Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (220)

Search Parameters:
Keywords = amorphous semiconductors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4761 KB  
Article
Low Molecular Weight Acid-Modified Aluminum Nitride Powders for Enhanced Hydrolysis Resistance
by Linguang Wu, Yaling Yu, Shaomin Lin, Xianxue Li, Chenyang Zhang and Ji Luo
Inorganics 2026, 14(1), 30; https://doi.org/10.3390/inorganics14010030 - 18 Jan 2026
Viewed by 114
Abstract
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully [...] Read more.
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully yielding hydrolysis-resistant AlN powders. The underlying mechanisms responsible for the improved anti-hydrolysis performance imparted by both single organic acids and the composite acid were systematically investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM), characterization techniques. The results reveal that Oxalic acid within the concentration range of 0.25 M to 1.50 M partially inhibits the hydrolysis of aluminum nitride (AlN); however, hydrolysis products such as aluminum hydroxide are still formed. In the case of citric acid, a higher concentration leads to a stronger anti-hydrolysis effect on the modified AlN. No significant hydrolysis products were detected when the AlN sample was treated in a 1 M aqueous citric acid solution at 80 °C. The effectiveness of the organic acids in enhancing the hydrolysis resistance of AlN follows the order: composite acid (citric acid + oxalic acid) > citric acid > oxalic acid. Under the action of the composite acid, the AlN diffraction peaks exhibit the highest intensity. Furthermore, TEM observations reveal the formation of an amorphous protective layer on the surface, which contributes to the improved hydrolysis resistance. Analytical results confirmed that the surface modification process, mediated by citric acid, oxalic acid, or the composite acid, involved an esterification-like reaction between the surface hydroxyl groups on AlN and the chemical modifiers. This reaction led to the formation of a continuous protective coordination layer encapsulating the AlN particles, which serves as an effective diffusion barrier against water molecules, thereby significantly inhibiting the hydrolysis reaction. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

33 pages, 4350 KB  
Review
Laser Processing Methods in Precision Silicon Carbide Wafer Exfoliation: A Review
by Tuğrul Özel and Faik Derya Ince
J. Manuf. Mater. Process. 2026, 10(1), 2; https://doi.org/10.3390/jmmp10010002 - 19 Dec 2025
Viewed by 920
Abstract
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical [...] Read more.
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical strength. However, the high cost and complexity of SiC wafer fabrication, particularly in slicing and exfoliation, remain significant barriers to its widespread adoption. Conventional methods such as wire sawing suffer from considerable kerf loss, surface damage, and residual stress, reducing material yield and compromising wafer quality. Additionally, techniques like smart-cut ion implantation, though capable of enabling thin-layer transfer, are limited by long thermal annealing durations and implantation-induced defects. To overcome these limitations, ultrafast laser-based processing methods, including laser slicing and stealth dicing (SD), have gained prominence as non-contact, high-precision alternatives for SiC wafer exfoliation. This review presents the current state of the art and recent advances in laser-based precision SiC wafer exfoliation processes. Laser slicing involves focusing femtosecond or picosecond pulses at a controlled depth parallel to the beam path, creating internal damage layers that facilitate kerf-free wafer separation. In contrast, stealth dicing employs laser-induced damage tracks perpendicular to the laser propagation direction for chip separation. These techniques significantly reduce material waste and enable precise control over wafer thickness. The review also reports that recent studies have further elucidated the mechanisms of laser–SiC interaction, revealing that femtosecond pulses offer high machining accuracy due to localized energy deposition, while picosecond lasers provide greater processing efficiency through multipoint refocusing but at the cost of increased amorphous defect formation. The review identifies multiphoton ionization, internal phase explosion, and thermal diffusion key phenomena that play critical roles in microcrack formation and structural modification during precision SiC wafer laser processing. Typical ultrafast-laser operating ranges include pulse durations from 120–450 fs (and up to 10 ps), pulse energies spanning 5–50 µJ, focal depths of 100–350 µm below the surface, scan speeds ranging from 0.05–10 mm/s, and track pitches commonly between 5–20 µm. In addition, the review provides quantitative anchors including representative wafer thicknesses (250–350 µm), typical laser-induced crack or modified-layer depths (10–40 µm and extending up to 400–488 µm for deep subsurface focusing), and slicing efficiencies derived from multi-layer scanning. The review concludes that these advancements, combined with ongoing progress in ultrafast laser technology, represent research opportunities and challenges in transformative shifts in SiC wafer fabrication, offering pathways to high-throughput, low-damage, and cost-effective production. This review highlights the comparative advantages of laser-based methods, identifies the research gaps, and outlines the challenges and opportunities for future research in laser processing for semiconductor applications. Full article
Show Figures

Figure 1

42 pages, 9085 KB  
Review
In2O3: An Oxide Semiconductor for Thin-Film Transistors, a Short Review
by Christophe Avis and Jin Jang
Molecules 2025, 30(24), 4762; https://doi.org/10.3390/molecules30244762 - 12 Dec 2025
Viewed by 1782
Abstract
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on [...] Read more.
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on transparent and flexible substrates. However, mobilities over 30 cm2/Vs have been difficult to reach and other materials have been introduced. Recently, polycrystalline In2O3 has demonstrated breakthroughs in the field. In2O3 TFTs have attracted attention because of their high mobility of over 100 cm2/Vs, which has been achieved multiple times, and because of their use in scaled devices with channel lengths down to 10 nm for high integration in back-end-of-the-line (BEOL) applications and others. The present review focuses first on the material properties with the understanding of the bandgap value, the importance of the position of the charge neutrality level (CNL), the doping effect of various atoms (Zr, Ge, Mo, Ti, Sn, or H) on the carrier concentration, the optical properties, the effective mass, and the mobility. We introduce the effects of the non-parabolicity of the conduction band and how to assess them. We also introduce ways to evaluate the CNL position (usually at ~EC + 0.4 eV). Then, we describe TFTs’ general properties and parameters, like the field effect mobility, the subthreshold swing, the measurements necessary to assess the TFT stability through positive and negative bias temperature stress, and the negative bias illumination stress (NBIS), to finally introduce In2O3 TFTs. Then, we will introduce vacuum and non-vacuum processes like spin-coating and liquid metal printing. We will introduce the various dopants and their applications, from mobility and crystal size improvements with H to NBIS improvements with lanthanides. We will also discuss the importance of device engineering, introducing how to choose the passivation layer, the source and drain, the gate insulator, the substrate, but also the possibility of advanced engineering by introducing the use of dual gate and 2 DEG devices on the mobility improvement. Finally, we will introduce the recent breakthroughs where In2O3 TFTs are integrated in neuromorphic applications and 3D integration. Full article
Show Figures

Figure 1

22 pages, 2569 KB  
Review
Amorphous Transition Metal Sulfide Electrocatalysts for Green Hydrogen Generation from Solar-Driven Electrochemical Water Splitting
by Terence K. S. Wong
Energies 2025, 18(23), 6348; https://doi.org/10.3390/en18236348 - 3 Dec 2025
Viewed by 559
Abstract
The synthesis and electrocatalytic properties of amorphous first- and third-row transition metal sulfides (a-TMS) for green hydrogen generation have been comprehensively reviewed. These electrocatalysts can be prepared by several solution processes, including chemical bath deposition, electrodeposition, sol–gel, hydrothermal reaction and thermolysis. The deposition [...] Read more.
The synthesis and electrocatalytic properties of amorphous first- and third-row transition metal sulfides (a-TMS) for green hydrogen generation have been comprehensively reviewed. These electrocatalysts can be prepared by several solution processes, including chemical bath deposition, electrodeposition, sol–gel, hydrothermal reaction and thermolysis. The deposition method strongly influences the electrochemical properties of the synthesized a-TMS electrocatalyst. Based on overpotential at 10 mA/cm2, the electrocatalytic activity of mono-metallic a-TMS for hydrogen evolution is ranked as follows: a-NiSx > a-CuSx > a-CoSx > a-WSx > a-FeSx. The best performing a-NiSx prepared by chemical bath deposition has an overpotential at 10 mA/cm2 of 53 mV and Tafel slope of 68 mV/dec in 1 M KOH electrolyte. The integration of Ni into the a-TMS network structure is crucial to achieving high activity in multi-metallic a-TMS electrocatalyst, as demonstrated by the bifunctional (NiFe)Sx/NiFe(OH)y nanocomposite catalyst. The critical role of Ni in a-TMS catalyst design can be attributed to the lower free energy change for hydrogen adsorption on Ni. Finally, the emerging catalyst design strategy of amorphous–crystalline heterostructures with a three-dimensional morphology will be discussed together with the need to identify hydrogen adsorption sites on a-TMS electrocatalysts in future. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

12 pages, 2917 KB  
Article
Eco-Friendly Fabrication of 2D a-SnOx Thin-Film Transistors Derived from Deep Eutectic Solvents
by Christophe Avis and Jin Jang
Materials 2025, 18(23), 5349; https://doi.org/10.3390/ma18235349 - 27 Nov 2025
Viewed by 595
Abstract
We have fabricated amorphous tin oxide (a-SnOx) thin-film transistors (TFTs) with Al2O3 gate insulator from deep eutectic solvents (DESs). DESs were formed using the chloride derivates of each precursor (SnCl2, or AlCl3) mixed with [...] Read more.
We have fabricated amorphous tin oxide (a-SnOx) thin-film transistors (TFTs) with Al2O3 gate insulator from deep eutectic solvents (DESs). DESs were formed using the chloride derivates of each precursor (SnCl2, or AlCl3) mixed with urea. The DESs were then used as precursors for the semiconductor and dielectric. Our target was to form extremely thin semiconductor film, and a sufficient high capacitance insulator. We characterized the physical and chemical properties of the DES-derived thin films by X-ray diffraction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). We could evaluate that the highest content of metal–oxygen bonds was from the DES condition SnCl2–urea = 1:3. At a low 300 °C budget temperature, we could fabricate a 3.2 nm thick a-SnOx layer and 30 nm thick Al2O3, from which the TFT demonstrated a mobility of 80 ± 17 cm2/Vs, threshold voltage of −0.29 ± 0.06 V, and subthreshold swing of 88 ± 11 mV/dec. The proposed process is adequate with the back-end of the line (BEOL) process, but it is also eco-friendly because of the use of DESs. Full article
Show Figures

Figure 1

15 pages, 1536 KB  
Article
Role of CF4 Addition in Gas-Phase Variations in HF Plasma for Cryogenic Etching: Insights from Plasma Simulation and Experimental Correlation
by Shigeyuki Takagi, Shih-Nan Hsiao, Yusuke Imai, Makoto Sekine and Fumihiko Matsunaga
Plasma 2025, 8(4), 48; https://doi.org/10.3390/plasma8040048 - 24 Nov 2025
Viewed by 786
Abstract
The fabrication of semiconductor devices with three-dimensional architectures imposes unprecedented demands on advanced plasma dry etching processes. These include the simultaneous requirements of high throughput, high material selectivity, and precise profile control. In conventional reactive ion etching (RIE), fluorocarbon plasma provides both accelerated [...] Read more.
The fabrication of semiconductor devices with three-dimensional architectures imposes unprecedented demands on advanced plasma dry etching processes. These include the simultaneous requirements of high throughput, high material selectivity, and precise profile control. In conventional reactive ion etching (RIE), fluorocarbon plasma provides both accelerated ion species and reactive neutrals that etch the feature front, while the CFx radicals promote polymerization that protects sidewalls and enhance selectivity to the amorphous carbon layer (ACL) mask. In this work, we present computational results on the role of CF4 addition to hydrogen fluoride (HF) plasma for next-generation RIE, specifically cryogenic etching. Simulations were performed by varying the CF4 concentration in the HF plasma to evaluate its influence on ion densities, neutral species concentration, and electron density. The results show that the densities of CFx (x = 1–3) ions and radicals increase significantly with CF4 addition (up to 20%), while the overall plasma density and the excited HF species remain nearly unchanged. The results of plasma density and atomic fluorine density are consistent with the experimental observations of the HF/CF4 plasma using an absorption probe and the actimetry method. It was verified that the gas-phase reaction model proposed in this study can accurately reproduce the plasma characteristics of the HF/CF4 system. The coupling of HF-based etchants with CFx radicals enables polymerization that preserves SiO2 etching throughput while significantly enhancing etch selectivity against the ACL mask from 1.86 to 5.07, with only a small fraction (~10%) of fluorocarbon gas added. The plasma simulation provides new insights into enhancing the etching performance of HF-based cryogenic plasma etching by controlling the CF2 radicals and HF reactants through the addition of fluorocarbon gases. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

12 pages, 3078 KB  
Article
Photoelectrochemical Water Splitting by SnO2/CuO Thin Film Heterostructure-Based Photocatalysts for Hydrogen Generation
by Joun Ali Faraz, Tanvir Hussain, Muhammad Bilal, Khaleel Ahmad and Luminita-Ioana Cotirla
Nanomaterials 2025, 15(22), 1748; https://doi.org/10.3390/nano15221748 - 20 Nov 2025
Viewed by 833
Abstract
The emission of greenhouse gases from fossil fuels creates devastating effects on Earth’s atmosphere. Therefore, a clean energy source is required to fulfill the energy demand. Hydrogen is considered an energy vector, and the production of green hydrogen is a promising approach. Photoelectrochemical [...] Read more.
The emission of greenhouse gases from fossil fuels creates devastating effects on Earth’s atmosphere. Therefore, a clean energy source is required to fulfill the energy demand. Hydrogen is considered an energy vector, and the production of green hydrogen is a promising approach. Photoelectrochemical (PEC) water splitting is the best approach to produced green hydrogen, but the efficiency is low. To produce hydrogen by PEC splitting water, semiconductor photocatalysts have received an enormous amount of academic research in recent years. A new class of co-catalysts based on transition metals has emerged as a powerful tool for reducing charge transfer barriers and enhancing photoelectrochemical (PEC) efficiency. In this study, copper oxide (CuO) and tin oxide (SnO2) multilayer thin films were prepared by thermal evaporation to create an energy gradient between SnO2 and CuO semiconductors for better charge transfer. To improve the crystallinity and reduce the defects, the prepared films were annealed in a tube furnace at 400 °C, 500 °C, and 600 °C in an argon inert gas environment. XRD results showed that SnO2/CuO-600 °C exhibited strong peaks, indicating the transformation from amorphous to polycrystalline. SEM images showed the transformation of smooth dense film to a granular structure by annealing, which is better for charge transfer from electrode to electrolyte. Optical properties showed that the bandgap was decreased by annealing, which might be diffusion of Cu and Sn atoms at the interface. PEC results showed that the SnO2/CuO-600 °C heterostructure exhibits the solar light-to-hydrogen (STH%) conversion efficiency of 0.25%. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 1762 KB  
Article
Synthesis, Crystal Structure and Thermoelectric Properties of the Type-I Clathrate Sn38Sb8I8
by Nikolaos Moutzouris, Panagiotis Mangelis, Nikolaos Kelaidis, Nagia S. Tagiara, Emmanuel Klontzas, Ioannis Koutselas, Panagiotis Oikonomopoulos, Themistoklis Sfetsas, Theodora Kyratsi and Andreas Kaltzoglou
Nanomaterials 2025, 15(22), 1727; https://doi.org/10.3390/nano15221727 - 16 Nov 2025
Viewed by 652
Abstract
Semiconducting clathrates are a distinct class of inclusion compounds with considerable interest for thermoelectric applications. We report here the synthesis, crystal structure and thermoelectric properties of Sn38Sb8I8. The compound was synthesized via planetary ball milling of the [...] Read more.
Semiconducting clathrates are a distinct class of inclusion compounds with considerable interest for thermoelectric applications. We report here the synthesis, crystal structure and thermoelectric properties of Sn38Sb8I8. The compound was synthesized via planetary ball milling of the corresponding elements for 6 h and then sintering of amorphous mixture at 620 K for 3 days. The crystal structure of the polycrystalline product was determined via X-ray powder diffraction and Rietveld refinement as a type-I clathrate (a = 12.0390(2), space group Pm-3n, No. 223) with mixed-occupied Sn/Sb framework sites and fully occupied I guest sites. Further analysis on the chemical composition, nanomorphology and vibrational modes of the material was carried out via Induced-Coupled-Plasma–Mass Spectrometry, SEM/EDX microscopy and Raman spectroscopy, respectively. Thermoelectric measurements were performed on hot-pressed samples with ca. 98% of the crystallographic density. The clathrate compound behaves as an n-type semiconductor with a band gap of 0.737 eV and exhibits a maximum ZT of 0.0016 at 473 K. Theoretical calculations on the formation enthalpy, electron density of states and transport properties provide insights into the experimentally observed physical behavior. Full article
Show Figures

Graphical abstract

12 pages, 3708 KB  
Article
Impact of BN Buffer Layer Thickness on Interfacial Structure and Band Alignment of a-BN/4H-SiC Heterojunctions
by Yang-Chao Liu, Wen-Jie Chen, Man Luo, Zimo Zhou, Lin Gu, Yi Shen, Xin Qi, Hong-Ping Ma and Qing-Chun Zhang
Coatings 2025, 15(10), 1224; https://doi.org/10.3390/coatings15101224 - 18 Oct 2025
Viewed by 661
Abstract
This study provides a comprehensive investigation into the growth behavior of boron nitride (BN) buffer layers on Silicon carbide (SiC) substrates and their influence on interfacial band alignment. BN layers were deposited on semi-insulating SiC by RF magnetron sputtering with deposition times of [...] Read more.
This study provides a comprehensive investigation into the growth behavior of boron nitride (BN) buffer layers on Silicon carbide (SiC) substrates and their influence on interfacial band alignment. BN layers were deposited on semi-insulating SiC by RF magnetron sputtering with deposition times of 2.5, 5, and 7.5 min (these deposition times are specific experimental parameters to adjust the thickness of the amorphous BN layer, not intrinsic material properties of BN). Atomic force microscopy revealed that the surface roughness of the BN layers initially decreased and then increased with thickness, indicating an evolution from nucleation to continuous film formation, followed by surface coarsening. Transmission electron microscopy confirmed the BN thicknesses of approximately 3.25, 4.91, and 7.57 nm, showing that the layers gradually became uniform and compact, thereby improving the structural integrity of the BN/SiC interface. Band alignment was analyzed using the Kraut method, yielding a valence band offset of ~0.36 eV and a conduction band offset of ~2.34 eV for the BN/SiC heterojunction. This alignment indicates that the BN buffer layer introduces a pronounced electron barrier, effectively suppressing leakage, while the relatively small VBO facilitates hole transport across the interface. These findings demonstrate that the BN buffer layer enhances interfacial bonding, reduces defect states, and enables band structure engineering, offering a promising strategy for improving the performance of wide-bandgap semiconductor devices. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

12 pages, 1977 KB  
Article
Femtosecond Laser Crystallization of Ultrathin a-Ge Films in Multilayer Stacks with Silicon Layers
by Yuzhu Cheng, Alexander V. Bulgakov, Nadezhda M. Bulgakova, Jiří Beránek, Aleksey V. Kacyuba and Vladimir A. Volodin
Appl. Sci. 2025, 15(20), 11082; https://doi.org/10.3390/app152011082 - 16 Oct 2025
Viewed by 581
Abstract
Ultrashort pulsed laser annealing is an efficient technique for crystallizing amorphous semiconductors with the possibility to obtain polycrystalline films at low temperatures, below the melting point, through non-thermal processes. Here, a multilayer structure consisting of alternating amorphous silicon and germanium films was annealed [...] Read more.
Ultrashort pulsed laser annealing is an efficient technique for crystallizing amorphous semiconductors with the possibility to obtain polycrystalline films at low temperatures, below the melting point, through non-thermal processes. Here, a multilayer structure consisting of alternating amorphous silicon and germanium films was annealed by mid-infrared (1500 nm) ultrashort (70 fs) laser pulses under single-shot and multi-shot irradiation conditions. We investigate selective crystallization of ultrathin (3.5 nm) a-Ge non-hydrogenated films, which are promising for the generation of highly photostable nanodots. Based on Raman spectroscopy analysis, we demonstrate that, in contrast to thicker (above 10 nm) Ge films, explosive stress-induced crystallization is suppressed in such ultrathin systems and proceeds via thermal melting. This is likely due to the islet structure of ultrathin films, which results in the formation of nanopores at the Si-Ge interface and reduces stress confinement during ultrashort laser heating. Full article
Show Figures

Figure 1

18 pages, 3356 KB  
Article
Characterizations of Semiconductive W-Doped Ga2O3 Thin Films and Application in Heterojunction Diode Fabrication
by Chia-Te Liao, Yi-Wen Wang, Cheng-Fu Yang and Kao-Wei Min
Inorganics 2025, 13(10), 329; https://doi.org/10.3390/inorganics13100329 - 1 Oct 2025
Cited by 1 | Viewed by 811
Abstract
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to [...] Read more.
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to be amorphous. Due to the ohmic contact behavior observed between the W-doped Ga2O3 film and platinum (Pt), Pt was used as the contact electrode. Current-voltage (J-V) measurements of the W-doped Ga2O3 thin films demonstrated that the samples exhibited significant current density even without any post-deposition annealing treatment. To further validate the excellent charge transport characteristics, Hall effect measurements were conducted. Compared to undoped Ga2O3 thin films, which showed non-conductive characteristics, the W-doped thin films showed an increased carrier concentration and enhanced electron mobility, along with a substantial decrease in resistivity. The measured Hall coefficient of the W-doped Ga2O3 thin films was negative, indicating that these thin films were n-type semiconductors. Energy-Dispersive X-ray Spectroscopy was employed to verify the elemental ratios of Ga, O, and W in the W-doped Ga2O3 thin films, while X-ray photoelectron spectroscopy analysis further confirmed these ratios and demonstrated their variation with the depth of the deposited thin films. Furthermore, the W-doped Ga2O3 thin films were deposited onto both p-type and heavily doped p+-type silicon (Si) substrates to fabricate heterojunction diodes. All resulting devices exhibited good rectifying behavior, highlighting the promising potential of W-doped Ga2O3 thin films for use in rectifying electronic components. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

17 pages, 5980 KB  
Article
Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing
by Xiaoyu Sun, Haojie Zheng, Qiannan Jia, Limin Qi, Zhiqi Zhang, Lijing Zhong, Wei Yan, Jianrong Qiu and Min Qiu
Photonics 2025, 12(10), 973; https://doi.org/10.3390/photonics12100973 - 30 Sep 2025
Viewed by 716
Abstract
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light [...] Read more.
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light energy at the nanoscale while simultaneously regulating intense photo modifications. In this study, we report the controllable growth of long-distance, high-straightness, and high-parallelism multifilament structures in SiC using ultrafast laser processing. The mechanism is the formation of femtosecond multifilaments through the nonlinear effects of clamping equilibrium, which allow highly confined light to propagate without diffraction in parallel channels, further inducing high-aspect-ratio nanostripe-like photomodifications. By employing an elliptical Gaussian beam—rather than a circular one—and optimizing pulse durations to stabilize multifilaments with regular positional distributions, the induced multifilament structures can reach a length of approximately 90 μm with a minimum linewidth of only 28 nm, resulting in an aspect ratio of over 3200:1. Raman tests indicate that the photomodified regions consist of amorphous SiC, amorphous silicon, and amorphous carbon, and photoluminescence tests reveal that silicon vacancy color centers could be induced in areas with lower light power density. By leveraging femtosecond multifilaments for diffraction-less light confinement, this work proposes an effective method for manufacturing deep-subwavelength, high-aspect-ratio nanostructures in SiC. Full article
Show Figures

Figure 1

13 pages, 4449 KB  
Article
Design of High-Efficiency Silicon Nitride Grating Coupler with Self-Compensation for Temperature Drift
by Qianwen Lin, Yunxin Wang, Yu Zhang, Chang Liu and Wenqi Wei
Photonics 2025, 12(10), 959; https://doi.org/10.3390/photonics12100959 - 28 Sep 2025
Cited by 1 | Viewed by 1276
Abstract
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this [...] Read more.
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this paper, the double-layer DBR is used to make the down-scattered light interfere with other light and reflect it back into the waveguide. The finite difference time domain (FDTD) method is used to simulate and optimize the key parameters such as grating period, duty cycle, incident angle and cladding thickness, achieving a coupling efficiency of −1.59 dB and a 3 dB bandwidth of 106 nm. In order to further enhance the temperature stability, the amorphous silicon (a-Si) thermo-optical material layer and titanium metal serpentine heater are embedded in the DBR. The reduction in coupling efficiency caused by fluctuations in environmental temperature is compensated via local temperature control. The simulation results show that within the wide temperature range from −55 °C to 150 °C, the compensated coupling efficiency fluctuation is less than 0.02 dB, and the center wavelength undergoes a blue shift. This design is compatible with complementary metal-oxide-semiconductor (CMOS) processes, which not only simplifies the fabrication process but also significantly improves device stability over a wide temperature range. This provides a feasible and efficient coupling solution for photonic integrated chips in non-temperature-controlled environments, such as optical communications, data centers, and automotive systems. Full article
Show Figures

Figure 1

29 pages, 12480 KB  
Review
Advances of Welding Technology of Glass for Electrical Applications
by Dejun Yan, Lili Ma, Jiaqi Lu, Dasen Wang and Xiaopeng Li
Materials 2025, 18(17), 4096; https://doi.org/10.3390/ma18174096 - 1 Sep 2025
Cited by 1 | Viewed by 4280
Abstract
Glass, as an amorphous material with excellent optical transparency and chemical stability, plays an irreplaceable role in modern engineering and technology fields such as semiconductor manufacturing and micro-electro-mechanical systems (MEMS). For example, borosilicate glass, with a coefficient of thermal expansion (CTE) that is [...] Read more.
Glass, as an amorphous material with excellent optical transparency and chemical stability, plays an irreplaceable role in modern engineering and technology fields such as semiconductor manufacturing and micro-electro-mechanical systems (MEMS). For example, borosilicate glass, with a coefficient of thermal expansion (CTE) that is close to having good thermal shock resistance and chemical stability, can be applied to MEMS packaging and aerospace fields. SiO2 glass exhibits excellent thermal stability, extremely low optical absorption, and high light transmittance, while also possessing strong chemical stability and extremely low dielectric loss. It is widely used in semiconductors, photolithography, and micro-optical devices. However, the stress sensitivity of traditional mechanical joints and the poor weather resistance of adhesive bonding make conventional methods unsuitable for glass joining. Welding technology, with its advantages of high joint strength, structural integrity, and scalability for mass production, has emerged as a key approach for precision glass joining. In the field of glass welding, technologies such as glass brazing, ultrasonic welding, anodic bonding, and laser welding are being widely studied and applied. With the advancement of laser technology, laser welding has emerged as a key solution to overcoming the bottlenecks of conventional processes. This paper, along with the application cases for these technologies, includes an in-depth study of common issues in glass welding, such as residual stress management and interface compatibility design, as well as prospects for the future development of glass welding technology. Full article
Show Figures

Figure 1

15 pages, 6388 KB  
Article
Properties of ZnO Prepared by Polymeric Citrate Amorphous Precursor Method: Influence of Cobalt Concentration
by Jailes J. Beltrán, Luis A. Flórez and Luis C. Sánchez
Materials 2025, 18(17), 3991; https://doi.org/10.3390/ma18173991 - 26 Aug 2025
Viewed by 874
Abstract
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal [...] Read more.
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal decomposition process of the ZnO precursor, identifying acetate zinc as the intermediate main component. XRD and FTIR-ATR techniques showed only the single wurtzite crystalline phase with the presence of oxygen deficiency and/or vacancies, and secondary phases were not detected. SEM micrographs showed agglomerated particles of irregular shape and size with a high distribution and evidenced particles of nanometric size with a morphology change for x = 0.05. We detected high–spin Co2+ ions located in the tetrahedral core and pseudo–octahedral surface sites, substituting Zn2+ ions. The energy band gap of the ZnO semiconductor decreased gradually when the Co doping concentration was increased. M vs. H for undoped ZnO nanoparticles exhibited a diamagnetic signal overlapped with a weak ferromagnetic signal at room temperature. Interestingly, temperature-dependent magnetization showed superparamagnetic behavior with a blocked state in the low temperature range. The Co–doped ZnO samples evidenced a weak ferromagnetic signal and a paramagnetic component, which increased with x. The saturation magnetization increased until x = 0.03 and then decreased for x = 0.05, while the coercive field gradually decreased. Full article
Show Figures

Graphical abstract

Back to TopTop