Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide—LENART01
Abstract
:1. Introduction
2. Results
2.1. LENART01 Displayed Antimicrobial Activity against K12 and R2–R4 Model Strains of E. coli That Differ in LPS Structure
2.2. Contribution of LENART01 Pharmacophores to Antimicrobial Effect Exerted on Model Strains of E. coli
2.3. Modification of Plasmid DNA Isolated from E. coli R2–R4 Strains Recognized with Fpg Protein
2.4. Hemolytic Effect
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents and Microorganisms
5.2. Synthesis and Purification of LENART01, an Opioid–Ranatensin Hybrid Peptide
5.3. In Vitro DNA Damage by LENART01
5.4. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
5.5. Hemolysis
5.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 23 February 2023).
- Serwecińska, L. Antimicrobial and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Jindal, A.K.; Pandya, K.; Khan, I.D. Antimicrobial resistance: A public health challenge. Med. J. Armed Forces India 2015, 71, 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, A.; Kaszowska, M.; Jachymek, W.; Lugowski, C.; Lukasiewicz, J. Lipopolysaccharide-linked enterobacterial common antigen (ECALPS) occurs in rough strains of Escherichia coli R1, R2, and R4. Int. J. Mol. Sci. 2020, 21, 6038. [Google Scholar] [CrossRef] [PubMed]
- Amor, K.; Heinrichs, D.E.; Frirdich, E.; Ziebell, K.; Johnson, R.P.; Whitfield, C. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect. Immun. 2000, 68, 1116–1124. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, G.; Neal, B.; Liu, D.; Hobbs, M.; Packer, N.H.; Batley, M.; Redmond, J.W.; Lindquist, L.; Reeves, P. Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J. Bacteriol. 1994, 176, 4144–4156. [Google Scholar] [CrossRef] [Green Version]
- Ebbensgaard, A.; Mordhorst, H.; Aarestrup, F.M.; Hansen, E.B. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Front. Microbiol. 2018, 9, 2153. [Google Scholar] [CrossRef] [Green Version]
- Dvoracsko, S.; Stefanucci, A.; Novellino, E.; Mollica, A. The design of multitarget ligands for chronic and neuropathic pain. Future Med. Chem. 2015, 7, 2469–2483. [Google Scholar] [CrossRef]
- Mollica, A.; Costante, R.; Stefanucci, A.; Pinnen, F.; Luisi, G.; Pieretti, S.; Borsodi, A.; Bojnik, E.; Benyhe, S. Hybrid peptides endomorphin-2/DAMGO: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2013, 68, 167–177. [Google Scholar] [CrossRef]
- Stefanucci, A.; Novellino, E.; Macedonio, G.; Dimmito, M.P.; Mirzaie, S.; Caldas Cardoso, F.; Lewis, R.; Zador, F.; Erdei, A.I.; Dvoracsko, S.; et al. Design, synthesis and biological profile of mixed opioid agonist/N-VGCC blocker peptides. New J. Chem. 2018, 42, 5656–5659. [Google Scholar] [CrossRef] [Green Version]
- Barra, D.; Simmaco, M. Amphibian skin: A promising resource for antimicrobial peptides. Trends Biotechnol. 1995, 13, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, S.; Fang, J.; Zheng, S.; Wang, Z.; Jiao, Y.; Xia, P.; Wu, H.; Ma, Z.; Hao, L. Peptides isolated from amphibian skin secretion with emphasis on antimicrobial peptides. Toxins 2022, 14, 722. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.H.; Fetzer, C.; Sieber, S.A. Chemical probes unravel an antimicrobial defense response triggered by binding of the human opioid dynorphin to a bacterial sensor kinase. J. Am. Chem. Soc. 2017, 139, 6152–6159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xu, X.; Yu, H.; Yang, H.; Huang, Z.; Lai, R. Direct antimicrobial activities of PR-bombesin. Life Sci. 2006, 78, 1953–1956. [Google Scholar] [CrossRef] [PubMed]
- Rota, S.; Kaya, K.; Timliođlu, O.; Karaca, O.; Yzdep, S.; Ocal, E. Do the opioids have an antibacterial effect? Can. J. Anaesth. 1997, 44, 679–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskel, Y.; Xu, D.; Lu, Q.; Deitch, E.A. Bombesin protects against bacterial translocation induced by three commercially available liquid enteral diets: A prospective, randomized, multigroup trial. Crit. Care Med. 1994, 22, 10813. [Google Scholar] [CrossRef]
- Wolfe, A.D.; Olenick, J.G.; Hahn, F.E. Bacteriological studies with morphine-like narcotics: Relevance to narcotic actions in mamals? Antimicrob. Agents Chemother. 1975, 7, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Hesselink, J.M.K.; Schatman, M.E. Rediscovery of old drugs: The forgotten case of dermorphin for postoperative pain and palliation. J. Pain Res. 2018, 11, 2991–2995. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Tanimura, T.; Pisano, J.J. Isolation and structure of a new vasoactive polypeptide. Fed. Proced. 1970, 29, 282. [Google Scholar]
- Zhu, X.Z.; Ji, X.Q.; Wu, S.X.; Zou, G. Sulpiride attenuates ranatensin-M-induced antinociception. Zhongguo Yao Li Xue Bao. 1991, 12, 291–293. [Google Scholar]
- Richter, K.; Egger, R.; Kreil, G. D-alanine in the frog skin peptide dermorphin is derived from L-alanine in the precursor. Science 1987, 238, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Clineschmidt, B.V.; Geller, R.G.; Govier, W.C.; Pisano, J.J.; Tanimura, T. Effects of ranatensin, a polypeptide from frog skin on isolated smooth muscle. Br. J. Pharmacol. 1971, 41, 622–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitucha, M.; Woś, M.; Miazga-Karska, M.; Klimek, K.; Mirosław, B.; Pachuta-Stec, A.; Gładysz, A.; Ginalska, G. Synthesis, antibacterial and antiproliferative potential of some new 1-pyridinecarbonyl-4-substituted thiosemicarbazide derivatives. Med. Chem. Res. 2016, 25, 1666–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimek, K.; Tyśkiewicz, K.; Miazga-Karska, M.; Dębczak, A.; Rój, E.; Ginalska, G. Bioactive compounds obtained from Polish “Marynarka” hop variety using efficient two-step supercritical fluid extraction and comparison of their antibacterial, cytotoxic, and anti-proliferative activities in vitro. Molecules 2021, 26, 2366. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, A.; Kowalczyk, P.; Czerwonka, G.; Cieśla, J.; Cłapa, T.; Misiewicz, A.; Szala, M.; Drabik, M. Interaction of quaternary ammonium ionic liquids with bacterial membranes—Studies with Escherichia coli R1–R4-type lipopolysaccharides. J. Mol. Liquids 2017, 246, 282–289. [Google Scholar] [CrossRef]
- Rosenberg, P.H.; Renkonen, O.V. Antimicrobial activity of bupivacaine and morphine. Anesthesiol. 1985, 62, 178–179. [Google Scholar]
- Unlu, O.; Bingul, E.S.; Kesici, S.; Demirci, M. Investigating antimicrobial features and drug interactions of sedoanalgesics in intensive care unit: An experimental study. ADMET DMPK 2021, 9, 219–226. [Google Scholar]
- Grimmond, T.R.; Brownridge, P. Antimicorbial activity of bupivacaine and pethidine. Anaesth. Intens. Care 1986, 14, 418–420. [Google Scholar] [CrossRef] [Green Version]
- Mami, S.; Nemati, M.; Salati, A.P.; Monfared, L.A.; Jahromi, N.M. Evaluating antibacterial characteristics of opium. Global Vet. 2012, 9, 89–91. [Google Scholar]
- Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta 2009, 1788, 1551–1555. [Google Scholar] [CrossRef] [Green Version]
- Mollica, A.; Costante, R.; Akdemir, A.; Carradori, S.; Stefanucci, A.; Macedonio, G.; Ceruso, M.; Supuran, C.T. Exploring new Probenecid-based carbonic anhydrase inhibitors: Synthesis, biological evaluation and docking studies. Bioorg. Med. Chem. 2015, 23, 5311–5318. [Google Scholar] [CrossRef] [PubMed]
- Kleczkowska, P.; Hermans, E.; Kosson, P.; Kowalczyk, A.; Lesniak, A.; Pawlik, K.; Bojnik, E.; Benyhe, S.; Nowicka, B.; Bujalska-Zadrozny, M.; et al. Antinociceptive effect induced by a combination of opioid and neurotensin moieties vs. their hybrid peptide [Ile(9)]PK20 in an acute pain treatment in rodents. Brain Res. 2016, 1648 Pt A, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Alkhzem, A.H.; Woodman, T.J.; Blagbrough, I.S. Design and synthesis of hybrid compounds as novel drugs and medicines. RSC Adv. 2022, 12, 19470–19484. [Google Scholar] [CrossRef]
- Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015–2016) in anticancer hybrids. Eur. J. Med. Chem. 2017, 142, 179–212. [Google Scholar] [CrossRef]
- Mollica, A.; Feliciani, F.; Stefanucci, A.; Costante, R.; Lucente, G.; Pinnen, F.; Notaristefano, D.; Spisani, S. Synthesis and biological evaluation of new active For-Met-Leu-Phe-OMe analogues containing para-substituted Phe residues. J. Pept. Sci. 2012, 18, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Rj, S.; Pal, S.; Jayashree, A. Molecular hybridization -An emanating tool in drug design. Med. Chem. 2019, 9, 93–95. [Google Scholar]
- Mollica, A.; Pinnen, F.; Stefanucci, A.; Feliciani, F.; Campestre, C.; Mannina, L.; Sobolev, A.P.; Lucente, G.; Davis, P.; Lai, J.; et al. The cis-4-amino-L-proline residue as a scaffold for the synthesis of cyclic and linear endomorphin-2 analogues. J. Med. Chem. 2012, 55, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- Mollica, A.; Pinnen, F.; Stefanucci, A.; Mannina, L.; Sobolev, A.P.; Lucente, G.; Davis, P.; Lai, J.; Ma, S.W.; Porreca, F.; et al. The cis-4-amino-L-proline residue as a scaffold for the synthesis of cyclic and linear endomorphin-2 analogues: Part 2. J. Med. Chem. 2012, 55, 8477–8482. [Google Scholar] [CrossRef]
- Cava, F.; Lam, H.; de Pedro, M.A.; Waldor, M.K. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell. Mol. Life Sci. 2011, 68, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Pioli, D.; Venables, W.A.; Franklin, F.C. d-Alanine dehydrogenase. Its role in the utilisation of alanine isomers as growth substrates by Pseudomonas aeruginosa PA01. Arch. Microbiol. 1976, 110, 287–293. [Google Scholar] [CrossRef]
- Anfora, A.T.; Halladin, D.K.; Haugen, B.J.; Welch, R.A. Uropathogenic Escherichiacoli CFT073 is adapted to acetatogenic growth but does not require acetate during murine urinary tract infection. Infect. Immun. 2008, 76, 5760–5767. [Google Scholar] [CrossRef] [Green Version]
- Padhi, A.; Senguptam, M.; Senguptam, S.; Roehm, K.H.; Sonawane, A. Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis 2014, 94, 363–373. [Google Scholar] [CrossRef]
- She, P.; Chen, L.; Liu, H.; Zou, Y.; Luo, Z.; Koronfel, A.; Wu, Y. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa. Microb. Pathog. 2015, 86, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, A.; Slamti, L.; Malach, E.; Lereclus, D.; Hayouka, Z. Elucidating the Hot Spot residues of quorum sensing peptidic autoinducer PapR by multiple amino acid replacements. Front. Microbiol. 2019, 10, 1246. [Google Scholar] [CrossRef]
- Choi, U.; Lee, C.-R. Antimicrobial agents that inhibit the outer membrane assembly machines of Gram-negative bacteria. J. Microbiol. Biotechnol. 2019, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial enzymes and antibiotic resistance. Acta Nat. 2018, 10, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Hernández, S.B.; Cava, F. Environmental roles of microbial amino acid racemases. Environ. Microbiol. 2016, 18, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lv, Y.; Pang, J.; Li, X.; Lu, X.; Wang, X.; Hu, X.; Nie, T.; Yang, X.; Xiong, Y.Q.; et al. In vitro and in vivo activity of d-serine in combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Acta Pharm. Sin. B 2019, 9, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Stupak, A.; Biernacka, D.; Wojtkiewicz, P.; Lindner, B.; Raina, S. Multiple trancriptional factors regulate transcription of the rpoE gene in Escherichia coli under different growthconditions and when the lipopolysaccharide biosynthesis is defective. J. Biol. Chem. 2016, 291, 22999–23019. [Google Scholar]
- Wilkinson, R.G.; Gemski, P., Jr.; Stocker, B.A. Non-smooth mutants of Salmonella typhimurium differentation by phage sensitivity and genetic mapping. J. Gen. Micorbiol. 1971, 70, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Belogurov, G.A.; Vassylyeva, M.N.; Svetlov, V.; Klyuyev, S.; Grishin, N.V.; Vassylyev, D.G.; Artsimovitch, I. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol. Cell 2007, 26, 117–129. [Google Scholar] [PubMed] [Green Version]
- Svetlov, D.; Shi, D.; Twentyman, J.; Nedialkov, Y.; Rosen, D.A.; Abagyan, R.; Artsimovitch, I. In silico discovery of small molecules that inhibit RfaH recruitment to RNA polymerase. Mol. Microbiol. 2018, 110, 128–142. [Google Scholar] [CrossRef]
- Cardoso, M.H.; Candido, E.S.; Oshiro, K.G.N.; Rezende, S.B.; Franco, O.L. Peptides containing D-amino acids and retro-inverso peptides: General aplications and special focus on antimicrobial peptides. In Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Koutsopoulos, S., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 131–155. [Google Scholar]
- Xu, X.; Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev. 2015, 115, 1760–1846. [Google Scholar] [PubMed]
- Boman, H.G. Antibacterial peptides: Basic facts and emerging concepts. J. Intern. Med. 2003, 254, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar]
- Mishra, B.; Wang, G. The importance of amino acid composition in natural antimicrobial peptides (AMPs): An evolutional, structural, and functional perspective. Front. Immunol. 2012, 3, 221. [Google Scholar] [CrossRef] [Green Version]
- Poltorak, A.; He, X.; Smirnova, I.; Liu, M.Y.; Van Huffel, C.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 1998, 282, 2085–2088. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cui, F.; Chen, H.; Zhang, T.; Yang, K.; Wang, Y.; Jiang, Z.; Rice, K.C.; Watkins, L.R.; Hutchinson, M.R.; et al. Dissecting the innate immune recognition of opioid inactive isomer (+)-naltrexone derived Toll-like Receptor 4 (TLR4) antagonists. J. Chem. Inf. Model. 2018, 58, 816–825. [Google Scholar]
- Zhang, P.; Yang, M.; Chen, C.; Liu, L.; Wei, X.; Zeng, S. Toll-Like Receptor 4 (TLR4)/opioid receptor pathway crosstalk and impact on opioid analgesia, immune function, and gastrointestinal motility. Front. Immunol. 2020, 11, 1455. [Google Scholar]
- Stevens, C.W.; Aravind, S.; Das, S.; Davis, R.L. Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br. J. Pharmacol. 2013, 168, 1421–1429. [Google Scholar] [CrossRef]
- D’Ham, C.; Romieu, A.; Jaquinod, M.; Gasparutto, D.; Cadet, J. Excision of 5,6-dihydroxy-5,6-dihydrothymine, 5,6-dihydrothymine, and 5-hydroxycytosine from defined sequence oligonucleotides by Escherichia coli endonuclease III and Fpg proteins: Kinetic and mechanistic aspects. Biochem. 1999, 38, 3335–3344. [Google Scholar] [CrossRef]
- Hatahet, Z.; Kow, Y.W.; Purmal, A.A.; Cunningham, R.P.; Wallace, S.S. New substrates for old enzymes. 5-Hydroxy-20-deoxycytidine and 5-hydroxy-20-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-20-deoxyuridine is a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 1994, 269, 18814–18820. [Google Scholar] [PubMed]
- Tchou, J.; Bodepudi, V.; Shibutani, S.; Antoshechkin, I.; Miller, J.; Grollman, A.P.; Johnson, F. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. J. Biol. Chem. 1994, 269, 15318. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskaia, M.A.; McNeil, S.E. Handbook of Immunological Properties of Engineered Nanomaterials, 2nd ed.; World Scientific Publishing Company: Hackensack, NJ, USA, 2016. [Google Scholar]
- Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochem. Biophys. Acta 2009, 1788, 1687–1692. [Google Scholar] [CrossRef] [Green Version]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Hakansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, H.; Bagetta, G.; Sakurada, T.; Sakurada, S. Dermorphin tetrapeptide analogs as potent and long-lasting analgesics with pharmacological profiles distinct from morphine. Peptides 2011, 32, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Laskowska, A.K.; Szudzik, M.; Ścieżyńska, A.; Komorowski, M.; Szűcs, E.; Gombos, D.; Bączek, B.; Lipka-Miciuk, J.; Benyhe, S.; Kleczkowska, P. The role of a natural amphibian skin-based peptide, ranatensin, in pancreatic cancers expressing dopamine d2 receptors. Cancers 2022, 14, 5535. [Google Scholar] [CrossRef]
- Available online: https://www.sigmaaldrich.com/PL/pl/technical-documents/technical-article/food-and-beverage-testing-and-manufacturing/regulatory-compliance-for-food-and-beverage/iso-11133-culture-media-food-and-water-testing (accessed on 23 February 2023).
- Mollica, A.; Carotenuto, A.; Novellino, E.; Limatola, A.; Costante, R.; Pinnen, F.; Stefannuci, A.; Pieretti, S.; Borsodi, A.; Samavati, R.; et al. Novel cyclic biphalin analogue with improved antinociceptive properties. ACS Med. Chem. Lett. 2014, 5, 1032–1036. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Kowalczyk, P.; Borkowski, A.; Czerwonka, G.; Cłapa, T.; Cieśla, J.; Misiewicz, A.; Borowiec, M.; Szala, M. The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. J. Mol. Liquids 2018, 266, 540–547. [Google Scholar] [CrossRef]
- Koszelewski, D.; Kowalczyk, P.; Samsonowicz-Górski, J.; Hrunyk, A.; Brodzka, A.; Łęcka, J.; Kramkowski, K.; Ostaszewski, R. Synthesis and antimicrobial activity of the pathogenic E. coli strains of p-Quinols: Additive effects of copper-catalyzed addition of aryl boronic acid to benzoquinones. Int. J. Mol. Sci. 2023, 24, 1623. [Google Scholar] [CrossRef]
E. coli Strain | Compounds | |||||
---|---|---|---|---|---|---|
Ciprofloxacin (10 mM/mL) | Bleomycin (10 mM/mL) | Cloxacillin (10 mM/mL) | LENART01 | |||
20 μM/mL | 100 μM/mL | 200 μM/mL | ||||
K12 | 97 | 98 | 98.8 | 100 | 100 | 148 |
R2 | 245 | 213 | 211 | 240 | 260 | 274 |
R3 | 305 | 295 | 303 | 335 | 365 | 381 |
R4 | 365 | 360 | 355 | 390 | 410 | 430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafin, P.; Kowalczyk, P.; Mollica, A.; Stefanucci, A.; Laskowska, A.K.; Zawadzka, M.; Kramkowski, K.; Kleczkowska, P. Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide—LENART01. Molecules 2023, 28, 4955. https://doi.org/10.3390/molecules28134955
Serafin P, Kowalczyk P, Mollica A, Stefanucci A, Laskowska AK, Zawadzka M, Kramkowski K, Kleczkowska P. Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide—LENART01. Molecules. 2023; 28(13):4955. https://doi.org/10.3390/molecules28134955
Chicago/Turabian StyleSerafin, Pawel, Paweł Kowalczyk, Adriano Mollica, Azzurra Stefanucci, Anna K. Laskowska, Magdalena Zawadzka, Karol Kramkowski, and Patrycja Kleczkowska. 2023. "Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide—LENART01" Molecules 28, no. 13: 4955. https://doi.org/10.3390/molecules28134955
APA StyleSerafin, P., Kowalczyk, P., Mollica, A., Stefanucci, A., Laskowska, A. K., Zawadzka, M., Kramkowski, K., & Kleczkowska, P. (2023). Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide—LENART01. Molecules, 28(13), 4955. https://doi.org/10.3390/molecules28134955