Antimicrobial Peptides from Frogs of the Glandirana Genus
Abstract
:1. Introduction
2. The Phylogeny and Nomenclature of Frogs and AMPs from the Glandirana Genus
G. reliquia: taken from [80]. | G. nakamurai: taken from [80]. |
- Frogs from the Glandirana genus, which is one of the smallest in the family Ranidae, are found in eastern China, Korea, Japan and possibly the Russian Far East.
- Glandirana means ‘glandular frog’ and currently, this genus includes G. nakamurai and G. reliquia, which are new species added over the last decade, and the established species G. rugosa, G. emeljanovi, G. minima, G. tientaiensis and G. susurra.
- AMPs from frogs of the Glandirana genus are are assigned to one of fourteen families on the basis of sequence similarity and most are now members of the brevinin, esculentin, ranatuerin and granuliberin families (Figure 1).
3. AMPs from G. minima, G. tientaiensis and G. rugosa
G. minima: taken from [80]. | G. tientaiensis: taken from [80]. |
G. rugosa: taken from [80]. |
- G. reliquia and G. nakamurai are found in Japan, whilst G. minima and G. tientaiensis occur in China and, currently, the production of AMPs by these frogs has not been reported.
- G. rugosa occurs in Japan and Korea and produces the cationic AMPs brevinin-2 Ra (B2Ra), brevinin-2 Rb (B2Rb) and esculentin-2 R (E2R), which are cationic and carry a C-terminal Rana box motif (Figure 1).
- B2Rb possesses broad-range antibacterial activity, whereas B2Ra possesses potent activity against Gram-positive bacteria, but weaker activity against Gram-negative bacteria (Table 1).
4. AMPs from G. susurra
G. susurra: taken from [80]. |
4.1. The Biological Activity of Brevinin-2SSb, Ranateurin-2SSa and Granuliberin-SSa
4.2. Structure/Function Studies on Brevinin-2SSb, Ranateurin-2SSa and Granuliberin-SSa
- G. susurra, which occurs in Sado Island, Japan, produces brevinin-1SSc (B1SSc), brevinin-1SSd (B1SSd), brevin-in-2SSb (B2SSb), brevinin-2SSd (B2SSd) and esculentin-2SSa (E2SSa), which are cationic and possess a C-terminal, heptapeptide and Rana box motif (Figure 1).
- G. susurra produces seven atypical ranid-AMPs, of which three were characterized, namely, ranatuerin-2SSa (R2SSa), brevinin-2SSb (B2SSb) and granuliberin-2SSa (GSSa). All of these peptides are cationic, with the first two carrying modified C-terminal Rana box motifs and the third possessing a C-terminal amide moiety (Figure 1).
- B2SSb and R2SSa exhibit antioxidant activity and intrinsic antioxidants are essential for amphibians to protect their skin against both endogenous and exogenous oxidative insults.
- B2SSb, R2SSa and GSSa show varying levels of efficacy towards cancer cells but are cytotoxic to normal mammalian cells. Modified to reduce their cytotoxicity, B2SSb, R2SSa and GSSa show the potential for development to treat various cancers.
- B2SSb, R2SSa and GSSa exhibit varying levels of efficacy towards fungi and Gram-negative bacteria that are pathogenic to humans. Modified to reduce their cytotoxicity, B2SSb, R2SSa and GSSa show the potential for development to treat infections due to these microbes (Table 2).
- B2SSb, R2SSa and GSSa show varying levels of efficacy towards fungi, Gram-positive bacteria and Gram-negative bacteria that are pathogenic to plants, indicating the potential for development as crop protection agents (Table 2).
- B2SSb and R2SSa bind strongly to endotoxins and show the potential to act as anti-inflammatory agents.
- B2SSb and R2SSa appear to be predominantly formed from an α-helical structure, whereas GSSa appears to be primarily formed from a β-sheet structure, and the antibacterial, antifungal, anticancer and cytotoxic action of these AMPs appears to involve membranolytic mechanisms.
5. AMPs from G. emeljanovi
G. emeljanovi: Taken from [80]. |
5.1. Brevinin-1 EMa and Brevinin-1 EMb
5.1.1. The Biological Activity of Brevinin-1 EMa, Brevinin-1 EMb and Their Derivatives
B1EMa | A4W- B1EMa | V8W- B1EMa | GA-K4AL | Peptide B | |
---|---|---|---|---|---|
Bacteria | MIC (µM) | ||||
B. subtilis | <4.0 | 4.9 | 9.9 | 4.4 | ND |
M. luteus | <3.0 | 19.6 | 39.5 | 4.4 | ND |
S. aureus | 1.3 | 2.5 | 9.9 | 4.4 | ND |
MRSA | ND | ND | ND | ND | 12.5 |
S. epidermidis | <5.5 | 9.8 | 19.8 | 4.4 | ND |
E. coli | <20.0 | 19.6 | 19.8 | 8.8 | ND |
S. dysenteriae | <20.0 | 9.8 | 19.8 | 8.8 | ND |
S. typhimurium | >40.0 | 39.2 | 79.0 | 16.6 | ND |
K. pneumoniae | <20.0 | 9.8 | 9.9 | 4.4 | ND |
P. putida | 19.4 | ND | ND | ND | ND |
P. aeruginosa | >35.0 | 78.4 | 158.0 | 8.8 | ND |
P. mirabilis | >75.0 | >155.0 | >158.0 | ND | ND |
S. marcescens | >77.0 | ND | ND | ND | ND |
Fungi | MIC (µM) | ||||
C. albicans | 19.4 | ND | ND | ND | ND |
S. cerevisiae | 19.4 | ND | ND | ND | ND |
Viruses | EC50 (µM) | ||||
Retrovirus | ND | ND | ND | ND | <11.0 |
Cytotoxicity | CC50 (µM) | ||||
Human keratinocytes | <1.5 | ND | ND | ND | >10.0 |
Hemolysis | Maximal levels (%) | ||||
Human erythrocytes | <1.5 | 11.9 | 6.7 | <1.0 | ND |
Bacteria | B1EMb | B1EMb-NH2 | PTP6 | PTP7/PTP12 |
---|---|---|---|---|
MIC (µM) | ||||
B. subtilis | 3.8 | 4.8 | ND | ND |
M. luteus | 1.0 | 1.2 | ND | 2.1 |
S. aureus | ND | 1.2 | ND | 3.5 |
MRSA | ND | 4.8 | ND | ND |
S. epidermidis | 3.8 | 2.4 | ND | 6.4 |
M. smegmatis | 1.2 | 4.8 | ND | ND |
C. diphteriae | ND | 1.6 | ND | ND |
S. mutans | <5.0 | ND | 4.1 | 4.4 |
S. sanguis | 2.4 | ND | <8.0 | 4.4 |
S. sobrinus | 2.4 | ND | 4.1 | 4.4 |
S. gordonii | 1.2 | ND | 8.2 | 4.4 |
P. vulgaris | ND | >38.0 | ND | ND |
E. coli | >9.0 | 2.4 | 4.1 | >70.0 |
P. putida | 57.60 | ND | ND | ND |
S. dysenteriae | 19.20 | ND | ND | ND |
S. typhimurium | >19.0 | ND | 16.3 | >70.0 |
K. pneumoniae | >9.0 | ND | 16.3 | 17.6 |
P. mirabilis | >75.0 | ND | ND | ND |
P. aeruginosa | 57.60 | 19.2 | ND | ND |
S. marcescens | >75.0 | ND | ND | ND |
S. flexneri | ND | 9.6 | ND | ND |
Fungi | MIC (µM) | |||
C. albicans | 19.2 | 4.8 | ND | ND |
S. cerevisiae | 19.2 | ND | ND | ND |
Hemolysis | Maximal levels (%) | |||
Human erythrocytes | <1.0 | ND | <1.0 | <4.0 |
Cancer Cells | B1EMa | A4W-B1EMa | V8W-B1EMa | GA-K4 | B1EMb | PTP6 | PTP7/PTP12 |
---|---|---|---|---|---|---|---|
IC50 (µM) | |||||||
A498 | 54.1 | 56.5 | 169.1 | 21.5 | ND | ND | ND |
A549 | 57.1 | 82.0 | 329.9 | 14.5 | 2.5 | 9.1 | 5.6 |
HCT116 | 44.4 | 23.5 | 113.9 | 14.8 | ND | ND | ND |
MCF-7 | 72.0 | 59.6 | 156.9 | ND | 1.9 | 11.5 | 3.7 |
MCF-7/DOX | ND | ND | ND | ND | 1.8 | ND | 3.7 |
MKN45 | 13.7 | 63.8 | 112.6 | 22.5 | ND | ND | ND |
PC-3 | 17.1 | 95.5 | 137.4 | 29.1 | 2.0 | 8.7 | 3.5 |
SK-MEL-2 | 18.6 | 23.5 | ND | 22.3 | ND | ND | ND |
NCl-H630 | 16.4 | 58.6 | 102.2 | ND | ND | ND | ND |
Hep 3B | ND | ND | ND | ND | 1.9 | 9.8 | 3.8 |
SK-OV-3 | 15.0 | 71.1 | 118.7 | 12.6 | ND | ND | ND |
293 | ND | ND | ND | ND | 2.2 | 9.1 | 4.7 |
Cytotoxicity | IC50 (µM) | ||||||
MCF-10a | ND | 240.5 | 343.4 | ND | ND | ND | ND |
5.1.2. Structure/Function Relationships of Brevinin-1 EMa, Brevinin-1 EMb and Their Derivatives
- G. emeljanovi, which occurs in Korea, produces brevin-in-2EMa (B2Ema), brevinin-2EMb (B2EMb) and brevinin-2EMb’ (B2EMb’), which are cationic and possess a C-terminal, heptapeptide and Rana box motif (Figure 1).
- B2Ema, B2EMb and B2EMb’ exhibit very low levels of hemolysis and possess potent activity against Gram-positive bacteria, but weaker activity against Gram-negative bacteria and fungi (Table 1).
- G. emeljanovi produces brevinin-1 EMa (B1Ema), brevinin-1 EMb (B1EMb) and esculentin-2 EM (E2EM), which are cationic and possess a C-terminal, heptapeptide and Rana box motif (Figure 1).
- B1Ema and B1EMb show very low levels of hemolysis and cytotoxicity to normal human cells and exhibit potent activity towards Gram-positive bacteria, showing the potential for development to treat infections due to these microbes. These peptides show weaker activity against fungi and Gram-negative bacteria (Table 3 and Table 4).
- B1EMb shows the ability to stimulate insulin release and shows the potential for development to treat insulin-related disorders and to aid in the design of anti-diabetic drugs.
- Derivatives of B1Ema, including A4W- B1Ema, V8W- B1Ema, GA-K4AL and peptide B, show varying levels of hemolysis and cytotoxicity. These peptides show potent activity towards Gram-positive bacteria and weaker activity towards Gram-negative bacteria and enveloped viruses. Modified, as appropriate, to reduce toxicity to human cells, A4W- B1Ema, V8W- B1Ema, GA-K4AL and peptide B show the potential for development to treat infections due to these microbes (Table 3).
- Derivatives of B1EMb, including B1EMb-NH2, PTP6 and PTP7/PTP12, exhibit low levels of hemolysis and potent activity towards Gram-positive bacteria, showing the potential for development to treat infections due to these microbes. These peptides show weaker activity against fungi and Gram-negative bacteria (Table 4).
- B1Ema, B1EMb and their derivatives, including A4W- B1Ema, V8W- B1Ema, GA-K4, PTP6 and PTP7/PTP12, exhibit low cytotoxicity and varying levels of efficacy against a spectrum of cancers, indicating the potential for development to treat these disorders, including those with MDR (Table 5).
- B1EMa and B1EMb form continuous, curved amphiphilic α-helices with a hydrophobicity gradient and this structural arrangement appears to be the primary driver of the membranolytic action that underpins the antimicrobial, antifungal, anticancer and insulinotrophic action of these peptides (Figure 3).
- B1EMb and B1Ema possess a central proline residue that appears to help promote the stability of their amphiphilic α-helical structure and the efficacy of their membranolytic biological action (Figure 3).
- B1EMa and B1EMb B1EMb appears to require an intact Rana box to stabilize membrane interactions involved in its antimicrobial, anticancer and insulinotrophic action, whereas this does not appear to be a requirement for the biological activity of B1Ema.
5.2. Esculentin 2EM
5.2.1. The Antimicrobial Role of Esculentin 2EM and Its Derivatives
5.2.2. Structure/Function Relationships of Esculentin 2EM and Its Derivatives
Bacteria | E2EM | E2EM-lin | 23D16W |
---|---|---|---|
MIC (µM) | |||
S. aureus | ND | 3.1 | 4.4 |
M. luteus | 0.7 | <3.0 | 1.0 |
S. mutans | ND | 3.1 | ND |
S. epidermidis | 2.7 | 3.1 | ND |
B. subtilis | 2.7 | 6.3 | 20.2 |
S. pyogenes | ND | 6.3 | ND |
K. pneumoniae | 6.7 | >6.0 | 10.3 |
K. aerogenes | ND | 200.0 | ND |
S. dysenteriae | 6.7 | ND | 20.6 |
P. putida | 26.8 | ND | ND |
P. aeruginosa | 28.7 | 75.0 | 51.5 |
E. coli | 20.6 | >20.0 | 10.3 |
P. mirabilis | >53.0 | >50.0 | ND |
S. marcescens | >53.0 | ND | >82.0 |
S. typhimurium | 53.6 | ND | 51.5 |
Fungi | MIC (µM) | ||
C. albicans | 53.6 | 60.0 | ND |
S. cerevisiae | 53.6 | 60.0 | ND |
Hemolysis | Maximal levels (%) | ||
Human erythrocytes | <2.0 | <2.0 | <1.0 |
- G. emeljanovi produces esculentin-2 EM (E2EM), which is cationic and possesses a C-terminal, heptapeptide and Rana box motif. E2EM and its derivatives have also been produced by heterologous expression systems.
- E2EM and derivatives, including E2EM-lin and 23D16W, exhibit very low levels of hemolysis and are generally ineffective against Gram-negative bacteria, but exhibit potent activity towards the Gram-positive, showing the potential for development to treat infections due to these microbes (Table 6).
- E2EM and E2EM-lin are thermostable and exhibit moderate activity against fungi, indicating the potential for development as antimicrobial agents in the food industry (Table 6).
- E2EM/E2EM-lin exert their antibacterial and antifungal action using pH-dependent, membranolytic mechanisms that are enhanced by alkaline pH conditions (Figure 5).
- E2EM appears not to require an intact Rana box for its membranolytic action and E2EM/E2EM-lin forms two juxtaposed, amphiphilic α-helical segments that are connected by a central glycine residue which promotes the molecular flexibility required for this action (Figure 5).
- The membranolytic action of E2EM/E2EM-lin appears to be underpinned by the formation of a tilted/α-helical structure in its N-terminal region that promotes pore formation and is primarily mediated by PG in the case of Gram-positive bacteria and PE in that of Gram-negative bacteria (Figure 4 and Figure 5).
5.3. Stapled AMPs from G. emeljanovi
Peptide B-5S | Peptide B-sub5S | E2EM15 W-S1 | E2EM15 W-S2 | E2EM15 W-S3 | |
---|---|---|---|---|---|
Bacteria | MIC (µM) | ||||
B. subtilis | ND | ND | 1.8 | 3.6 | 3.6 |
S. aureus | ND | ND | 1.8 | 3.6 | 3.6 |
MRSA | >50.0 | 6.3 | ND | ND | ND |
S. epidermidis | ND | ND | >120.0 | >120.0 | 60.0 |
E. coli | ND | ND | >120.0 | 60.0 | 60.0 |
S. dysenteriae | ND | ND | >120.0 | 30.0 | 30.0 |
S. typhimurium | ND | ND | >120.0 | >120 | >120.0 |
K. pneumoniae | ND | ND | >120.0 | 30.0 | 30.0 |
P. aeruginosa | ND | ND | >120.0 | 120.0 | >120.0 |
P. mirabilis | ND | ND | >120.0 | >120 | >120.0 |
Viruses | EC50 (µM) | ||||
Retrovirus | <8.0 | <5.0 | ND | ND | ND |
Cytotoxicity | CC50 (µM) | ||||
Human keratinocytes | >8.0 | >6.0 | ND | ND | ND |
- Covalently linking the sidechains of residues in α-helical AMPs by hydrocarbon bridges is a general strategy used to enhance their structural stability and selective, antimicrobial activity.
- α-Helical derivatives of B1Ema, peptide B-5S and peptide B-sub5S and E2EM, E2EM15W-S1, E2EM15W-S2 and E2EM15W-S3 were produced with conformations linked by oct-4-enyl staples at residue positions i and i + 4 (Figure 6).
- E2EM15W-S1, E2EM15W-S2 and E2EM15W-S3 are ineffective against Gram-negative bacteria, but show potent activity towards Gram-positive bacteria, indicating the potential for development to treat infections due to these microbes (Table 7).
- Peptide B-5S and peptide B-sub5S show moderate activity towards enveloped viruses, but also show significant cytotoxicity to human cells. Modified to reduce their cytotoxicity, these peptides show the potential for development to treat viral infections (Table 7).There is evidence to suggest that the antibacterial action of E2EM15W-S1, E2EM15W-S2 and E2EM15W-S3 and the antiviral action of peptide B-5S and peptide B-sub5S are primarily driven by the amphiphilic properties of these AMPs and membranolytic mechanisms.
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cederlund, A.; Gudmundsson, G.H.; Agerberth, B. Antimicrobial peptides important in innate immunity. FEBS J. 2011, 278, 3942–3951. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, D.A.; Dennison, S.R.; Harris, F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. In Antimicrobial Peptides; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany; IUCN: Darmstadt, Germany, 2013; pp. 1–37. [Google Scholar]
- George, B.; Pooja, S.; Suchithra, T.V.; Sebastian, D. 1—Historical developments of antimicrobial peptide research. In Antimicrobial Peptides; Ajesh, K., Sreejith, K., Eds.; Academic Press: London, UK, 2023; pp. 1–16. [Google Scholar]
- Hirsch, J.G. Phagocytin: A bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med. 1956, 103, 589–611. [Google Scholar] [CrossRef] [PubMed]
- Zeya, H.I.; Spitznagel, J.K. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J. Bacteriol. 1966, 91, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Hultmark, D.; Steiner, H.; Rasmuson, T.; Boman, H.G. Insect immunity—purification and properties of 3 inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 1980, 106, 7–16. [Google Scholar] [CrossRef]
- Steiner, H.; Hultmark, D.; Engstrom, A.; Bennich, H.; Boman, H.G. Sequence and specificity of 2 anti-bacterial proteins involved in insect immunity. Nature 1981, 292, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Sharrock, J.; Sun, J.C. Innate immunological memory: From plants to animals. Curr. Opin. Immunol. 2020, 62, 69–78. [Google Scholar] [CrossRef]
- Lanz-Mendoza, H.; Gálvez, D.; Contreras-Garduño, J. The plasticity of immune memory in invertebrates. J. Exp. Biol. 2024, 227, jeb246158. [Google Scholar] [CrossRef]
- Urmi, U.L.; Vijay, A.K.; Kuppusamy, R.; Islam, S.; Willcox, M.D.P. A review of the antiviral activity of cationic antimicrobial peptides. Peptides 2023, 166, 171024. [Google Scholar] [CrossRef]
- Ji, S.; An, F.; Zhang, T.; Lou, M.; Guo, J.; Liu, K.; Zhu, Y.; Wu, J.; Wu, R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur. J. Med. Chem. 2024, 265, 116072. [Google Scholar] [CrossRef]
- Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal Peptides as Therapeutic Agents. Front. Cell. Infect. Microbiol. 2020, 10, 105. [Google Scholar] [CrossRef]
- Nogrado, K.; Adisakwattana, P.; Reamtong, O. Antimicrobial peptides: On future antiprotozoal and anthelminthic applications. Acta Trop. 2022, 235, 106665. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Harris, F.; Phoenix, D.A. Magainins – A Model for Development of Eukaryotic Antimicrobial Peptides (AMPs). In Novel Antimicrobial Agents and Strategies; Vch Pub: Hoboken, NJ, USA, 2014; pp. 47–70. [Google Scholar]
- Zasloff, M. Maganins a class of antimicrobial peptides drom Xenopus skin—isolation, characterization of 2 active forms, partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 1987, 84, 5449–5453. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef] [PubMed]
- Ebenhan, T.; Gheysens, O.; Kruger, H.G.; Zeevaart, J.R.; Sathekge, M.M. Antimicrobial Peptides: Their Role as Infection-Selective Tracers for Molecular Imaging. In Biomed Research International; Hindawi Pub. Co.: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Brogden, K.A.; Ackermann, M.; Huttner, K.M. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob. Agents Chemother. 1997, 41, 1615–1617. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Harris, F.; Mura, M.; Phoenix, D.A. An atlas of anionic antimicrobial peptides from amphibians. Curr. Protein Pept. Sci. 2018, 19, 823–838. [Google Scholar] [CrossRef] [PubMed]
- Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic Antimicrobial Peptides from Eukaryotic Organisms. Curr. Protein Pept. Sci. 2009, 10, 585–606. [Google Scholar] [CrossRef]
- Prabhu, S.; Dennison, S.R.; Lea, B.; Snape, T.J.; Nicholl, I.D.; Radecka, I.; Harris, F. Anionic Antimicrobial and Anticancer Peptides from Plants. Crit. Rev. Plant Sci. 2013, 32, 303–320. [Google Scholar] [CrossRef]
- Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic Antimicrobial Peptides from Eukaryotic Organisms and their Mechanisms of Action. Curr. Chem. Biol. 2011, 5, 142–153. [Google Scholar] [CrossRef]
- Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci. 2019, 537, 163–185. [Google Scholar] [CrossRef]
- Eisenberg, D.; Weiss, R.M.; Terwilliger, T.C. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature 1982, 299, 371–374. [Google Scholar] [CrossRef]
- Eisenberg, D.; Weiss, R.M.; Terwillinger, T.C.; Wilcox, W. Hydrophobic moment and protein structure. Faraday Symp. Chem. Soc. 1982, 17, 109–120. [Google Scholar] [CrossRef]
- Phoenix, D.A.; Harris, F. The hydrophobic moment and its use in the classification of amphiphilic structures (review). Mol. Membr. Biol. 2002, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, D.A.; Harris, F.; Daman, O.A.; Wallace, J. The prediction of amphiphilic alpha-helices. Curr. Protein Pept. Sci. 2002, 3, 201–221. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Wilcox, W.; McLachlan, A.D. Hydrophobicity and amphiphilicity in protein structure. J. Cell. Biochem. 1986, 31, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Schwarz, E.; Komaromy, M.; Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984, 179, 125–142. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef]
- Phoenix, D.A.; Dennison, S.R.; Harris, F. Graphical techniques to visualize the amphiphilic structures of antimicrobial peptides. In Antimicrobial Peptides; Wiley-VCH: Weinheim, Germany; Verlag GmbH & Co.: Weinheim, Germany; KGaA: Darmstadt, Germany, 2013; pp. 115–144. [Google Scholar]
- Harris, F.; Wallace, J.; Phoenix, D.A. Use of hydrophobic moment plot methodology to aid the identification of oblique orientated alpha-helices. Mol. Membr. Biol. 2000, 17, 201–207. [Google Scholar]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob. Agents Chemother. 2017, 61, e02340-16. [Google Scholar] [CrossRef]
- Cardoso, M.H.; Meneguetti, B.T.; Costa, B.O.; Buccini, D.F.; Oshiro, K.G.N.; Preza, S.L.E.; Carvalho, C.M.E.; Migliolo, L.; Franco, O.L. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int. J. Mol. Sci. 2019, 20, 4877. [Google Scholar] [CrossRef]
- Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res. 2017, 96, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Ebbensgaard, A.; Mordhorst, H.; Aarestrup, F.M.; Hansen, E.B. The Role of Outer Membrane Proteins and Lipopolysaccharides for the Sensitivity of Escherichia coli to Antimicrobial Peptides. Front. Microbiol. 2018, 9, 2153. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E. Peptide antibiotics. Lancet 1997, 349, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Koh, J.-J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. 2017, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Meredith, T.C.; Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 2013, 16, 779–785. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus 2018, 8, 10–128. [Google Scholar] [CrossRef]
- Phoenix, D.A.; Dennison, S.R.; Harris, F. Models for the Membrane Interactions of Antimicrobial Peptides. In Antimicrobial Peptides; Wiley-VCH: Weinheim, Germany; Verlag GmbH & Co.: Weinheim, Germany; KGaA: Darmstadt, Germany, 2013; pp. 145–180. [Google Scholar]
- Steinbuch, K.B.; Fridman, M. Mechanisms of resistance to membrane-disrupting antibiotics in Gram-positive and Gram-negative bacteria. MedChemComm 2016, 7, 86–102. [Google Scholar] [CrossRef]
- Abdi, M.; Mirkalantari, S.; Amirmozafari, N. Bacterial resistance to antimicrobial peptides. J. Pept. Sci. 2019, 25, e3210. [Google Scholar] [CrossRef]
- Lewies, A.; Du Plessis, L.H.; Wentzel, J.F. Antimicrobial Peptides: The Achilles’ Heel of Antibiotic Resistance? Probiotics Antimicrob. Proteins 2019, 11, 370–381. [Google Scholar] [CrossRef]
- Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 2019, 10, 4538. [Google Scholar] [CrossRef]
- Kubicek-Sutherland, J.Z.; Lofton, H.; Vestergaard, M.; Hjort, K.; Ingmer, H.; Andersson, D.I. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J. Antimicrob. Chemother. 2017, 72, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 2016, 26, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Morehead, M.S.; Scarbrough, C. Emergence of Global Antibiotic Resistance. Prim. Care Clin. Off. Pract. 2018, 45, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Jacob, L.; Zasloff, M. Potential therapeutic applications of Magainins and other antimicrobial agents of animal origin. In Antimicrobial Peptides; Marsh, J., Goode, J.A., Eds.; Ciba Foundation Symposia: London, UK, 1994; Volume 186, pp. 197–216. [Google Scholar]
- Chopra, I. The Magainins—antimicrobial peptides with potential for tropical application. J. Antimicrob. Chemother. 1993, 32, 351–353. [Google Scholar] [CrossRef]
- Islam, K.; Hawser, S.P. MSI-78 Magainin Pharmaceuticals. IDrugs 1998, 1, 605–609. [Google Scholar]
- Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan—A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1680–1686. [Google Scholar] [CrossRef]
- Haney, E.F.; Hunter, H.N.; Matsuzaki, K.; Vogel, H.J. Solution NMR studies of amphibian antimicrobial peptides: Linking structure to function? Biochim. Biophys. Acta Biomembr. 2009, 1788, 1639–1655. [Google Scholar] [CrossRef]
- Tamba, Y.; Ariyama, H.; Levadny, V.; Yamazaki, M. Kinetic Pathway of Antimicrobial Peptide Magainin 2-Induced Pore Formation in Lipid Membranes. J. Phys. Chem. B 2010, 114, 12018–12026. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S.F. Antimicrobial peptides: An overview of a promising class of therapeutics. Open Life Sci. 2007, 2, 1–33. [Google Scholar] [CrossRef]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Sonnevend, A. Clinical Applications of Amphibian Antimicrobial Peptides. Hamdan Med. J. 2011, 4, 62–72. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Holroyd, K.J.; Zasloff, M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin. Infect. Dis. 2008, 47, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem. Soc. Rev. 2021, 50, 7820–7880. [Google Scholar] [CrossRef] [PubMed]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef]
- Divyashree, M.; Mani, M.K.; Reddy, D.; Kumavath, R.; Ghosh, P.; Azevedo, V.; Barh, D. Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now? Protein Pept. Lett. 2020, 27, 120–134. [Google Scholar] [CrossRef]
- Neshani, A.; Sedighian, H.; Mirhosseini, S.A.; Ghazvini, K.; Zare, H.; Jahangiri, A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb. Pathog. 2020, 146, 104238. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Ayoub Moubareck, C.; Hammoudi Halat, D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics 2020, 9, 119. [Google Scholar] [CrossRef]
- Weinberg, S.E.; Villedieu, A.; Bagdasarian, N.; Karah, N.; Teare, L.; Elamin, W.F. Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infect. Prev. Pract. 2020, 2, 100077. [Google Scholar] [CrossRef]
- Stanley, C.N.; Awanye, A.M.; Ogbonnaya, U.C. Acinetobacter baumannii: Epidemiology, Clinical Manifestations and Associated Infections. In Acinetobacter baumannii—The Rise of a Resistant Pathogen; Rangel, K., De-Simone, S., Eds.; IntechOpen: London, UK, 2023; pp. 1–23. [Google Scholar]
- Wang, G.S.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef]
- Xu, X.Q.; Lai, R. The Chemistry and Biological Activities of Peptides from Amphibian Skin Secretions. Chem. Rev. 2015, 115, 1760–1846. [Google Scholar] [CrossRef] [PubMed]
- Patocka, J.; Nepovimova, E.; Klimova, B.; Wu, Q.; Kuca, K. Antimicrobial Peptides: Amphibian Host Defense Peptides. Curr. Med. Chem. 2019, 26, 5924–5946. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.C.; Fontes, W.; Sebben, A.; Castro, M.S. Antimicrobial peptides from anurans skin secretions. Protein Pept. Lett. 2003, 10, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Ladram, A.; Nicolas, P. Antimicrobial peptides from frog skin: Biodiversity and therapeutic promises. Front. Biosci. 2016, 21, 1341–1371. [Google Scholar] [CrossRef]
- Konig, E.; Bininda-Emonds, O.R.; Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 2015, 63, 96–117. [Google Scholar] [CrossRef] [PubMed]
- Frost, D.R. Amphibian Species of the World: An Online Reference. Version 6.2 (05.12.2024). Electronic Database. American Museum of Natural History, New York, USA. 2024. Available online: https://amphibiansoftheworld.amnh.org/index.php (accessed on 5 December 2024). [CrossRef]
- Conlon, J.M. Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 2008, 29, 1815–1819. [Google Scholar] [CrossRef] [PubMed]
- Alexander Pyron, R.; Wiens, J.J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenetics Evol. 2011, 61, 543–583. [Google Scholar] [CrossRef]
- Frost, D.R.; Grant, T.; Faivovich, J.; Bain, R.H.; Haas, A.; Haddad, C.F.B.; De Sa, R.A.; Channing, A.; Wilkinson, M.; Donnellan, S.C.; et al. The Amphibian Tree of Life. Bull. Am. Mus. Nat. Hist. 2006, 297, 1–291. [Google Scholar] [CrossRef]
- Yuan, Z.-Y.; Zhou, W.-W.; Chen, X.; Poyarkov, J.N.A.; Chen, H.-M.; Jang-Liaw, N.-H.; Chou, W.-H.; Matzke, N.J.; Iizuka, K.; Min, M.-S.; et al. Spatiotemporal Diversification of the True Frogs (Genus Rana): A Historical Framework for a Widely Studied Group of Model Organisms. Syst. Biol. 2016, 65, 824–842. [Google Scholar] [CrossRef]
- AmphibiaWeb. Available online: https://amphibiaweb.org (accessed on 8 November 2024).
- Che, J.; Pang, J.; Zhao, H.; Wu, G.F.; Zhao, E.M.; Zhang, Y.P. Phylogeny of Raninae (Anura: Ranidae) inferred from mitochondrial and nuclear sequences. Mol. Phylogenetics Evol. 2007, 43, 1–13. [Google Scholar] [CrossRef]
- Sekiya, K.; Miura, I.; Ogata, M. A new frog species of the genus Rugosa from Sado Island, Japan (Anura, Ranidae). Zootaxa 2012, 3575, 49–62. [Google Scholar] [CrossRef]
- Park, J.M.; Jung, J.E.; Lee, B.J. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem. Biophys. Res. Commun. 1994, 205, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Lee, J.Y.; Moon, H.M.; Lee, B.J. Molecular cloning of cDNAs encoding precursors of frog skin antimicrobial peptides from Rana rugosa. Biochim. Biophys. Acta Gene Struct. Expr. 1995, 1264, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Ohe, Y.; Okubo, T.; Kakegawa, T.; Tatemoto, K. Isolation and Characterization of Novel Antimicrobial Peptides, Rugosins A, B, and C, from the Skin of the Frog, Rana rugosa. Biochem. Biophys. Res. Commun. 1995, 212, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Won, H.-S.; Kang, S.-J.; Lee, B.-J. Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1620–1629. [Google Scholar] [CrossRef]
- Mochizuki, M.; Nakamura, Y.; Nakamura, M. Taxonomic identity of four groups of Glandirana rugosa (Anura, Ranidae) in Japan revealed by the complete mitochondrial genome sequence analysis. Mitochondrial DNA Part B 2020, 5, 3721–3722. [Google Scholar] [CrossRef]
- Kuzmin, S.; Matsui, M.; Wenge, Z.; Kaneko, Y. Glandirana emeljanovi. In IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2004. [Google Scholar]
- Eo, S.H.; Lee, B.-J.; Park, C.-D.; Jung, J.-H.; Hong, N.; Lee, W.-S. Taxonomic identity of the Glandirana emeljanovi (Anura, Ranidae) in Korea revealed by the complete mitochondrial genome sequence analysis. Mitochondrial DNA Part B 2019, 4, 961–962. [Google Scholar] [CrossRef]
- Xia, Y.; Zheng, Y.C.; Miura, I.; Wong, P.B.Y.; Murphy, R.W.; Zeng, X.M. The evolution of mitochondrial genomes in modern frogs (Neobatrachia): Nonadaptive evolution of mitochondrial genome reorganization. BMC Genom. 2014, 15, 691. [Google Scholar] [CrossRef]
- Liu, W.L.; Tao, J.C.; Wang, H.; Zhao, W.G.; Liu, P. Sequencing and analysis of the complete mitochondrial genome of Rugosa emeljanovi (Anura: Ranidae). Mitochondrial DNA Part B 2017, 2, 383–384. [Google Scholar] [CrossRef]
- Yan, L.; Geng, Z.Z.; Yan, P.; Wu, X.B. The complete mitochondrial genome of Glandirana tientaiensis (Ranidae, Anura). Mitochondrial DNA Part A 2016, 27, 1154–1155. [Google Scholar] [CrossRef]
- Shimada, T. A Comparison of Iris Color Pattern between Glandirana susurra and G. rugosa (Amphibia, Anura, Ranidae). Curr. Herpetol. 2015, 34, 80–84. [Google Scholar] [CrossRef]
- Sekiya, K.; Ohtani, H.; Ogata, M.; Miura, I. Phyletic Diversity in the Frog Rana rugosa (Anura: Ranidae) with Special Reference to a Unique Morphotype Found from Sado Island, Japan. Curr. Herpetol. 2010, 29, 69–78. [Google Scholar]
- Jackway, R.J.; Pukala, T.L.; Donnellan, S.C.; Sherman, P.J.; Tyler, M.J.; Bowie, J.H. Skin peptide and cDNA profiling of Australian anurans: Genus and species identification and evolutionary trends. Peptides 2011, 32, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Masahisa Nakamura; Yoriko Nakamura; Akira Oike; Koji Tojo; Tomoya Suzuki; Ito, E. A New Frog Species of the Genus Glandirana from Southeastern Kyushu, Japan (Anura Ranidae). EC Vet. Sci. 2022, 7, 11–23. [Google Scholar]
- Oike, A.; Mochizuki, M.; Tojo, K.; Matsuo, T.; Nakamura, Y.; Yasumasu, S.; Ito, E.; Arai, T.; Nakamura, M. A Phylogenetically Distinct Group of Glandirana rugosa Found in Kyushu, Japan. Zool. Sci. 2020, 37, 193–202. [Google Scholar] [CrossRef]
- Thomas, P.; Kumar, T.V.; Reshmy, V.; Kumar, K.S.; George, S. A mini review on the antimicrobial peptides isolated from the genus Hylarana (Amphibia: Anura) with a proposed nomenclature for amphibian skin peptides. Mol. Biol. Rep. 2012, 39, 6943–6947. [Google Scholar] [CrossRef]
- Conlon, J.M. A proposed nomenclature for antimicrobial peptides from frogs of the genus Leptodactylus. Peptides 2008, 29, 1631–1632. [Google Scholar] [CrossRef]
- Kumar, V.T.; Holthausen, D.; Jacob, J.; George, S. Host defense peptides from Asian frogs as potential clinical therapies. Antibiotics 2015, 4, 136–159. [Google Scholar] [CrossRef]
- Ogawa, D.; Suzuki, M.; Inamura, Y.; Saito, K.; Hasunuma, I.; Kobayashi, T.; Kikuyama, S.; Iwamuro, S. Antimicrobial Property and Mode of Action of the Skin Peptides of the Sado Wrinkled Frog, Glandirana susurra, against Animal and Plant Pathogens. Antibiotics 2020, 9, 457. [Google Scholar] [CrossRef]
- Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D523–D531. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, C.; Lai, R. Antimicrobial peptides from amphibians. BioMolecular Concepts 2011, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, H.; Sekiya, K.; Ogata, M.; Miura, I. The Postzygotic Isolation of a Unique Morphotype of Frog Rana rugosa (Ranidae) Found on Sado Island, Japan. J. Herpetol. 2012, 46, 325–330. [Google Scholar] [CrossRef]
- Yasuhara, T.; Ishikawa, O.; Nakajima, T.; Araki, K.; Tachibana, S. The Studies on the Active Peptide on Smooth Muscle in the Skin of Rana rugosa, Bradykinin and Its Analogous Peptide, Ranakinin-R. Chem. Pharm. Bull. 1979, 27, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Li, B.; Chen, T.; Kwok, H.F. A review on bradykinin-related peptides isolated from amphibian skin secretion. Toxins 2015, 7, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Wang, G. Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction. Antibiotics 2020, 9, 491. [Google Scholar] [CrossRef]
- Lehrer, R.I.; Cole, A.M.; Selsted, M.E. θ-Defensins: Cyclic peptides with endless potential. J. Biol. Chem. 2012, 287, 27014–27019. [Google Scholar] [CrossRef]
- Eva Edilia, A. Functions of Antimicrobial Peptides in Vertebrates. Curr. Protein Pept. Sci. 2017, 18, 1098–1119. [Google Scholar] [CrossRef]
- Bartels, E.J.H.; Dekker, D.; Amiche, M. Dermaseptins, Multifunctional Antimicrobial Peptides: A Review of Their Pharmacology, Effectivity, Mechanism of Action, and Possible Future Directions. Front. Pharmacol. 2019, 10, 1421. [Google Scholar] [CrossRef]
- Demori, I.; Rashed, Z.E.; Corradino, V.; Catalano, A.; Rovegno, L.; Queirolo, L.; Salvidio, S.; Biggi, E.; Zanotti-Russo, M.; Canesi, L.; et al. Peptides for Skin Protection and Healing in Amphibians. Molecules 2019, 24, 347. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014, 57, 67–77. [Google Scholar] [CrossRef]
- Moreira, D.C.; Venancio, L.P.R.; Sabino, M.; Hermes-Lima, M. How widespread is preparation for oxidative stress in the animal kingdom? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 200, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.F.A.; Bui-Marinos, M.P.; Katzenback, B.A. Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Front. Immunol. 2019, 9, 3128. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Zhang, Y.; Lee, W.-H.; Zhang, Y. Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians. Sci. Rep. 2016, 6, 19866. [Google Scholar] [CrossRef] [PubMed]
- Oelkrug, C.; Hartke, M.; Schubert, A. Mode of Action of Anticancer Peptides (ACPs) from Amphibian Origin. Anticancer Res. 2015, 35, 635–643. [Google Scholar] [PubMed]
- Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev. 2013, 33, 190–234. [Google Scholar] [CrossRef]
- Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with Dual Antimicrobial and Anticancer Activities. Front. Chem. 2017, 5, 5. [Google Scholar] [CrossRef]
- Kang, S.J.; Ji, H.Y.; Lee, B.J. Anticancer activity of undecapeptide analogues derived from antimicrobial peptide, brevinin-1EMa. Arch. Pharm. Res. 2012, 35, 791–799. [Google Scholar] [CrossRef]
- Won, H.S.; Seo, M.D.; Jung, S.J.; Lee, S.J.; Kang, S.J.; Son, W.S.; Kim, H.J.; Park, T.K.; Park, S.J.; Lee, B.J. Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5. J. Med. Chem. 2006, 49, 4886–4895. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.S.; Bang, Y.-J.; Kim, S.-J.; Lee, B.J. In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides 2003, 24, 945–953. [Google Scholar] [CrossRef]
- Ghaly, G.; Tallima, H.; Dabbish, E.; Badr ElDin, N.; Abd El-Rahman, M.K.; Ibrahim, M.A.A.; Shoeib, T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023, 28, 1148. [Google Scholar] [CrossRef]
- Kordi, M.; Borzouyi, Z.; Chitsaz, S.; Asmaei, M.h.; Salami, R.; Tabarzad, M. Antimicrobial peptides with anticancer activity: Today status, trends and their computational design. Arch. Biochem. Biophys. 2023, 733, 109484. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fang, H.; Fang, L.; Liu, D.; Liu, J.; Su, M.; Fang, Z.; Ren, W.; Jiao, H. The Modification and Design of Antimicrobial Peptide. Curr. Pharm. Des. 2018, 24, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide Design Principles for Antimicrobial Applications. J. Mol. Biol. 2019, 431, 3547–3567. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 2021, 50, 4932–4973. [Google Scholar] [CrossRef]
- Bobone, S.; Stella, L. Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. In Antimicrobial Peptides: Basics for Clinical Application; Matsuzaki, K., Ed.; Springer Singapore: Singapore, 2019; pp. 175–214. [Google Scholar]
- Liang, Y.; Zhang, X.; Yuan, Y.; Bao, Y.; Xiong, M. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater. Sci. 2020, 8, 6858–6866. [Google Scholar] [CrossRef]
- Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1687–1692. [Google Scholar] [CrossRef]
- Kabir, M.A.; Hussain, M.A.; Ahmad, Z. Candida albicans: A Model Organism for Studying Fungal Pathogens. ISRN Microbiol. 2012, 2012, 538694. [Google Scholar] [CrossRef]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida albicans—Biology, molecular characterization, pathogenicity, and advances in diagnosis and control—An update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef]
- Ksiezopolska, E.; Gabaldón, T. Evolutionary Emergence of Drug Resistance in Candida Opportunistic Pathogens. Genes 2018, 9, 461. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef] [PubMed]
- Breen, S.; Solomon, P.S.; Bedon, F.; Vincent, D. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance. Front. Plant Sci. 2015, 6, 900. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Shukla, P. Antimicrobial Peptides: Recent Insights on Biotechnological Interventions and Future Perspectives. Protein Pept. Lett. 2019, 26, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Bora, L.C.; Puzari, K.; Baruah, A.M.; Baruah, R.; Talukdar, K.; Kataky, L.; Phukan, A. Review on Bacterial Blight of Rice Caused by Xanthomonas oryzae pv. oryzae: Different Management Approaches and Role of Pseudomonas fluorescens As A Potential Biocontrol Agent. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 982–1005. [Google Scholar]
- Eichenlaub, R.; Gartemann, K.H. The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens. Annu. Rev. Phytopathol. 2011, 49, 445–464. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ser, H.-L.; Khan, T.M.; Chuah, L.-H.; Pusparajah, P.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Company, N.; Nadal, A.; La Paz, J.-L.; Martínez, S.; Rasche, S.; Schillberg, S.; Montesinos, E.; Pla, M. The production of recombinant cationic α-helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum. Plant Biotechnol. J. 2014, 12, 81–92. [Google Scholar] [CrossRef]
- Vilà, S.; Badosa, E.; Montesinos, E.; Planas, M.; Feliu, L. Synthetic Cyclolipopeptides Selective against Microbial, Plant and Animal Cell Targets by Incorporation of D-Amino Acids or Histidine. PLoS ONE 2016, 11, e0151639. [Google Scholar] [CrossRef]
- Badosa, E.; Moiset, G.; Montesinos, L.; Talleda, M.; Bardají, E.; Feliu, L.; Planas, M.; Montesinos, E. Derivatives of the antimicrobial peptide BP100 for expression in plant systems. PLoS ONE 2013, 8, e85515. [Google Scholar] [CrossRef]
- Mishra, R.K.; Bohra, A.; Kamaal, N.; Kumar, K.; Gandhi, K.; Gk, S.; Saabale, P.R.; Sj, S.N.; Sarma, B.K.; Kumar, D.; et al. Utilization of biopesticides as sustainable solutions for management of pests in legume crops: Achievements and prospects. Egypt. J. Biol. Pest Control 2018, 28, 3. [Google Scholar] [CrossRef]
- Lukmanul Hakim, S.; Usman Sumo Friend, T. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Zeitler, B.; Herrera Diaz, A.; Dangel, A.; Thellmann, M.; Meyer, H.; Sattler, M.; Lindermayr, C. De-novo design of antimicrobial peptides for plant protection. PLoS ONE 2013, 8, e71687. [Google Scholar] [CrossRef] [PubMed]
- Leite, M.L.; Sampaio, K.B.; Costa, F.F.; Franco, O.L.; Dias, S.C.; Cunha, N.B. Molecular farming of antimicrobial peptides: Available platforms and strategies for improving protein biosynthesis using modified virus vectors. An. Acad. Bras. Ciências 2019, 91, e20180124. [Google Scholar] [CrossRef] [PubMed]
- Sundin, G.W.; Wang, N. Antibiotic Resistance in Plant-Pathogenic Bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
- Raman, M.N.; Easwaran, M.; Kaul, R.; Bharti, J.; Motelb, K.F.A.; Kaul, T. Antimicrobial Resistance with Special Emphasis on Pathogens in Agriculture. In Antimicrobial Resistance: A One Health Perspective; Intechopen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Xu, N.; Chen, G.; Liu, H. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation. Molecules 2017, 22, 2066. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J. Research progress in structure-activity relationship of bioactive peptides. J. Med. Food 2015, 18, 147–156. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Liu, X.; Wu, J.; Liu, C.; Gong, W.; Zhao, Z.; Hong, J.; Lin, D.; Wang, Y.; et al. Antioxidant peptidomics reveals novel skin antioxidant system. Mol. Cell. Proteom. 2009, 8, 571–583. [Google Scholar] [CrossRef]
- Guo, C.; Hu, Y.; Li, J.; Liu, Y.; Li, S.; Yan, K.; Wang, X.; Liu, J.; Wang, H. Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. Biochimie 2014, 105, 192–201. [Google Scholar] [CrossRef]
- Plácido, A.; Bueno, J.; Barbosa, E.A.; Moreira, D.C.; Dias, J.d.N.; Cabral, W.F.; Albuquerque, P.; Bessa, L.J.; Freitas, J.; Kuckelhaus, S.A.S.; et al. The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra). Biomolecules 2020, 10, 512. [Google Scholar] [CrossRef]
- Meng, P.; Yang, S.; Shen, C.; Jiang, K.; Rong, M.; Lai, R. The first salamander defensin antimicrobial peptide. PLoS ONE 2013, 8, e83044. [Google Scholar] [CrossRef] [PubMed]
- Malanovic, N.; Lohner, K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2016, 1858, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Malanovic, N.; Lohner, K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals 2016, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Percy, M.G.; Gründling, A. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annu. Rev. Microbiol. 2014, 68, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Schneewind, O.; Missiakas, D. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. In Biogenesis of Fatty Acids, Lipids and Membranes; Geiger, O., Ed.; Springer International Publishing: Cham, German, 2017; pp. 1–18. [Google Scholar]
- Dickson, K.; Lehmann, C. Inflammatory Response to Different Toxins in Experimental Sepsis Models. Int. J. Mol. Sci. 2019, 20, 4341. [Google Scholar] [CrossRef]
- de Tejada, G.M.; Heinbockel, L.; Ferrer-Espada, R.; Heine, H.; Alexander, C.; Bárcena-Varela, S.; Goldmann, T.; Correa, W.; Wiesmüller, K.-H.; Gisch, N.; et al. Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides. Sci. Rep. 2015, 5, 14292. [Google Scholar] [CrossRef]
- Zähringer, U.; Lindner, B.; Inamura, S.; Heine, H.; Alexander, C. TLR2—promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 2008, 213, 205–224. [Google Scholar] [CrossRef]
- Rockel, C.; Hartung, T. Systematic review of membrane components of gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Front. Pharmacol. 2012, 3, 56. [Google Scholar] [CrossRef]
- Mallat, J.; Leone, S.; Cascella, M.; Fiore, M. Should endotoxin be a research priority in Gram-negative sepsis and septic shock? Expert Rev. Clin. Pharmacol. 2019, 12, 697–699. [Google Scholar] [CrossRef]
- Virzì, G.M.; Clementi, A.; Brocca, A.; Ronco, C. Endotoxin Effects on Cardiac and Renal Functions and Cardiorenal Syndromes. Blood Purif. 2017, 44, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Pantic, J.M.; Jovanovic, I.P.; Radosavljevic, G.D.; Arsenijevic, N.N.; Conlon, J.M.; Lukic, M.L. The Potential of Frog Skin-Derived Peptides for Development into Therapeutically-Valuable Immunomodulatory Agents. Molecules 2017, 22, 2071. [Google Scholar] [CrossRef] [PubMed]
- Pantic, J.M.; Mechkarska, M.; Lukic, M.L.; Conlon, J.M. Effects of tigerinin peptides on cytokine production by mouse peritoneal macrophages and spleen cells and by human peripheral blood mononuclear cells. Biochimie 2014, 101, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K.; Heinbockel, L.; Correa, W.; Lohner, K. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. Biochim. Biophys. Acta Biomembr. 2016, 1858, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Mao, X.; Guan, Y.; Kang, Y.; Shang, D. Antimicrobial and anti-inflammatory activities of three chensinin-1 peptides containing mutation of glycine and histidine residues. Sci. Rep. 2017, 7, 40228. [Google Scholar] [CrossRef]
- Mu, L.; Zhou, L.; Yang, J.; Zhuang, L.; Tang, J.; Liu, T.; Wu, J.; Yang, H. The first identified cathelicidin from tree frogs possesses anti-inflammatory and partial LPS neutralization activities. Amino Acids 2017, 49, 1571–1585. [Google Scholar] [CrossRef]
- Phoenix, D.A.; Harris, F.; Dennison, S.R. Antimicrobial peptides with pH dependent activity and alkaline optima: Their origins, mechanisms of action and potential applications. Curr. Protein Pept. Biol. 2021, 22, 775–799. [Google Scholar] [CrossRef]
- Sun, Y.; Shang, D. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation. Mediat. Inflamm. 2015, 2015, 167572. [Google Scholar] [CrossRef]
- Schuerholz, T.; Brandenburg, K.; Marx, G. Antimicrobial peptides and their potential application in inflammation and sepsis. Crit. Care 2012, 16, 207. [Google Scholar] [CrossRef]
- Martin, L.; van Meegern, A.; Doemming, S.; Schuerholz, T. Antimicrobial Peptides in Human Sepsis. Front. Immunol. 2015, 6, 404. [Google Scholar] [CrossRef]
- Lepper, P.; Held, T.; Schneider, E.; Bölke, E.; Gerlach, H.; Trautmann, M. Clinical implications of antibiotic-induced endotoxin release in septic shock. Intensive Care Med. 2002, 28, 824–833. [Google Scholar] [CrossRef]
- Holzheimer, R.G. Antibiotic induced endotoxin release and clinical sepsis: A review. J. Chemother. 2001, 13, 159–172. [Google Scholar] [CrossRef]
- van Groenendael, R.; Beunders, R.; Kox, M.; van Eijk, L.T.; Pickkers, P. The Human Chorionic Gonadotropin Derivate EA-230 Modulates the Immune Response and Exerts Renal Protective Properties: Therapeutic Potential in Humans. Semin. Nephrol. 2019, 39, 496–504. [Google Scholar] [CrossRef]
- Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019, 111, e24122. [Google Scholar] [CrossRef]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef]
- Touchard, A.; Aili, S.R.; Fox, E.G.P.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins 2016, 8, 30. [Google Scholar] [CrossRef]
- Schmidt, J.O. Clinical consequences of toxic envenomations by Hymenoptera. Toxicon 2018, 150, 96–104. [Google Scholar] [CrossRef]
- Schmidt, J.O. Evolutionary responses of solitary and social Hymenoptera to predation by primates and overwhelmingly powerful vertebrate predators. J. Hum. Evol. 2014, 71, 12–19. [Google Scholar] [CrossRef]
- Raaymakers, C.; Verbrugghe, E.; Hernot, S.; Hellebuyck, T.; Betti, C.; Peleman, C.; Claeys, M.; Bert, W.; Caveliers, V.; Ballet, S.; et al. Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nat. Commun. 2017, 8, 1495. [Google Scholar] [CrossRef] [PubMed]
- Raaymakers, C.; Verbrugghe, E.; Stijlemans, B.; Martel, A.; Pasmans, F.; Roelants, K. The anuran skin peptide bradykinin mediates its own absorption across epithelial barriers of the digestive tract. Peptides 2018, 103, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Bowie, J.H.; Tyler, M.J. CHAPTER 43—Host Defense Peptides from Australian Amphibians: Caerulein and Other Neuropeptides. In Handbook of Biologically Active Peptides; Kastin, A.J., Ed.; Academic Press: Burlington, NJ, USA, 2006; pp. 283–289. [Google Scholar]
- Park, S.-H.; Kim, H.-E.; Kim, C.-M.; Yun, H.-J.; Choi, E.-C.; Lee, B.-J. Role of proline, cysteine and a disulphide bridge in the structure and activity of the anti-microbial peptide gaegurin 5. Biochem. J. 2002, 368, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Hong, S.Y.; Oh, J.E.; Lee, B.J.; Choi, B.S. Antimicrobial activity and conformation of gaegurin-6 amide and its analogs. Peptides 1998, 19, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Won, H.S.; Jung, S.J.; Kim, H.E.; Seo, M.D.; Lee, B.J. Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J. Biol. Chem. 2004, 279, 14784–14791. [Google Scholar] [CrossRef]
- Abbas, M.; Paul, M.; Huttner, A. New and improved? A review of novel antibiotics for Gram-positive bacteria. Clin. Microbiol. Infect. 2017, 23, 697–703. [Google Scholar] [CrossRef]
- Woodford, N.; Livermore, D.M. Infections caused by Gram-positive bacteria: A review of the global challenge. J. Infect. 2009, 59, S4–S16. [Google Scholar] [CrossRef]
- Arthur, P.K.; Amarh, V.; Cramer, P.; Arkaifie, G.B.; Blessie, E.J.S.; Fuseini, M.S.; Carilo, I.; Yeboah, R.; Asare, L.; Robertson, B.D. Characterization of Two New Multidrug-Resistant Strains of Mycobacterium smegmatis: Tools for Routine In Vitro Screening of Novel Anti-Mycobacterial Agents. Antibiotics 2019, 8, 4. [Google Scholar] [CrossRef]
- Shiloh, M.U.; Champion, P.A.D. To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr. Opin. Microbiol. 2010, 13, 86–92. [Google Scholar] [CrossRef]
- Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393, 1642–1656. [Google Scholar] [CrossRef]
- Won, H.-S.; Kang, S.-J.; Choi, W.-S.; Lee, B.-J. Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide. Mol. Cells 2011, 31, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Kim, S.; Kim, E.; Hyun, B.; Kim, K.K.; Lee, B.J. Synergistic inhibitory effect of cationic peptides and antimicrobial agents on the growth of oral streptococci. Caries Res. 2003, 37, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.I.; Pham, T.K.; Kim, D.; Park, M.; Kim, B.-O.; Cho, Y.-H.; Kim, Y.-W.; Lee, C. Identification of brevinin-1EMa-derived stapled peptides as broad-spectrum virus entry blockers. Virology 2021, 561, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, J.; Lv, M.; Li, Z.; Yao, L.; Gao, J.; Wu, Q.; Wang, Z.; Yang, X.; Tang, G.; et al. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces. Environ. Health 2023, 1, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Pletan, M.L.; Tsai, B. Non-enveloped virus membrane penetration: New advances leading to new insights. PLoS Pathog. 2022, 18, e1010948. [Google Scholar] [CrossRef]
- Bamford, D.H.; Zuckerman, M. Encyclopedia of Virology; Elsevier Science: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Timmons, P.B.; Hewage, C.M. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Sci. Rep. 2020, 10, 10869. [Google Scholar] [CrossRef]
- Rubinchik, E.; Dugourd, D. Omiganan Pentahydrochloride: A Novel, Broad-Spectrum Antimicrobial Peptide for Topical Use. In Peptide Drug Discovery and Development; Castanho, M., Santos, N., Eds.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Vakharia, P.P.; Silverberg, J.I. New therapies for atopic dermatitis: Additional treatment classes. J. Am. Acad. Dermatol. 2018, 78, S76–S83. [Google Scholar] [CrossRef]
- Ng, S.M.S.; Teo, S.W.; Yong, Y.E.; Ng, F.M.; Lau, Q.Y.; Jureen, R.; Hill, J.; Chia, C.S.B. Preliminary investigations into developing all-D Omiganan for treating Mupirocin-resistant MRSA skin infections. Chem. Biol. Drug Des. 2017, 90, 1155–1160. [Google Scholar] [CrossRef]
- Dennison, S.R.; Harris, F.; Bhatt, T.; Singh, J.; Phoenix, D.A. The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol. Cell. Biochem. 2009, 332, 43–50. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- Shoaib, M.; Aqib, A.I.; Muzammil, I.; Majeed, N.; Bhutta, Z.A.; Kulyar, M.F.; Fatima, M.; Zaheer, C.-N.F.; Muneer, A.; Murtaza, M.; et al. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front. Microbiol. 2023, 13, 1067284. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.S.; Lee, B.J. Correlation between the activities of α-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides 2005, 26, 2050–2056. [Google Scholar] [CrossRef]
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci. Microbiol. Spectr. 2018, 6, 10–128. [Google Scholar] [CrossRef]
- van’t Hof, W.; Veerman, E.C.; Helmerhorst, E.J.; Amerongen, A.V. Antimicrobial peptides: Properties and applicability. Biol. Chem. 2001, 382, 597–619. [Google Scholar] [CrossRef]
- Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the Host Defense Peptide Landscape. Front. Chem. 2019, 7, 43. [Google Scholar] [CrossRef]
- Gupta, J.; Gupta, K. Xylitol on dental caries: A review. J. Drug Deliv. Ther. 2018, 8, 69–72. [Google Scholar] [CrossRef]
- Tang, X.; Sensat, M.; Stoltenberg, J. The antimicrobial effect of chlorhexidine varnish on mutans streptococci in patients with fixed orthodontic appliances: A systematic review of clinical efficacy. Int. J. Dent. Hyg. 2016, 14, 53–61. [Google Scholar] [CrossRef]
- Wang, Z.; de la Fuente-Nunez, C.; Shen, Y.; Haapasalo, M.; Hancock, R.E. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide. PLoS ONE 2015, 10, e0132512. [Google Scholar] [CrossRef]
- Lobos, O.; Padilla, A.; Padilla, C. In vitro antimicrobial effect of bacteriocin PsVP-10 in combination with chlorhexidine and triclosan against Streptococcus mutans and Streptococcus sobrinus strains. Arch. Oral Biol. 2009, 54, 230–234. [Google Scholar] [CrossRef]
- Ghibaudo, G.; Santospirito, D.; Sala, A.; Flisi, S.; Taddei, S.; Cavirani, S.; Cabassi, C.S. In vitro antimicrobial activity of a gel containing antimicrobial peptide AMP2041, chlorhexidine digluconate and Tris-EDTA on clinical isolates of Pseudomonas aeruginosa from canine otitis. Vet. Dermatol. 2016, 27, 391-e98. [Google Scholar] [CrossRef]
- Sheard Dean, E.; O’Brien-Simpson Neil, M.; Wade John, D.; Separovic, F. Combating bacterial resistance by combination of antibiotics with antimicrobial peptides. Pure Appl. Chem. 2019, 91, 199. [Google Scholar] [CrossRef]
- Zhang, O.L.; Niu, J.Y.; Yu, O.Y.; Mei, M.L.; Jakubovics, N.S.; Chu, C.H. Peptide Designs for Use in Caries Management: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 4247. [Google Scholar] [CrossRef]
- Guo, L.; Edlund, A. Targeted Antimicrobial Peptides: A Novel Technology to Eradicate Harmful Streptococcus Mutans. J. Calif. Dent. Assoc. 2017, 45, 557–564. [Google Scholar] [CrossRef]
- Malik, E.; Dennison, S.R.; Harris, F.; Phoenix, D.A. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals 2016, 9, 67. [Google Scholar] [CrossRef]
- Dashper, S.G.; Liu, S.W.; Reynolds, E.C. Antimicrobial Peptides and their Potential as Oral Therapeutic Agents. Int. J. Pept. Res. Ther. 2007, 13, 505–516. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.O.; Jung, J.H.; Lee, S.K.; You, G.Y.; Park, S.H.; Kim, H.S. Gaegurin-6 stimulates insulin secretion through calcium influx in pancreatic β Rin5mf cells. Regul. Pept. 2010, 159, 123–128. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Meredith, A.-M.; Dass, C.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J. Pharm. Pharmacol. 2016, 68, 729–741. [Google Scholar] [CrossRef]
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Y.; Liu, D.; Chen, Y. Two hits are better than one: Synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. Oncotarget 2014, 6, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Hao, X.; Liu, D.; Huang, Y.; Chen, Y. In vitro Characterization of the Rapid Cytotoxicity of Anticancer Peptide HPRP-A2 through Membrane Destruction and Intracellular Mechanism against Gastric Cancer Cell Lines. PLoS ONE 2015, 10, e0139578. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, S.L.; Rathinakumar, R.; Chakravarty, G.; Goransson, U.; Wimley, W.C.; Darwin, S.P.; Mondal, D. Anticancer and chemosensitizing abilities of cycloviolacin 02 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Biopolymers 2010, 94, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Hilchie, A.L.; Hoskin, D.W.; Power Coombs, M.R. Anticancer Activities of Natural and Synthetic Peptides. In Antimicrobial Peptides: Basics for Clinical Application; Matsuzaki, K., Ed.; Springer: Singapore, 2019; pp. 131–147. [Google Scholar]
- Lee Bong, J.I.N.; Seo Min, D.U.K.; Kang Su, J.I.N.; Kim Hyun, J. Novel Analogues of Antimicrobial and Anticancer Peptide Synthesized and Produced from Gaegurin 5. U.S. Patent No. 8,076,284, 14 May 2007. [Google Scholar]
- Kosikowska, P.; Lesner, A. Antimicrobial peptides (AMPs) as drug candidates: A patent review (2003–2015). Expert Opin. Ther. Pat. 2016, 26, 689–702. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Abdel-Wahab, Y.H.; Flatt, P.R. Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 2018, 100, 275–281. [Google Scholar] [CrossRef]
- Soltaninejad, H.; Zare-Zardini, H.; Ordooei, M.; Ghelmani, Y.; Ghadiri-Anari, A.; Mojahedi, S.; Hamidieh, A.A. Antimicrobial Peptides from Amphibian Innate Immune System as Potent Antidiabetic Agents: A Literature Review and Bioinformatics Analysis. J. Diabetes Res. 2021, 2021, 2894722. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Zhou, C.; Shen, P.; Cheng, Y. Quantitative study of the drug efflux kinetics from sensitive and MDR human breast cancer cells. Biochim. Biophys. Acta 2007, 1770, 1011–1020. [Google Scholar] [CrossRef]
- Mechetner, E.; Kyshtoobayeva, A.; Zonis, S.; Kim, H.; Stroup, R.; Garcia, R.; Parker, R.J.; Fruehauf, J.P. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin. Cancer Res. 1998, 4, 389–398. [Google Scholar]
- Waghray, D.; Zhang, Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J. Med. Chem. 2018, 61, 5108–5121. [Google Scholar] [CrossRef]
- Dewanjee, S.; Dua, T.K.; Bhattacharjee, N.; Das, A.; Gangopadhyay, M.; Khanra, R.; Joardar, S.; Riaz, M.; Feo, V.D.; Zia-Ul-Haq, M. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules 2017, 22, 871. [Google Scholar] [CrossRef]
- Wang, J.; Seebacher, N.; Shi, H.; Kan, Q.; Duan, Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 2017, 8, 84559–84571. [Google Scholar] [CrossRef]
- Huang, Q.; Cai, T.; Bai, L.; Huang, Y.; Li, Q.; Wang, Q.; Chiba, P.; Cai, Y. State of the art of overcoming efflux transporter mediated multidrug resistance of breast cancer. Transl. Cancer Res. 2019, 8, 319–329. [Google Scholar] [CrossRef]
- Suh, J.Y.; Lee, Y.T.; Park, C.B.; Lee, K.H.; Kim, S.C.; Choi, B.S. Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur. J. Biochem. 1999, 266, 665–674. [Google Scholar] [CrossRef]
- Suh, J.Y.; Lee, K.H.; Chi, S.W.; Hong, S.Y.; Choi, B.W.; Moon, H.M.; Choi, B.S. Unusually stable helical kink in the antimicrobial peptide—A derivative of gaegurin. FEBS Lett. 1996, 392, 309–312. [Google Scholar] [CrossRef]
- Phoenix, D.A.; Dennison, S.R.; Harris, F. Cationic Antimicrobial Peptides. In Antimicrobial Peptides; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany; KGaA: Darmstadt, Germany, 2013; pp. 39–81. [Google Scholar]
- Visiers, I.; Braunheim, B.B.; Weinstein, H. Prokink: A protocol for numerical evaluation of helix distortions by proline. Protein Eng. Des. Sel. 2000, 13, 603–606. [Google Scholar] [CrossRef]
- Bobone, S.; Bocchinfuso, G.; Park, Y.; Palleschi, A.; Hahm, K.S.; Stella, L. The importance of being kinked: Role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J. Pept. Sci. 2013, 19, 758–769. [Google Scholar] [CrossRef]
- Vanhoof, G.; Goossens, F.; De Meester, I.; Hendriks, D.; Scharpe, S. Proline motifs in peptides and their biological processing. FASEB J. 1995, 9, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Gopal, R.; Park, S.-C.; Ko, H.S.; Kim, Y.; Hahm, K.-S.; Park, Y. A Proline-Hinge Alters the Characteristics of the Amphipathic α-helical AMPs. PLoS ONE 2013, 8, e67597. [Google Scholar] [CrossRef] [PubMed]
- Türková, A.; Kabelka, I.; Králová, T.; Sukeník, L.; Pokorná, Š.; Hof, M.; Vácha, R. Effect of Helical Kink in Antimicrobial Peptides on Membrane Pore Formation. eLife 2020, 9, e47946. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.I.; Gehman, J.D.; Separovic, F. Membrane interactions of antimicrobial peptides from Australian frogs. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1630–1638. [Google Scholar] [CrossRef]
- Sani, M.-A.; Separovic, F. How Membrane-Active Peptides Get into Lipid Membranes. Acc. Chem. Res. 2016, 49, 1130–1138. [Google Scholar] [CrossRef]
- Rodríguez, A.; Villegas, E.; Montoya-Rosales, A.; Rivas-Santiago, B.; Corzo, G. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PLoS ONE 2014, 9, e101742. [Google Scholar] [CrossRef]
- Harrison, P.L.; Abdel-Rahman, M.A.; Strong, P.N.; Tawfik, M.M.; Miller, K. Characterisation of three alpha-helical antimicrobial peptides from the venom of Scorpio maurus palmatus. Toxicon 2016, 117, 30–36. [Google Scholar] [CrossRef]
- Xie, Y.; Fleming, E.; Chen, J.L.; Elmore, D.E. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides 2011, 32, 677–682. [Google Scholar] [CrossRef]
- Yang, S.-T.; Lee, J.Y.; Kim, H.-J.; Eu, Y.-J.; Shin, S.Y.; Hahm, K.-S.; Kim, J.I. Contribution of a central proline in model amphipathic α-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. FEBS J. 2006, 273, 4040–4054. [Google Scholar] [CrossRef]
- Niidome, T.; Kobayashi, K.; Arakawa, H.; Hatakeyama, T.; Aoyagi, H. Structure–activity relationship of an antibacterial peptide, maculatin 1.1, from the skin glands of the tree frog, Litoria genimaculata. J. Pept. Sci. 2004, 10, 414–422. [Google Scholar] [CrossRef]
- Chia, B.C.; Carver, J.A.; Mulhern, T.D.; Bowie, J.H. Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata solution structure and biological activity. Eur. J. Biochem. 2000, 267, 1894–1908. [Google Scholar] [CrossRef]
- Fernandez, D.I.; Sani, M.-A.; Separovic, F. Interactions of the Antimicrobial Peptide Maculatin 1.1 and Analogues with Phospholipid Bilayers. Aust. J. Chem. 2011, 64, 798–805. [Google Scholar] [CrossRef]
- Sani, M.A.; Lee, T.H.; Aguilar, M.I.; Separovic, F. Proline-15 creates an amphipathic wedge in maculatin 1.1 peptides that drives lipid membrane disruption. Biochim. Biophys. Acta 2015, 1848, 2277–2289. [Google Scholar] [CrossRef]
- Harris, F.; Daman, A.; Wallace, J.; Dennison, S.R.; Phoenix, D.A. Oblique orientated alpha-helices and their prediction. Curr. Protein Pept. Sci. 2006, 7, 529–537. [Google Scholar] [CrossRef]
- Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 2008, 24, 2101–2102. [Google Scholar] [CrossRef]
- Ma, B.; Niu, C.; Zhou, Y.; Xue, X.; Meng, J.; Luo, X.; Hou, Z. The Disulfide Bond of the Peptide Thanatin Is Dispensible for Its Antimicrobial Activity In Vivo and In Vitro. Antimicrob. Agents Chemother. 2016, 60, 4283–4289. [Google Scholar] [CrossRef]
- Panteleev, P.V.; Bolosov, I.A.; Balandin, S.V.; Ovchinnikova, T.V. Structure and Biological Functions of β-Hairpin Antimicrobial Peptides. Acta Naturae 2015, 7, 37–47. [Google Scholar] [CrossRef]
- Imamura, T.; Yamamoto, N.; Tamura, A.; Murabayashi, S.; Hashimoto, S.; Shimada, H.; Taguchi, S. NMR based structure-activity relationship analysis of an antimicrobial peptide, thanatin, engineered by site-specific chemical modification: Activity improvement and spectrum alteration. Biochem. Biophys. Res. Commun. 2008, 369, 609–615. [Google Scholar] [CrossRef]
- Orivel, J.; Redeker, V.; Le Caer, J.P.; Krier, F.; Revol-Junelles, A.M.; Longeon, A.; Chaffotte, A.; Dejean, A.; Rossier, J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J. Biol. Chem. 2001, 276, 17823–17829. [Google Scholar] [CrossRef]
- Garcia, F.; Villegas, E.; Espino-Solis, G.P.; Rodriguez, A.; Paniagua-Solis, J.F.; Sandoval-Lopez, G.; Possani, L.D.; Corzo, G. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. J. Antibiot. 2013, 66, 3–10. [Google Scholar] [CrossRef]
- Johnson, S.R.; Copello, J.A.; Evans, M.S.; Suarez, A.V. A biochemical characterization of the major peptides from the Venom of the giant Neotropical hunting ant Dinoponera australis. Toxicon 2010, 55, 702–710. [Google Scholar] [CrossRef]
- Thaker, H.D.; Cankaya, A.; Scott, R.W.; Tew, G.N. Role of Amphiphilicity in the Design of Synthetic Mimics of Antimicrobial Peptides with Gram-Negative Activity. ACS Med. Chem. Lett. 2013, 4, 481–485. [Google Scholar] [CrossRef]
- Xiong, M.; Lee, M.W.; Mansbach, R.A.; Song, Z.; Bao, Y.; Peek, R.M.; Yao, C.; Chen, L.-F.; Ferguson, A.L.; Wong, G.C.L.; et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl. Acad. Sci. USA 2015, 112, 13155–13160. [Google Scholar] [CrossRef]
- Marcotte, I.; Wegener, K.L.; Lam, Y.-H.; Chia, B.C.S.; de Planque, M.R.R.; Bowie, J.H.; Auger, M.; Separovic, F. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Chem. Phys. Lipids 2003, 122, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Harris, F.; Phoenix, D.A. Are oblique orientated alpha-helices used by antimicrobial peptides for membrane invasion? Protein Pept. Lett. 2005, 12, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Brasseur, R. Tilted peptides: A motif for membrane destabilization (hypothesis). Mol. Membr. Biol. 2000, 17, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.S.; Torres, J.; Cooper, M.A.; Arkin, I.T.; Bowie, J.H. The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. FEBS Lett. 2002, 512, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Wallace, J.; Harris, F.; Phoenix, D.A. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept. Lett. 2005, 12, 31–39. [Google Scholar] [CrossRef]
- Strandberg, E.; Killian, J.A. Snorkeling of lysine side chains in transmembrane helices: How easy can it get? FEBS Lett. 2003, 544, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Mura, M.; Dennison, S.R.; Zvelindovsky, A.V.; Phoenix, D.A. Aurein 2.3 functionality is supported by oblique orientated alpha-helical formation. Biochim. Biophys. Acta 2013, 1828, 586–594. [Google Scholar] [CrossRef]
- Qu, B.; Yuan, J.; Liu, X.; Zhang, S.; Ma, X.; Lu, L. Anticancer activities of natural antimicrobial peptides from animals. Front. Microbiol. 2024, 14, 1321386. [Google Scholar] [CrossRef]
- Parchebafi, A.; Tamanaee, F.; Ehteram, H.; Ahmad, E.; Nikzad, H.; Haddad Kashani, H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb. Cell Factories 2022, 21, 118. [Google Scholar] [CrossRef]
- Gabernet, G.; Müller, A.T.; Hiss, J.A.; Schneider, G. Membranolytic anticancer peptides. MedChemComm 2016, 7, 2232–2245. [Google Scholar] [CrossRef]
- Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget 2017, 8, 46635–46651. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Sung, B.H.; Kim, S.C. Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Park, C.B.; Kim, J.M.; Jang, S.A.; Park, I.Y.; Kim, M.S.; Cho, J.H.; Kim, S.C. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett. 2008, 271, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, Y. Buforin IIb induced cell cycle arrest in liver cancer. Anim. Cells Syst. 2019, 23, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Musale, V.; Casciaro, B.; Mangoni, M.L.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Conlon, J.M. Assessment of the potential of temporin peptides from the frog Rana temporaria (Ranidae) as anti-diabetic agents. J. Pept. Sci. 2018, 24, e3065. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-Y.; Hong, S.-Y.; Lee, K.-H. Structure-activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1998, 1387, 239–248. [Google Scholar] [CrossRef]
- Zohrab, F.; Askarian, S.; Jalili, A.; Kazemi Oskuee, R. Biological Properties, Current Applications and Potential Therapeautic Applications of Brevinin Peptide Superfamily. Int. J. Pept. Res. Ther. 2019, 25, 39–48. [Google Scholar] [CrossRef]
- Chi, S.W.; Kim, J.S.; Kim, D.H.; Lee, S.H.; Park, Y.H.; Han, K.H. Solution structure and membrane interaction mode of an antimicrobial peptide gaegurin 4. Biochem. Biophys. Res. Commun. 2007, 352, 592–597. [Google Scholar] [CrossRef]
- Malik, E. The Characterisation of Linearized Esculentin-2EM (gaegurin 4) at Varying pH and in Differing Lipid Environments; University of Central Lancashire: Preston, UK, 2018. [Google Scholar]
- Kwon, S.Y.; Carlson, B.A.; Park, J.M.; Lee, B.J. Structural organization and expression of the gaegurin 4 gene of Rana rugosa. Biochim. Biophys. Acta 2000, 1492, 185–190. [Google Scholar] [CrossRef]
- Ojo, O.O.; Srinivasan, D.K.; Owolabi, B.O.; Vasu, S.; Conlon, J.M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Esculentin-2CHa-Related Peptides Modulate Islet Cell Function and Improve Glucose Tolerance in Mice with Diet-Induced Obesity and Insulin Resistance. PLoS ONE 2015, 10, e0141549. [Google Scholar] [CrossRef]
- Attoub, S.; Mechkarska, M.; Sonnevend, A.; Radosavljevic, G.; Jovanovic, I.; Lukic, M.L.; Conlon, J.M. Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides 2013, 39, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Vineeth Kumar, T.; Asha, R.; George, S. Identification and functional characterisation of Esculentin-2 HYba peptides and their C-terminally amidated analogs from the skin secretion of an endemic frog. Nat. Prod. Res. 2019, 35, 1262–1266. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, Y.K.; Park, J.W.; Lee, B.; Lee, B.J. Solution structure of the antimicrobial peptide gaegurin 4 by 1H and 15N nuclear magnetic resonance spectroscopy. Eur. J. Biochem. 2000, 267, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Won, H.S.; Park, S.H.; Kim, H.E.; Hyun, B.; Kim, M.; Lee, B.J.; Lee, B.J. Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4. Eur. J. Biochem. 2002, 269, 4367–4374. [Google Scholar] [CrossRef]
- Kim, H.; Lee, B.J.; Lee, M.H.; Hong, S.G.; Ryu, P.D. Mechanisms of Selective Antimicrobial Activity of Gaegurin 4. Korean J. Physiol. Pharmacol. 2009, 13, 39–47. [Google Scholar] [CrossRef]
- Eun, S.-Y.; Jang, H.-K.; Han, S.-K.; Ryu, P.D.; Lee, B.J.; Han, K.-H.; Kim, S.-J. A helix-induced oligomeric transition of gaegurin 4, an antimicrobial peptide isolated from a Korean frog. Mol. Cells 2006, 21, 229–236. [Google Scholar] [CrossRef]
- Malik, E.; Phoenix, D.A.; Badiani, K.; Snape, T.J.; Harris, F.; Singh, J.; Morton, L.H.G.; Dennison, S.R. Biophysical studies on the antimicrobial activity of linearized esculentin 2EM. Biochim. Biophys. Acta Biomembr. 2019, 1862, 183141. [Google Scholar] [CrossRef]
- Malik, E.; Phoenix, D.A.; Snape, T.J.; Harris, F.; Singh, J.; Morton, L.H.G.; Dennison, S.R. Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum. Mol. Cell. Biochem. 2021, 476, 3729–3744. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, G.; Dang, S.; Gupta, S.; Gabrani, R. Antimicrobial Peptides as Anti-Infectives against Staphylococcus epidermidis. Med. Princ. Pract. 2016, 25, 301–308. [Google Scholar] [CrossRef]
- Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Leprince, J. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 2007, 42, 349–357. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Park, M.D.; Otto, M. Host Response to Staphylococcus epidermidis Colonization and Infections. Front. Cell. Infect. Microbiol. 2017, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Widerström, M. Commentary: Significance of Staphylococcus epidermidis in Health Care-Associated Infections, from Contaminant to Clinically Relevant Pathogen: This Is a Wake-Up Call! J. Clin. Microbiol. 2016, 54, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, S.; Lee, M.; Lee, B.; Ryu, P. Role of C-terminal heptapeptide in pore-forming activity of antimicrobial agent, gaegurin 4. J. Pept. Res. 2004, 64, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Fisher, M.C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 2019, 52, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Nett, J.E. Candida auris: An emerging pathogen “incognito”? PLoS Pathog. 2019, 15, e1007638. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016, 17, 603. [Google Scholar] [CrossRef]
- Meng, S.; Xu, H.; Wang, F. Research advances of antimicrobial peptides and applications in food industry and agriculture. Curr. Protein Pept. Sci. 2010, 11, 264–273. [Google Scholar] [CrossRef]
- Ben Lagha, A.; Haas, B.; Gottschalk, M.; Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 2017, 48, 22. [Google Scholar] [CrossRef]
- Dennison, S.R.; Morton, L.H.; Phoenix, D.A. Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5. Biochim. Biophys. Acta 2012, 1818, 2094–2102. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.Y.; Lee, B.J.; Kim, S.J. Synthesis and characterization of GGN4 and its tryptophan substituted analogue peptides. J. Biochem. Mol. Biol. 1999, 32, 12–19. [Google Scholar]
- Migoń, D.; Neubauer, D.; Kamysz, W. Hydrocarbon Stapled Antimicrobial Peptides. Protein J. 2018, 37, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Bayarbat, I.; Lee, J.H.; Lee, S.Y. Expression of Recombinant Hybrid Peptide Gaegurin4 and LL37 using Fusion Protein in E. coli. Korean J. Microbiol. Biotechnol. 2012, 40, 92–97. [Google Scholar] [CrossRef]
- Pujarini, D.; Santasabuj, D. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation. Curr. Top. Med. Chem. 2016, 16, 99–129. [Google Scholar] [CrossRef]
- Biswaro, L.S.; da Costa Sousa, M.G.; Rezende, T.M.B.; Dias, S.C.; Franco, O.L. Antimicrobial Peptides and Nanotechnology, Recent Advances and Challenges. Front. Microbiol. 2018, 9, 855. [Google Scholar] [CrossRef] [PubMed]
- Boto, A.; Perez de la Lastra, J.M.; Gonzalez, C.C. The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs. Molecules 2018, 23, 311. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.M.; Lee, B.J. High-level expression and efficient purification of the antimicrobial peptide gaegurin 4 in E. coli. Protein Pept. Lett. 1997, 4, 391–396. [Google Scholar]
- Park, S.; Son, W.S.; Kim, Y.J.; Kwon, A.R.; Lee, B.J. NMR spectroscopic assessment of the structure and dynamic properties of an amphibian antimicrobial peptide (Gaegurin 4) bound to SDS micelles. BMB Rep. 2007, 40, 261–269. [Google Scholar] [CrossRef]
- Imai, K.; Mitaku, S. Mechanisms of secondary structure breakers in soluble proteins. Biophysics 2005, 1, 55–65. [Google Scholar] [CrossRef]
- Idiong, G.; Won, A.; Ruscito, A.; Leung, B.O.; Hitchcock, A.P.; Ianoul, A. Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcin 2a with a lipid membrane. Eur. Biophys. J. 2011, 40, 1087–1100. [Google Scholar] [CrossRef]
- Sani, M.A.; Saenger, C.; Juretic, D.; Separovic, F. Glycine Substitution Reduces Antimicrobial Activity and Helical Stretch of diPGLa-H in Lipid Micelles. J. Phys. Chem. B 2017, 121, 4817–4822. [Google Scholar] [CrossRef]
- Qu, P.; Gao, W.; Chen, H.; Li, D.; Yang, N.; Zhu, J.; Feng, X.; Liu, C.; Li, Z. The Central Hinge Link Truncation of the Antimicrobial Peptide Fowlicidin-3 Enhances Its Cell Selectivity without Antibacterial Activity Loss. Antimicrob. Agents Chemother. 2016, 60, 2798–2806. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-C.; Brown, J.H.; Morell, J.L.; Huang, C.M. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. 1988, 236, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Amos, S.-B.T.A.; Vermeer, L.S.; Ferguson, P.M.; Kozlowska, J.; Davy, M.; Bui, T.T.; Drake, A.F.; Lorenz, C.D.; Mason, A.J. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes. Sci. Rep. 2016, 6, 37639. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, P.; Tsarev, A.V.; Bolosov, I.A.; Paramonov, A.S.; Marggraf, M.B.; Sychev, S.V.; Shenkarev, Z.O.; Ovchinnikova, T.V. Novel Antimicrobial Peptides from the Arctic Polychaeta Nicomache minor Provide New Molecular Insight into Biological Role of the BRICHOS Domain. Mar. Drugs 2018, 16, 401. [Google Scholar] [CrossRef]
- Pham, T.K.; Kim, D.H.; Lee, B.J.; Kim, Y.W. Truncated and constrained helical analogs of antimicrobial esculentin-2EM. Bioorganic Med. Chem. Lett. 2013, 23, 6717–6720. [Google Scholar] [CrossRef]
- Dennison, S.R.; Morton, L.H.; Phoenix, D.A. Effect of amidation on the antimicrobial peptide aurein 2.5 from Australian southern bell frogs. Protein Pept. Lett. 2012, 19, 586–591. [Google Scholar] [CrossRef]
- Dennison, S.R.; Harris, F.; Morton, L.H.G.; Phoenix, D.A. Antimicrobial activity of aurein 2.5 against yeasts. FEMS Microbiol. Lett. 2013, 346, 140–145. [Google Scholar] [CrossRef]
- Dennison, S.R.; Morton, L.H.G.; Harris, F.; Phoenix, D.A. The interaction of aurein 2.5 with fungal membranes. Eur. Biophys. J. Biophys. Lett. 2014, 43, 255–264. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, S.K.; Park, J.B.; Baek, H.J.; Lee, B.J.; Ryu, P.D. Gaegurin 4, a peptide antibiotic of frog skin, forms voltage-dependent channels in planar lipid bilayers. J. Pept. Res. Off. J. Am. Pept. Soc. 1999, 53, 1–7. [Google Scholar] [CrossRef]
- Epand, R.M.; Epand, R.F. Bacterial membrane lipids in the action of antimicrobial agents. J. Pept. Sci. 2011, 17, 298–305. [Google Scholar] [CrossRef]
- Han, F.F.; Gao, Y.H.; Luan, C.; Xie, Y.G.; Liu, Y.F.; Wang, Y.Z. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. J. Dairy Sci. 2013, 96, 3471–3487. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-M.; Wu, S.-J.; Chang, T.-W.; Wang, C.-F.; Suen, C.-S.; Hwang, M.-J.; Chang, M.D.-T.; Chen, Y.-T.; Liao, Y.-D. Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. J. Biol. Chem. 2010, 285, 8985–8994. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-W.; Lin, Y.-M.; Wang, C.-F.; Liao, Y.-D. Outer membrane lipoprotein Lpp is Gram-negative bacterial cell surface receptor for cationic antimicrobial peptides. J. Biol. Chem. 2012, 287, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Chan, S.C.; Lee, J.C.; Chang, C.C.; Murugan, M.; Jack, R.W. Transmission electron microscopic observations of membrane effects of antibiotic cecropin B on Escherichia coli. Microsc. Res. Tech. 2003, 62, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Epand, R.M.; Epand, R.F. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta Biomembr. 2009, 1788, 289–294. [Google Scholar] [CrossRef]
- Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals 2013, 6, 1543–1575. [Google Scholar] [CrossRef]
- Kredics, L.; Szekeres, A.; Czifra, D.; Vágvölgyi, C.; Leitgeb, B. Recent Results in Alamethicin Research. Chem. Biodivers. 2013, 10, 744–771. [Google Scholar] [CrossRef]
- Tyagi, C.; Marik, T.; Vagvolgyi, C.; Kredics, L.; Otvos, F. Accelerated Molecular Dynamics Applied to the Peptaibol Folding Problem. Int. J. Mol. Sci. 2019, 20, 4268. [Google Scholar] [CrossRef]
- Rončević, T.; Puizina, J.; Tossi, A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int. J. Mol. Sci. 2019, 20, 5713. [Google Scholar] [CrossRef]
- Bessin, Y.; Saint, N.; Marri, L.; Marchini, D.; Molle, G. Antibacterial activity and pore-forming properties of ceratotoxins: A mechanism of action based on the barrel stave model. Biochim. Biophys. Acta-Biomembr. 2004, 1667, 148–156. [Google Scholar] [CrossRef]
- Zeth, K.; Sancho-Vaello, E. The Human Antimicrobial Peptides Dermcidin and LL-37 Show Novel Distinct Pathways in Membrane Interactions. Front. Chem. 2017, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Weichbrodt, C.; Salnikov, E.S.; Dynowski, M.; Forsberg, B.O.; Bechinger, B.; Steinem, C.; de Groot, B.L.; Zachariae, U.; Zeth, K. Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proc. Natl. Acad. Sci. USA 2013, 110, 4586–4591. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lazaridis, T. Activity determinants of helical antimicrobial peptides: A large-scale computational study. PLoS ONE 2013, 8, e66440. [Google Scholar] [CrossRef] [PubMed]
- Torres-Larios, A.; Gurrola, G.B.; Zamudio, F.Z.; Possani, L.D. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur. J. Biochem. 2000, 267, 5023–5031. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-R.; You, D.-g.; Kim, H.K.; Sohn, J.W.; Kim, M.J.; Park, J.K.; Lee, G.Y.; Yoo, Y.D. Romo1-Derived Antimicrobial Peptide Is a New Antimicrobial Agent against Multidrug-Resistant Bacteria in a Murine Model of Sepsis. mBio 2020, 11, e03258-19. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, D.A.; Harris, F.; Mura, M.; Dennison, S.R. The increasing role of phosphatidylethanolamine as a lipid receptor in the action of host defence peptides. Prog. Lipid Res. 2015, 59, 26–37. [Google Scholar] [CrossRef]
- Dennison, S.R.; Harris, F.; Mura, M.; Morton, L.H.; Zvelindovsky, A.; Phoenix, D.A. A novel form of bacterial resistance to the action of eukaryotic host defense peptides, the use of a lipid receptor. Biochemistry 2013, 52, 6021–6029. [Google Scholar] [CrossRef]
- Scheinpflug, K.; Krylova, O.; Nikolenko, H.; Thurm, C.; Dathe, M. Evidence for a Novel Mechanism of Antimicrobial Action of a Cyclic R-,W-Rich Hexapeptide. PLoS ONE 2015, 10, e0125056. [Google Scholar] [CrossRef]
- Zweytick, D.; Japelj, B.; Mileykovskaya, E.; Zorko, M.; Dowhan, W.; Blondelle, S.E.; Riedl, S.; Jerala, R.; Lohner, K. N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division. PLoS ONE 2014, 9, e90228. [Google Scholar] [CrossRef]
- Dowhan, W.; Bogdanov, M.; Mileykovskaya, E. Chapter 1—Functional Roles of Lipids in Membranes. In Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Ridgway, N.D., McLeod, R.S., Eds.; Elsevier: Boston, MA, USA, 2016; pp. 1–40. [Google Scholar]
- Lewis, R.N.A.H.; McElhaney, R.N. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim. Biophys. Acta Biomembr. 2009, 1788, 2069–2079. [Google Scholar] [CrossRef]
- Bechinger, B.; Lohner, K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim. Biophys. Acta 2006, 1758, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Annick, T.; Robert, B. Tilted Peptides: The History. Curr. Protein Pept. Sci. 2006, 7, 523–527. [Google Scholar] [CrossRef]
- Dennison, S.R.; Morton, L.H.; Harris, F.; Phoenix, D.A. The impact of membrane lipid composition on antimicrobial function of an alpha-helical peptide. Chem. Phys. Lipids 2008, 151, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Villa, L.; Manrique-Moreno, M.; Leidy, C.; Jemioła-Rzemińska, M.; Ortíz, C.; Strzałka, K. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides. Biophys. Chem. 2018, 238, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Poger, D.; Pöyry, S.; Mark, A.E. Could Cardiolipin Protect Membranes against the Action of Certain Antimicrobial Peptides? Aurein 1.2, a Case Study. ACS Omega 2018, 3, 16453–16464. [Google Scholar] [CrossRef]
- Dennison, S.R.; Morton, L.H.; Harris, F.; Phoenix, D.A. Low pH Enhances the Action of Maximin H5 against Staphylococcus aureus and Helps Mediate Lysylated Phosphatidylglycerol-Induced Resistance. Biochemistry 2016, 55, 3735–3751. [Google Scholar] [CrossRef]
- Kim, D.; Wang, Z.; Jin, L.L.; Li, H.P.; Hwang, J.W.; Hanrahan, J.W.; Wang, Q.Y. Development of a novel antimicrobial peptide AWRK6. Bangladesh J. Pharmacol. 2016, 11, 460–468. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C.; Jin, L.; Zhang, H.; Miao, Q.; Liu, H.; Zhang, D. AWRK6, a Novel GLP-1 Receptor Agonist, Attenuates Diabetes by Stimulating Insulin Secretion. Int. J. Mol. Sci. 2018, 19, 3053. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, L.; Wang, H.; Tai, S.; Liu, H.; Zhang, D. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response. Int. J. Mol. Sci. 2018, 19, 600. [Google Scholar] [CrossRef]
- Haines, T.H. A new look at Cardiolipin. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1997–2002. [Google Scholar] [CrossRef]
- Yeagle, P.L. Chapter 1—Introduction. In The Membranes of Cells, 3rd ed.; Yeagle, P.L., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 1–25. [Google Scholar]
- Lourenço, A.L.P.; Rios, T.B.; da Silva, Á.P.; Franco, O.L.; Ramada, M.H.S. Peptide Stapling Applied to Antimicrobial Peptides. Antibiotics 2023, 12, 1400. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Liu, H.; Zhu, Y.; Zheng, H. Rational design of stapled antimicrobial peptides. Amino Acids 2023, 55, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Mourtada, R.; Herce, H.D.; Yin, D.J.; Moroco, J.A.; Wales, T.E.; Engen, J.R.; Walensky, L.D. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat. Biotechnol. 2019, 37, 1186–1197. [Google Scholar] [CrossRef] [PubMed]
- Robertson, N.S.; Jamieson, A.G. Regulation of protein–protein interactions using stapled peptides. Rep. Org. Chem. 2015, 5, 65–74. [Google Scholar] [CrossRef]
- Pham, T.K.; Yoo, J.; Kim, Y.-W. Comparison of Oct-2-enyl and Oct-4-enyl staples for their formation and α-helix stabilizing effects. Bull. Korean Chem. Soc. 2013, 34, 2640–2644. [Google Scholar] [CrossRef]
- Luong, H.X.; Bui, H.T.P.; Tung, T.T. Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. J. Med. Chem. 2022, 65, 3026–3045. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Swain, B.; Verma, R.S.; Gunthe, S.S. SARS-CoV, MERS-CoV, and 2019-nCoV viruses: An overview of origin, evolution, and genetic variations. Virusdisease 2020, 31, 411–423. [Google Scholar] [CrossRef]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef]
- Jackman, J.A. Antiviral peptide engineering for targeting membrane-enveloped viruses: Recent progress and future directions. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183821. [Google Scholar] [CrossRef]
- Teissier, E.; Penin, F.; Pécheur, E.-I. Targeting Cell Entry of Enveloped Viruses as an Antiviral Strategy. Molecules 2011, 16, 221–250. [Google Scholar] [CrossRef]
- Saini, J.; Kaur, P.; Malik, N.; Lakhawat, S.S.; Sharma, P.K. Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS CoV2 era. Microbiol. Res. 2022, 265, 127206. [Google Scholar] [CrossRef] [PubMed]
- Bakovic, A.; Risner, K.; Bhalla, N.; Alem, F.; Chang, T.L.; Weston, W.; Harness, J.A.; Narayanan, A. Brilacidin, a COVID-19 Drug Candidate, Exhibits Potent In Vitro Antiviral Activity Against SARS-CoV-2. bioRxiv 2020, 2020-10. [Google Scholar] [CrossRef]
- Sample, C.J.; Hudak, K.E.; Barefoot, B.E.; Koci, M.D.; Wanyonyi, M.S.; Abraham, S.; Staats, H.F.; Ramsburg, E.A. A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides 2013, 48, 96–105. [Google Scholar] [CrossRef]
- Hoffmann, A.R.; Guha, S.; Wu, E.; Ghimire, J.; Wang, Y.; He, J.; Garry, R.F.; Wimley, W.C. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Zakaryan, H.; Chilingaryan, G.; Arabyan, E.; Serobian, A.; Wang, G. Natural antimicrobial peptides as a source of new antiviral agents. J. Gen. Virol. 2021, 102, 001661. [Google Scholar] [CrossRef]
- Buck, C.B.; Day, P.M.; Thompson, C.D.; Lubkowski, J.; Lu, W.; Lowy, D.R.; Schiller, J.T. Human α-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. USA 2006, 103, 1516–1521. [Google Scholar] [CrossRef]
- Skeate, J.G.; Segerink, W.H.; Garcia, M.D.; Fernandez, D.J.; Prins, R.; Lühen, K.P.; Voss, F.O.; Da Silva, D.M.; Kast, W.M. Theta-defensins inhibit high-risk human papillomavirus infection through charge-driven capsid clustering. Front. Immunol. 2020, 11, 561843. [Google Scholar] [CrossRef]
- Cho, N.-J.; Dvory-Sobol, H.; Xiong, A.; Cho, S.-J.; Frank, C.W.; Glenn, J.S. Mechanism of an Amphipathic α-Helical Peptide’s Antiviral Activity Involves Size-Dependent Virus Particle Lysis. ACS Chem. Biol. 2009, 4, 1061–1067. [Google Scholar] [CrossRef]
- Jackman, J.A.; Zan, G.H.; Zhdanov, V.P.; Cho, N.-J. Rupture of Lipid Vesicles by a Broad-Spectrum Antiviral Peptide: Influence of Vesicle Size. J. Phys. Chem. B 2013, 117, 16117–16128. [Google Scholar] [CrossRef]
- Jackman, J.A.; Saravanan, R.; Zhang, Y.; Tabaei, S.R.; Cho, N.-J. Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides. Small 2015, 11, 2372–2379. [Google Scholar] [CrossRef]
- Park, S.; Jackman, J.A.; Cho, N.-J. Comparing the membrane-interaction profiles of two antiviral peptides: Insights into structure–function relationship. Langmuir 2019, 35, 9934–9943. [Google Scholar] [CrossRef] [PubMed]
- Skalickova, S.; Heger, Z.; Krejcova, L.; Pekarik, V.; Bastl, K.; Janda, J.; Kostolansky, F.; Vareckova, E.; Zitka, O.; Adam, V.; et al. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses 2015, 7, 5428–5442. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.-C.; Hazam Prakash, K.; Hsieh, C.-Y.; Hsu, P.-H.; Lin, W.-C.; Chen, Y.-R.; Li, C.-C.; Chen, J.-Y. Rational Design of Stapled Antimicrobial Peptides to Enhance Stability and In Vivo Potency against Polymicrobial Sepsis. Microbiol. Spectr. 2023, 11, e03853-22. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, M.; Macyszyn, J.; Miszkiewicz, J.; Grzela, R.; Trylska, J. Stapled Anoplin as an Antibacterial Agent. Front. Microbiol. 2021, 12, 772038. [Google Scholar] [CrossRef]
- Cromm, P.M.; Spiegel, J.; Grossmann, T.N. Hydrocarbon Stapled Peptides as Modulators of Biological Function. ACS Chem. Biol. 2015, 10, 1362–1375. [Google Scholar] [CrossRef]
- Yang, Y.; Babich, O.; Sukhikh, S.; Zimina, M. Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms. Foods Raw Mater. 2020, 8, 377–384. [Google Scholar] [CrossRef]
- Zhai, Z.; Cui, C.; Li, X.; Yan, J.; Sun, E.; Wang, C.; Guo, H.; Hao, Y. Prevalence, antimicrobial susceptibility, and antibiotic resistance gene transfer of Bacillus strains isolated from pasteurized milk. J. Dairy Sci. 2023, 106, 75–83. [Google Scholar] [CrossRef]
- Irkitov, A.N.; Grebenshchikova, A.V.; Dudnik, D.E. Antibiotic susceptibilty of bacteria from the Bacillus subtilis group. Ukr. J. Ecol. 2019, 9, 363–366. [Google Scholar] [CrossRef]
- Celandroni, F.; Salvetti, S.; Gueye, S.A.; Mazzantini, D.; Lupetti, A.; Senesi, S.; Ghelardi, E. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates. PLoS ONE 2016, 11, E0152831. [Google Scholar] [CrossRef]
- Tokano, M.; Tarumoto, N.; Imai, K.; Sakai, J.; Maeda, T.; Kawamura, T.; Seo, K.; Takahashi, K.; Yamamoto, T.; Maesaki, S. Bacterial Meningitis Caused by Bacillus subtilis var. natto. Intern. Med. 2023, 62, 1989–1993. [Google Scholar] [CrossRef]
- Kato, A.; Yoshifuji, A.; Komori, K.; Aoki, K.; Taniyama, D.; Komatsu, M.; Fujii, K.; Yamada, K.; Ishii, Y.; Kikuchi, T.; et al. A case of Bacillus subtilis var. natto bacteremia caused by ingestion of natto during COVID-19 treatment in a maintenance hemodialysis patient with multiple myeloma. J. Infect. Chemother. 2022, 28, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Khatri, B.; Nuthakki, V.R.; Chatterjee, J. Strategies to Enhance Metabolic Stabilities. In Cyclic Peptide Design; Goetz, G., Ed.; Springer New York: New York, NY, USA, 2019; pp. 17–40. [Google Scholar]
- Lai, Z.; Yuan, X.; Chen, H.; Zhu, Y.; Dong, N.; Shan, A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol. Adv. 2022, 59, 107962. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Shirkey, J.D.; Park, J.; Bisht, K.; Cowan, A.J. An Overview of Antiviral Peptides and Rational Biodesign Considerations. Biodesign Res. 2022, 2022, 9898241. [Google Scholar] [CrossRef] [PubMed]
- Vankadari, N.; Shepherd, D.C.; Carter, S.D.; Ghosal, D. Three-dimensional insights into human enveloped viruses in vitro and in situ. Biochem. Soc. Trans. 2022, 50, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.T.T.; Kim, D.-H.; Lee, S.-J.; Kim, Y.-W. De Novo Design and Their Antimicrobial Activity of Stapled Amphipathic Helices of Heptapeptides. Bull. Korean Chem. Soc. 2014, 35, 3632–3636. [Google Scholar] [CrossRef]
- Dinh, T.T.T.; Kim, D.-H.; Nguyen, T.Q.; Lee, B.-J.; Kim, Y.-W. N-Capping Effects of Stapled Heptapeptides on Antimicrobial and Hemolytic Activities. Bull. Korean Chem. Soc. 2015, 36, 2511–2515. [Google Scholar] [CrossRef]
- Luong, H.X.; Kim, D.-H.; Lee, B.-J.; Kim, Y.-W. Antimicrobial and Hemolytic Activity of Stapled Heptapeptide Dimers. Bull. Korean Chem. Soc. 2016, 37, 1199–1203. [Google Scholar] [CrossRef]
- Luong, H.X.; Kim, D.H.; Mai, N.T.; Lee, B.J.; Kim, Y.W. Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Arch. Pharmacal Res. 2017, 40, 713–719. [Google Scholar] [CrossRef]
- Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res. 2022, 50, D488–D496. [Google Scholar] [CrossRef]
- UCN. The IUCN Red List of Threatened Species. Version 2024-2. 2024. Available online: https://www.iucnredlist.org (accessed on 5 December 2024).
- Matsui, M.; Maeda, N. Encyclopedia of Japanese Frogs; Bun-ichi Sogo Shuppan Co.: Tokyo, Japan, 2018; p. 271. [Google Scholar]
- Fei, L.; Ye, C.; Jiang, J. Colored Atlas of Chinese Amphibians and Their Distributions; Huayu Nature Book Trade Co. Ltd.: Beijing, China, 2012; p. 620. [Google Scholar]
- Fei, L.; Ye, C.-Y.; Huang, Y.-A.; Liu, M.-Y. Atlas of Amphibians of China; Henan Science and Technical Press: Zhengzhou, China, 1999; p. 432. [Google Scholar]
- Collins, J.P. Amphibian decline and extinction: What we know and what we need to learn. Dis. Aquat. Org. 2010, 92, 93–99. [Google Scholar] [CrossRef]
- Pyron, R.A. Global amphibian declines have winners and losers. Proc. Natl. Acad. Sci. USA 2018, 115, 3739–3741. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, P.; Vanhoye, D.; Amiche, M. Molecular strategies in biological evolution of antimicrobial peptides. Peptides 2003, 24, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Duda, T.F.; Vanhoye, D.; Nicolas, P. Roles of Diversifying Selection and Coordinated Evolution in the Evolution of Amphibian Antimicrobial Peptides. Mol. Biol. Evol. 2002, 19, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Alison, J.R.; Strathern, J.N. Error-Prone DNA Polymerases: When Making a Mistake is the Only Way to Get Ahead. Annu. Rev. Genet. 2003, 37, 31–66. [Google Scholar] [CrossRef]
- Vaisman, A.; Woodgate, R. Translesion DNA polymerases in eukaryotes: What makes them tick? Crit. Rev. Biochem. Mol. Biol. 2017, 52, 274–303. [Google Scholar] [CrossRef]
- Maslowska, K.H.; Makiela-Dzbenska, K.; Fijalkowska, I.J. The SOS system: A complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 2019, 60, 368–384. [Google Scholar] [CrossRef]
- Pelleschi, A. The Evolution of Amphibians; Abdo Publishing: North Mankato, MN, USA, 2018. [Google Scholar]
- Haslam, I.S.; Roubos, E.W.; Mangoni, M.L.; Yoshizato, K.; Vaudry, H.; Kloepper, J.E.; Pattwell, D.M.; Maderson, P.F.A.; Paus, R. From frog integument to human skin: Dermatological perspectives from frog skin biology. Biol. Rev. 2014, 89, 618–655. [Google Scholar] [CrossRef]
- Marenah, L.; Flatt, P.R.; Orr, D.F.; Shaw, C.; YH, A.-W. Isolation and structural characterization of novel Rugosin A-like insulinotropic peptide from the skin secretions of Rana saharica frog. Peptides 2005, 26, 2117–2123. [Google Scholar] [CrossRef]
- Yokoyama, H.; Kudo, N.; Todate, M.; Shimada, Y.; Suzuki, M.; Tamura, K. Skin regeneration of amphibians: A novel model for skin regeneration as adults. Dev. Growth Differ. 2018, 60, 316–325. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J. Effects of Topical Insulin on Wound Healing: A Review of Animal and Human Evidences. Diabetes Metab. Syndr. Obes. 2020, 13, 719–727. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E. Effects of insulin on wound healing: A review of animal and human evidences. Life Sci. 2017, 174, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Alton, L.A.; Franklin, C.E. Drivers of amphibian declines: Effects of ultraviolet radiation and interactions with other environmental factors. Clim. Chang. Responses 2017, 4, 6. [Google Scholar] [CrossRef]
- Cramp, R.L.; Franklin, C.E. Exploring the link between ultraviolet B radiation and immune function in amphibians: Implications for emerging infectious diseases. Conserv. Physiol. 2018, 6, coy035. [Google Scholar] [CrossRef] [PubMed]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zheng, Y.-W.; Liu, Q.; Liu, L.-P.; Luo, F.-L.; Zhou, H.-C.; Isoda, H.; Ohkohchi, N.; Li, Y.-M. Reactive Oxygen Species in Skin Repair, Regeneration, Aging, and Inflammation. In Reactive Oxygen Species (ROS) in Living Cells; Intechopen: London, UK, 2018. [Google Scholar]
- Yin, S.; Wang, Y.; Yang, X. Amphibian-derived wound healing peptides: Chemical molecular treasure trove for skin wound treatment. Front. Pharmacol. 2023, 14, 1120228. [Google Scholar] [CrossRef]
- Wang, X.; Duan, H.; Li, M.; Xu, W.; Wei, L. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides. Front. Cell Dev. Biol. 2023, 11, 1219427. [Google Scholar] [CrossRef]
- Chinnadurai, R.K.; Khan, N.; Meghwanshi, G.K.; Ponne, S.; Althobiti, M.; Kumar, R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed. Pharmacother. 2023, 164, 114996. [Google Scholar] [CrossRef]
- Zare-Zardini, H.; Saberian, E.; Jenča, A.; Ghanipour-Meybodi, R.; Jenča, A.; Petrášová, A.; Jenčová, J. From defense to offense: Antimicrobial peptides as promising therapeutics for cancer. Front. Oncol. 2024, 14, 1463088. [Google Scholar] [CrossRef]
- Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020, 25, 2850. [Google Scholar] [CrossRef]
- Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 2008, 1778, 357–375. [Google Scholar] [CrossRef]
- Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 2013, 4, 294. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Harris, F.; Bhatt, T.; Singh, J.; Phoenix, D.A. A theoretical analysis of secondary structural characteristics of anticancer peptides. Mol. Cell. Biochem. 2010, 333, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Castro Monzon, F.; Rödel, M.-O.; Jeschke, J.M. Tracking Batrachochytrium dendrobatidis Infection Across the Globe. EcoHealth 2020, 17, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Badhon, M.K.; Salauddin, M.; Rabbe, M.F.; Isslam, M.S. Chytrid infection in Asia: How much do we know and what else do we need to know? Herpetol. J. 2020, 30, 99–111. [Google Scholar] [CrossRef]
- Fisher, M.C.; Garner, T.W.J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 2020, 18, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Goka, K.; Yokoyama, J.; Tominaga, A. Distribution and Genetic Diversity of the Amphibian Chytrid in Japan. J. Fungi 2021, 7, 522. [Google Scholar] [CrossRef]
- Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial peptides and wound healing: Biological and therapeutic considerations. Exp. Dermatol. 2016, 25, 167–173. [Google Scholar] [CrossRef]
- van Harten, R.M.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H.P. Cathelicidins: Immunomodulatory Antimicrobials. Vaccines 2018, 6, 63. [Google Scholar] [CrossRef]
- Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E.; et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 2017, 12, Doc05. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Pandrug-resistant Gram-negative bacteria: A systematic review of current epidemiology, prognosis and treatment options. J. Antimicrob. Chemother. 2019, 75, 271–282. [Google Scholar] [CrossRef]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.; Kwong, K.; Nguyen, D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front. Immunol. 2018, 9, 2416. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, S.M.; Ernst, R.K. The role of Pseudomonas lipopolysaccharide in cystic fibrosis airway infection. Subcell. Biochem. 2010, 53, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Ernst, R.K.; Moskowitz, S.M.; Emerson, J.C.; Kraig, G.M.; Adams, K.N.; Harvey, M.D.; Ramsey, B.; Speert, D.P.; Burns, J.L.; Miller, S.I. Unique Lipid A Modifications in Pseudomonas aeruginosa Isolated from the Airways of Patients with Cystic Fibrosis. J. Infect. Dis. 2007, 196, 1088–1092. [Google Scholar] [CrossRef]
- Sathe, N.; Beech, P.; Croft, L.; Suphioglu, C.; Kapat, A.; Athan, E. Pseudomonas aeruginosa: Infections and novel approaches to treatment “Knowing the enemy” the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect. Med. 2023, 2, 178–194. [Google Scholar] [CrossRef]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Vassilevski, A.A.; Samsonova, O.V.; Egorova, N.S.; Kozlov, S.A.; Feofanov, A.V.; Arseniev, A.S.; Grishin, E.V. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J. 2011, 278, 4382–4393. [Google Scholar] [CrossRef]
- Tang, T.; Li, X.; Yang, X.; Yu, X.; Wang, J.; Liu, F.; Huang, D. Transcriptional Response of Musca domestica Larvae to Bacterial Infection. PLoS ONE 2014, 9, e104867. [Google Scholar] [CrossRef]
- Viejo-Díaz, M.; Andrés, M.T.; Fierro, J.F. Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep and kaliocin-1. Antimicrob. Agents Chemother. 2005, 49, 2583–2588. [Google Scholar] [CrossRef]
- Yount, N.Y.; Andrés, M.T.; Fierro, J.F.; Yeaman, M.R. The gamma-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Biochim. Biophys. Acta 2007, 1768, 2862–2872. [Google Scholar] [CrossRef]
- Kuo, S.-H.; Shen, C.-J.; Shen, C.-F.; Cheng, C.-M. Role of pH Value in Clinically Relevant Diagnosis. Diagnostics 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L.A.; Gwynne, L.; Jenkins, T. Challenges and opportunities of pH in chronic wounds. Ther. Deliv. 2019, 10, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Surber, C.; Abels, C.; Maibach, H. pH of the Skin: Issues and Challenges Current Problems; Karger: Basel, Switzerland, 2018. [Google Scholar]
- Xiong, S.; Liu, X.; Deng, W.; Zhou, Z.; Li, Y.; Tu, Y.; Chen, L.; Wang, G.; Fu, B. Pharmacological Interventions for Bacterial Prostatitis. Front. Pharmacol. 2020, 11, 504. [Google Scholar] [CrossRef] [PubMed]
- Bono, M.J.; Reygaert, W.C. Urinary Tract Infection. In StatPearls; StatPearls Publishing Copyright © 2020; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2020. [Google Scholar]
- Rawat, S. Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sciience Res. 2015, 5, 47–56. [Google Scholar]
- Goldfeder, Y.; Zaknoon, F.; Mor, A. Experimental conditions that enhance potency of an antibacterial oligo-acyl-lysyl. Antimicrob. Agents Chemother. 2010, 54, 2590–2595. [Google Scholar] [CrossRef]
- Gottschalk, S.; Gottlieb, C.T.; Vestergaard, M.; Hansen, P.R.; Gram, L.; Ingmer, H.; Thomsen, L.E. Amphibian antimicrobial peptide fallaxin analogue FL9 affects virulence gene expression and DNA replication in Staphylococcus aureus. J. Med. Microbiol. 2015, 64, 1504–1513. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Frimodt-Møller, N.; Kragelund, B.B.; Hansen, P.R. Structure–activity study of the antibacterial peptide fallaxin. Protein Sci. 2007, 16, 1969–1976. [Google Scholar] [CrossRef]
- Sarig, H.; Goldfeder, Y.; Rotem, S.; Mor, A. Mechanisms mediating bactericidal properties and conditions that enhance the potency of a broad-spectrum oligo-acyl-lysyl. Antimicrob. Agents Chemother. 2011, 55, 688–695. [Google Scholar] [CrossRef]
- Perez Espitia, P.J.; de Fátima Ferreira Soares, N.; dos Reis Coimbra, J.S.; de Andrade, N.J.; Souza Cruz, R.; Alves Medeiros, E.A. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Compr. Rev. Food Sci. Food Saf. 2012, 11, 187–204. [Google Scholar] [CrossRef]
- Del Aguila, E.M.; Gomes, L.P.; Freitas, C.S.; Pereira, P.R.; Paschoalin, V.F. Natural Antimicrobials in Food Processing: Bacteriocins, Peptides and Chitooligosaccharides. Front. Anti-Infect. Drug Discov. 2017, 5, 55–108. [Google Scholar]
- Kozić, M.; Vukičević, D.; Simunić, J.; Rončević, T.; Antcheva, N.; Tossi, A.; Juretić, D. Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain. J. Chem. Inf. Model. 2015, 55, 2275–2287. [Google Scholar] [CrossRef] [PubMed]
- Mercer, D.K.; Torres, M.D.T.; Duay, S.S.; Lovie, E.; Simpson, L.; von Köckritz-Blickwede, M.; de la Fuente-Nunez, C.; O’Neil, D.A.; Angeles-Boza, A.M. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front. Cell. Infect. Microbiol. 2020, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Vences, M.; Köhler, J.; Hutter, C.R.; Preick, M.; Petzold, A.; Rakotoarison, A.; Ratsoavina, F.M.; Glaw, F.; Scherz, M.D. Communicator whistles: A Trek through the taxonomy of the Boophis marojezensis complex reveals seven new, morphologically cryptic treefrogs from Madagascar (Amphibia: Anura: Mantellidae). Vertebr. Zool. 2024, 74, 643–681. [Google Scholar] [CrossRef]
Bacteria | B2Ra | B2Rb | B2EMa | B2EMb | B2EMb’ |
---|---|---|---|---|---|
MIC (µM) | |||||
S. aureus | 1.8 | 1.8 | ND | ND | ND |
M. luteus | 7.2 | 0.5 | 1.4 | 0.8 | 0.8 |
S. epidermidis | ND | ND | 14.0 | 3.0 | 3.0 |
B. subtilis | 3.6 | 1.8 | 14.0 | 3.0 | 3.0 |
S. pyogenes | 14.4 | 3.6 | ND | ND | ND |
K. pneumoniae | ND | ND | 28.0 | 7.5 | 7.6 |
S. dysenteriae | ND | ND | 7.0 | 7.5 | 7.6 |
P. putida | ND | ND | 28.0 | 15.0 | 15.2 |
P. aeruginosa | >28.0 | 28.8 | 28.0 | 15.0 | 15.2 |
E. coli | 28.8 | 3.6 | 7.0 | 22.5 | 22.8 |
P. mirabilis | ND | ND | >56.0 | >60.0 | >60.0 |
S. marcescens | ND | ND | >56.0 | >60.0 | >60.0 |
S. typhimurium | ND | ND | >56.0 | 45.0 | 45.6 |
Fungi | MIC (µM) | ||||
C. albicans | ND | ND | >56.0 | 45.0 | >60.0 |
S. cerevisiae | ND | ND | >28.0 | 22.5 | >60.0 |
Hemolysis | Maximal levels (%) | ||||
Human erythrocytes | ND | ND | <1.5 | <1.5 | <1.5 |
Bacteria | B2SSb | R2SSa | GSSa |
---|---|---|---|
MIC (µM) | |||
S. aureus | >30.0 | >44.0 | >86.0 |
B. cereus | >30.0 | >44.0 | >86.0 |
C. michiganensis | 3.8 | 44.0 | 3.8 |
P. aeruginosa | 30.0 | >44.0 | >86.0 |
E. coli | 30.0 | >44.0 | >86.0 |
S. enterica | 30.0 | >44.0 | >86.0 |
X. oryzae | 0.9 | >44.0 | >43.0 |
Fungi | MIC (µM) | ||
C. albicans | 30.0 | 30.0 | 30.0 |
P. oryzae | 30.0 | >44.0 | 30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, F.; Phoenix, D.A.; Dennison, S.R. Antimicrobial Peptides from Frogs of the Glandirana Genus. Biologics 2024, 4, 444-507. https://doi.org/10.3390/biologics4040027
Harris F, Phoenix DA, Dennison SR. Antimicrobial Peptides from Frogs of the Glandirana Genus. Biologics. 2024; 4(4):444-507. https://doi.org/10.3390/biologics4040027
Chicago/Turabian StyleHarris, Frederick, David A. Phoenix, and Sarah R. Dennison. 2024. "Antimicrobial Peptides from Frogs of the Glandirana Genus" Biologics 4, no. 4: 444-507. https://doi.org/10.3390/biologics4040027
APA StyleHarris, F., Phoenix, D. A., & Dennison, S. R. (2024). Antimicrobial Peptides from Frogs of the Glandirana Genus. Biologics, 4(4), 444-507. https://doi.org/10.3390/biologics4040027