered by the effect of AMPs. By examining recent advances in countering multidrug-resistant bacteria through multi-omics approaches, we elucidate how AMPs interact with bacterial membranes, enter bacterial cells, and target a specific protein. We discuss the implications of these interactions in developing targeted therapies and overcoming antibiotic resistance (ABR). This review aims to integrate the current knowledge on AMPs’ mechanisms, identify gaps in our understanding, and propose future directions for research to harness amphibian AMPs in clinical applications. Full article
(This article belongs to the Special Issue Development of Antimicrobial Peptides from Amphibian, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 4793 KiB  
Article
Equinins as Novel Broad-Spectrum Antimicrobial Peptides Isolated from the Cnidarian Actinia equina (Linnaeus, 1758)
by Claudia La Corte, Valentina Catania, Mariano Dara, Daniela Parrinello, Mariele Staropoli, Maria Rosa Trapani, Matteo Cammarata and Maria Giovanna Parisi
Mar. Drugs 2024, 22(4), 172; https://doi.org/10.3390/md22040172 - 12 Apr 2024
Cited by 6 | Viewed by 3102
Abstract
Sea anemones are valuable for therapeutic research as a diversified source of bioactive molecules, due to their diverse bioactive molecules linked to predation and defence mechanisms involving toxins and antimicrobial peptides. Acid extracts from Actinia equina tentacles and body were examined for antibacterial [...] Read more.
Sea anemones are valuable for therapeutic research as a diversified source of bioactive molecules, due to their diverse bioactive molecules linked to predation and defence mechanisms involving toxins and antimicrobial peptides. Acid extracts from Actinia equina tentacles and body were examined for antibacterial activity against Gram-positive, Gram-negative bacteria, and fungi. The peptide fractions showed interesting minimum inhibitory concentration (MIC) values (up to 0.125 µg/mL) against the tested pathogens. Further investigation and characterization of tentacle acid extracts with significant antimicrobial activity led to the purification of peptides through reverse phase chromatography on solid phase and HPLC. Broad-spectrum antimicrobial peptide activity was found in 40% acetonitrile fractions. The resulting peptides had a molecular mass of 2612.91 and 3934.827 Da and MIC ranging from 0.06 to 0.20 mg/mL. Sequencing revealed similarities to AMPs found in amphibians, fish, and Cnidaria, with anti-Gram+, Gram-, antifungal, candidacidal, anti-methicillin-resistant Staphylococcus aureus, carbapenemase-producing, vancomycin-resistant bacteria, and multi-drug resistant activity. Peptides 6.2 and 7.3, named Equinin A and B, respectively, were synthesized and evaluated in vitro towards the above-mentioned bacterial pathogens. Equinin B exerted interesting antibacterial activity (MIC and bactericidal concentrations of 1 mg/mL and 0.25 mg/mL, respectively) and gene organization supporting its potential in applied research. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

26 pages, 11552 KiB  
Article
Diversity and Molecular Evolution of Antimicrobial Peptides in Caecilian Amphibians
by Mario Benítez-Prián, Héctor Lorente-Martínez, Ainhoa Agorreta, David J. Gower, Mark Wilkinson, Kim Roelants and Diego San Mauro
Toxins 2024, 16(3), 150; https://doi.org/10.3390/toxins16030150 - 14 Mar 2024
Cited by 6 | Viewed by 3276
Abstract
Antimicrobial peptides (AMPs) are key molecules in the innate immune defence of vertebrates with rapid action, broad antimicrobial spectrum, and ability to evade pathogen resistance mechanisms. To date, amphibians are the major group of vertebrates from which most AMPs have been characterised, but [...] Read more.
Antimicrobial peptides (AMPs) are key molecules in the innate immune defence of vertebrates with rapid action, broad antimicrobial spectrum, and ability to evade pathogen resistance mechanisms. To date, amphibians are the major group of vertebrates from which most AMPs have been characterised, but most studies have focused on the bioactive skin secretions of anurans (frogs and toads). In this study, we have analysed the complete genomes and/or transcriptomes of eight species of caecilian amphibians (order Gymnophiona) and characterised the diversity, molecular evolution, and antimicrobial potential of the AMP repertoire of this order of amphibians. We have identified 477 candidate AMPs within the studied caecilian genome and transcriptome datasets. These candidates are grouped into 29 AMP families, with four corresponding to peptides primarily exhibiting antimicrobial activity and 25 potentially serving as AMPs in a secondary function, either in their entirety or after cleavage. In silico prediction methods were used to identify 62 of those AMPs as peptides with promising antimicrobial activity potential. Signatures of directional selection were detected for five candidate AMPs, which may indicate adaptation to the different selective pressures imposed by evolutionary arms races with specific pathogens. These findings provide encouraging support for the expectation that caecilians, being one of the least-studied groups of vertebrates, and with ~300 million years of separate evolution, are an underexplored resource of great pharmaceutical potential that could help to contest antibiotic resistance and contribute to biomedical advance. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

14 pages, 662 KiB  
Review
Anticancer Potential of Antimicrobial Peptides: Focus on Buforins
by Ana Maria Tolos (Vasii), Cristian Moisa, Mihaela Dochia, Carmen Popa, Lucian Copolovici and Dana Maria Copolovici
Polymers 2024, 16(6), 728; https://doi.org/10.3390/polym16060728 - 7 Mar 2024
Cited by 15 | Viewed by 4403
Abstract
In seeking alternative cancer treatments, antimicrobial peptides (AMPs), sourced from various life forms, emerge as promising contenders. These endogenous peptides, also known as host defense peptides (HDPs), play crucial roles in immune defenses against infections and exhibit potential in combating cancers. With their [...] Read more.
In seeking alternative cancer treatments, antimicrobial peptides (AMPs), sourced from various life forms, emerge as promising contenders. These endogenous peptides, also known as host defense peptides (HDPs), play crucial roles in immune defenses against infections and exhibit potential in combating cancers. With their diverse defensive functions, plant-derived AMPs, such as thionins and defensins, offer a rich repertoire of antimicrobial properties. Insects, amphibians, and animals contribute unique AMPs like cecropins, temporins, and cathelicidins, showcasing broad-spectrum activities against bacteria, fungi, and viruses. Understanding these natural peptides holds significant potential for developing effective and targeted therapies against cancer and infectious diseases. Antimicrobial peptides (AMPs) exhibit diverse structural characteristics, including α-helical, β-sheet, extended, and loop peptides. Environmental conditions influence their structure, connecting to changes in cell membrane hydrophobicity. AMPs’ actions involve direct killing and immune regulation, with additional activities like membrane depolarization. In this review, we focus on antimicrobial peptides that act as anticancer agents and AMPs that exhibit mechanisms akin to antimicrobial activity. Buforin AMPs, particularly Buforin I and II, derived from histone H2A, demonstrate antibacterial and anticancer potential. Buforin IIb and its analogs show promise, with selectivity for cancer cells. Despite the challenges, AMPs offer a unique approach to combat microbial resistance and potential cancer treatment. In various cancer types, including HeLa, breast, lung, ovarian, prostate, and liver cancers, buforins demonstrate inhibitory effects and apoptosis induction. To address limitations like stability and bioavailability, researchers explore buforin-containing bioconjugates, covalently linked with nanoparticles or liposomes. Bioconjugation enhances specificity-controlled release and combats drug resistance, presenting a promising avenue for targeted cancer treatment. Clinical translation awaits further evaluation through in vivo studies and future clinical trials. Full article
(This article belongs to the Special Issue Polymer Materials for Drug Delivery and Tissue Engineering II)
Show Figures

Graphical abstract

19 pages, 4524 KiB  
Article
Antiviral Action against SARS-CoV-2 of a Synthetic Peptide Based on a Novel Defensin Present in the Transcriptome of the Fire Salamander (Salamandra salamandra)
by Ana Luisa A. N. Barros, Vladimir C. Silva, Atvaldo F. Ribeiro-Junior, Miguel G. Cardoso, Samuel R. Costa, Carolina B. Moraes, Cecília G. Barbosa, Alex P. Coleone, Rafael P. Simões, Wanessa F. Cabral, Raul M. Falcão, Andreanne G. Vasconcelos, Jefferson A. Rocha, Daniel D. R. Arcanjo, Augusto Batagin-Neto, Tatiana Karla S. Borges, João Gonçalves, Guilherme D. Brand, Lucio H. G. Freitas-Junior, Peter Eaton, Mariela Marani, Massuo J. Kato, Alexandra Plácido and José Roberto S. A. Leiteadd Show full author list remove Hide full author list
Pharmaceutics 2024, 16(2), 190; https://doi.org/10.3390/pharmaceutics16020190 - 29 Jan 2024
Cited by 2 | Viewed by 3011
Abstract
The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for [...] Read more.
The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration. Full article
Show Figures

Figure 1

12 pages, 1905 KiB  
Article
Synthetic Frog-Derived-like Peptides: A New Weapon against Emerging and Potential Zoonotic Viruses
by Annalisa Chianese, Valentina Iovane, Carla Zannella, Carla Capasso, Bianca Maria Nastri, Alessandra Monti, Nunzianna Doti, Serena Montagnaro, Ugo Pagnini, Giuseppe Iovane, Anna De Filippis and Massimiliano Galdiero
Viruses 2023, 15(9), 1804; https://doi.org/10.3390/v15091804 - 24 Aug 2023
Cited by 8 | Viewed by 1806
Abstract
Given the emergence of the coronavirus disease 2019 (COVID-19), zoonoses have raised in the spotlight of the scientific community. Animals have a pivotal role not only for this infection, but also for many other recent emerging and re-emerging viral diseases, where they [...] Read more.
Given the emergence of the coronavirus disease 2019 (COVID-19), zoonoses have raised in the spotlight of the scientific community. Animals have a pivotal role not only for this infection, but also for many other recent emerging and re-emerging viral diseases, where they may represent both intermediate hosts and/or vectors for zoonoses diffusion. Today, roughly two-thirds of human infections are derived from animal origins; therefore, the search for new broad-spectrum antiviral molecules is mandatory to prevent, control and eradicate future epidemic outbreaks. Host defense peptides, derived from skin secretions of amphibians, appear as the right alternative to common antimicrobial drugs. They are cationic peptides with an amphipathic nature widely described as antibacterial agents, but less is reported about their antiviral potential. In the present study, we evaluated the activity of five amphibian peptides, namely RV-23, AR-23, Hylin-a1, Deserticolin-1 and Hylaseptin-P1, against a wide panel of enveloped animal viruses. A strong virucidal effect was observed for RV-23, AR-23 and Hylin-a1 against bovine and caprine herpesviruses, canine distemper virus, bovine viral diarrhea virus, and Schmallenberg virus. Our results identified these three peptides as potential antiviral-led candidates with a putative therapeutic effect against several animal viruses. Full article
(This article belongs to the Special Issue Emerging Zoonotic Diseases 2024)
Show Figures

Figure 1

15 pages, 4494 KiB  
Article
Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide—LENART01
by Pawel Serafin, Paweł Kowalczyk, Adriano Mollica, Azzurra Stefanucci, Anna K. Laskowska, Magdalena Zawadzka, Karol Kramkowski and Patrycja Kleczkowska
Molecules 2023, 28(13), 4955; https://doi.org/10.3390/molecules28134955 - 23 Jun 2023
Cited by 10 | Viewed by 3922
Abstract
Finding the ideal antimicrobial drug with improved efficacy and a safety profile that eliminates antibiotic resistance caused by pathogens remains a difficult task. Indeed, there is an urgent need for innovation in the design and development of a microbial inhibitor. Given that many [...] Read more.
Finding the ideal antimicrobial drug with improved efficacy and a safety profile that eliminates antibiotic resistance caused by pathogens remains a difficult task. Indeed, there is an urgent need for innovation in the design and development of a microbial inhibitor. Given that many promising antimicrobial peptides with excellent broad-spectrum antibacterial properties are secreted by some frog species (e.g., bombesins, opioids, temporins, etc.), our goal was to identify the antimicrobial properties of amphibian-derived dermorphin and ranatensin peptides, which were combined to produce a hybrid compound. This new chimera (named LENART01) was tested for its antimicrobial activity against E. coli strains K12 and R1–R4, which are characterized by differences in lipopolysaccharide (LPS) core oligosaccharide structure. The results showed that LENART01 had superior activity against the R2 and R4 strains compared with the effects of the clinically available antibiotics ciprofloxacin or bleomycin (MIC values). Importantly, the inhibitory effect was not concentration dependent; however, LENART01 showed a time- and dose-dependent hemolytic effect in hemolytic assays. Full article
(This article belongs to the Special Issue Design, Synthesis, and Biological Evaluation of Antimicrobial Agents)
Show Figures

Figure 1

14 pages, 23655 KiB  
Article
Interaction of Uperin Peptides with Model Membranes: Molecular Dynamics Study
by Elena A. Ermakova and Rauf Kh. Kurbanov
Membranes 2023, 13(4), 370; https://doi.org/10.3390/membranes13040370 - 23 Mar 2023
Cited by 2 | Viewed by 2864
Abstract
The interaction of antimicrobial and amyloid peptides with cell membranes is a critical step in their activities. Peptides of the uperin family obtained from the skin secretion of Australian amphibians demonstrate antimicrobial and amyloidogenic properties. All-atomic molecular dynamics and an umbrella sampling approach [...] Read more.
The interaction of antimicrobial and amyloid peptides with cell membranes is a critical step in their activities. Peptides of the uperin family obtained from the skin secretion of Australian amphibians demonstrate antimicrobial and amyloidogenic properties. All-atomic molecular dynamics and an umbrella sampling approach were used to study the interaction of uperins with model bacterial membrane. Two stable configurations of peptides were found. In the bound state, the peptides in helical form were located right under the head group region in parallel orientation with respect to the bilayer surface. Stable transmembrane configuration was observed for wild-type uperin and its alanine mutant in both alpha-helical and extended unstructured forms. The potential of mean force characterized the process of peptide binding from water to the lipid bilayer and its insertion into the membrane, and revealed that the transition of uperins from the bound state to the transmembrane position was accompanied by the rotation of peptides and passes through the energy barrier of 4–5 kcal/mol. Uperins have a weak effect on membrane properties. Full article
(This article belongs to the Collection Feature Papers in Membranes in Life Sciences)
Show Figures

Figure 1

Back to TopTop