Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = amorphous semiconductors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2689 KiB  
Article
Growth of Zn–N Co-Doped Ga2O3 Films by a New Scheme with Enhanced Optical Properties
by Daogui Liao, Yijun Zhang, Ruikang Wang, Tianyi Yan, Chao Li, He Tian, Hong Wang, Zuo-Guang Ye, Wei Ren and Gang Niu
Nanomaterials 2025, 15(13), 1020; https://doi.org/10.3390/nano15131020 - 1 Jul 2025
Viewed by 360
Abstract
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its [...] Read more.
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its devices become commercially viable. As is well known, doping is an effective method to modulate the various properties of semiconductor materials. In this study, Zn–N co-doped Ga2O3 films with various doping concentrations were grown in situ on sapphire substrates by atomic layer deposition (ALD) at 250 °C, followed by post-annealing at 900 °C. The post-annealed undoped Ga2O3 film showed a highly preferential orientation, whereas with the increase in Zn doping concentration, the preferential orientation of Ga2O3 films was deteriorated, turning it into an amorphous state. The surface roughness of the Ga2O3 thin films is largely affected by doping. As a result of post-annealing, the bandgaps of the Ga2O3 films can be modulated from 4.69 eV to 5.41 eV by controlling the Zn–N co-doping concentrations. When deposited under optimum conditions, high-quality Zn–N co-doped Ga2O3 films showed higher transmittance, a larger bandgap, and fewer defects compared with undoped ones. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Figure 1

13 pages, 5678 KiB  
Article
Automated SILAR System for High-Precision Deposition of CZTS Semiconductor Thin Films
by Perla J. Vázquez-González, Martha L. Paniagua-Chávez, Rafael Mota-Grajales and Carlos A. Hernández-Gutiérrez
Micro 2025, 5(3), 32; https://doi.org/10.3390/micro5030032 - 24 Jun 2025
Viewed by 272
Abstract
In this work, we present the development and validation of an automated system for the Successive Ionic Layer Adsorption and Reaction (SILAR) method, aimed at depositing Cu2ZnSnS4 (CZTS) thin films. The system is based on a Raspberry Pi Pico microcontroller [...] Read more.
In this work, we present the development and validation of an automated system for the Successive Ionic Layer Adsorption and Reaction (SILAR) method, aimed at depositing Cu2ZnSnS4 (CZTS) thin films. The system is based on a Raspberry Pi Pico microcontroller programmed in Micro-Python (Thonny 4.0.2), allowing precise control over immersion sequences, timing intervals, and substrate positioning along two degrees of freedom. Automation enhances reproducibility, safety, and reduces human error compared with manual operation. CZTS films were deposited on borosilicate glass and optically and structurally characterized. A gradual darkening of the films with increasing deposition cycles indicates controlled material accumulation. X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of CZTS phases, although with a partially amorphous structure. The estimated optical bandgap of ~1.34 eV is consistent with photovoltaic applications. These results validate the functionality of the automated SILAR platform for repeatable and scalable thin-film fabrication, offering a low-cost alternative for producing semiconductor absorber layers in solar energy technologies. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

17 pages, 2398 KiB  
Article
Mesoporous SBA-15-Supported Ceria–Cadmium Composites for Fast Degradation of Methylene Blue in Aqueous Systems
by Dănuţa Matei, Abubakar Usman Katsina, Diana-Luciana Cursaru and Sonia Mihai
Water 2025, 17(12), 1834; https://doi.org/10.3390/w17121834 - 19 Jun 2025
Viewed by 471
Abstract
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing [...] Read more.
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing agent for SBA-15 preparation, enabling the uniform dispersion of CeO2 and Cd species within the SBA-15 framework. The physicochemical properties of both CeO2/SBA-15 and Cd-CeO2/SBA-15 composites were analyzed using small-angle and wide-angle XRD, FT-IR spectroscopy, SEM, TEM, EDX spectroscopy, N2 physisorption at 77 K, and UV-Vis spectroscopy. The findings revealed that the SBA-15 support retained its well-ordered hexagonal mesostructure in both the ceria–SBA-15 and SBA-15-supported cadmium–ceria (Cd-CeO2) composites. The highest degradation efficiency of 96.40% was achieved under optimal conditions, and kinetic analysis using the Langmuir–Hinshelwood model indicated that the MB degradation process followed pseudo-first-order kinetics, with a strong correlation coefficient (R2 = 0.9925) and a rate constant (k) of 0.02532 min−1. Under irradiation, the Cd-CeO2/SBA-15 composites exhibited superior photocatalytic activity compared to the pristine components, owing to the synergistic interaction between ceria and cadmium, enhanced light absorption, and improved charge carrier separation. The recyclability test demonstrated that the degradation efficiency decreased slightly from 96.40% to 94.86% after three cycles, confirming the stability and reusability of Cd-CeO2/SBA-15 composites. The photocatalytic process demonstrated a favorable electrical energy per order (EE/O) value of 281.8 kWh m−3, indicating promising energy efficiency for practical wastewater treatment. These results highlight the excellent photocatalytic performance and durability of the synthesized Cd-CeO2/SBA-15 composites, making them promising candidates for facilitating the photocatalytic decomposition of MB and other dye molecules in water treatment applications. Full article
Show Figures

Figure 1

9 pages, 1668 KiB  
Article
Optical Properties of a-SiC:H Thin Films Deposited by Magnetron Sputtering
by Christina Veneti, Lykourgos Magafas and Panagiota Papadopoulou
Electron. Mater. 2025, 6(2), 8; https://doi.org/10.3390/electronicmat6020008 - 18 Jun 2025
Viewed by 1049
Abstract
In the present work a-SiC:H thin films were prepared using magnetron sputtering technique for different substrate temperatures from 100 °C to 290 °C. Their optical properties were studied using the ellipsometry technique. The experimental results show that the optical band gap of the [...] Read more.
In the present work a-SiC:H thin films were prepared using magnetron sputtering technique for different substrate temperatures from 100 °C to 290 °C. Their optical properties were studied using the ellipsometry technique. The experimental results show that the optical band gap of the films varies from 2.00 eV to 2.18 eV for the hydrogenated films, whereas the Eg is equal to 1.29 eV when the film does not contain hydrogen atoms and for Ts = 100 °C. The refractive index has been observed to remain stable in the region of 100 °C–220 °C, whereas it drops significantly when the temperature of 290 °C is reached. Additionally, the refractive index exhibits an inverse relationship with Eg as a function of Ts. Notably, these thin films were deposited 12 years ago, and their optical properties have remained stable since then. Full article
Show Figures

Figure 1

27 pages, 19227 KiB  
Article
Copper(II) Complex with a 3,3′-Dicarboxy-2,2′-Dihydroxydiphenylmethane-Based Carboxylic Ligand: Synthesis, Spectroscopic, Optical, Density Functional Theory, Cytotoxic, and Molecular Docking Approaches for a Potential Anti-Colon Cancer Control
by Ayman H. Ahmed, Ibrahim O. Althobaiti, Kamal A. Soliman, Yazeed M. Asiri, Ebtsam K. Alenezy, Saad Alrashdi and Ehab S. Gad
Inorganics 2025, 13(5), 151; https://doi.org/10.3390/inorganics13050151 - 6 May 2025
Viewed by 869
Abstract
The chemical interaction of salicylic acid, formaldehyde, and sulfuric acid produced a disalicylic ligand (3,3′-dicarboxy-2,2′-dihydroxydiphenylmethane, DCM), which was then allowed to coordinate with copper (II) ions. The solid compounds’ chemical structures were determined using elemental analysis, UV-Vis, FT-IR, MS, 1H-NMR, PXRD, SEM, [...] Read more.
The chemical interaction of salicylic acid, formaldehyde, and sulfuric acid produced a disalicylic ligand (3,3′-dicarboxy-2,2′-dihydroxydiphenylmethane, DCM), which was then allowed to coordinate with copper (II) ions. The solid compounds’ chemical structures were determined using elemental analysis, UV-Vis, FT-IR, MS, 1H-NMR, PXRD, SEM, TEM, magnetic studies, as well as molecular modeling based on DFT (density functional theory) calculations. It was proposed that the ligand coordinates in a tetradentate fashion with the copper ion to give a square-planar binuclear complex. A significant difference in the diffraction patterns between Cu(II)–DCM (amorphous) and DCM (crystalline) was displayed using an X-ray diffraction analysis. Spherical granules were identified throughout through morphology analysis using SEM and TEM. UV-Vis spectra were used to quantify the optical characteristics such as the energy gap, optical conductivity, refractive index, and penetration depth. The band gap values that lie within the semiconductor region suggested that the compounds could be used for electronic applications. The optimized structure of the synthesized Cu(II)–DCM complex was investigated using DFT and TD-DFT (time-dependent density functional theory) at the B3LYP/6-31G(d, p) level, with the LANL2DZ basis set for Cu in an ethanol solvent and the gas environment modeled by CPCM. The experimental data suggest a square-planar geometry of the Cu(II) binuclear complex. The theoretical calculations support the proposed structure of the compound. The cytotoxicity of the DCM against HCT–116 (human colon cancer) cells was tested, and the outcome exhibited good inhibitions of growth. A molecular docking (MD) examination was carried out to illustrate the binding mode/affinity of the prepared compounds (DCM and Cu(II)–DCM) in the active site of the receptor protein [CDK2 enzyme, PDB ID: 6GUE]. The compounds formed hydrogen bonds with the amino acid residues of the protein, increasing the binding affinity from −7.2 to −9.3 kcal/mol through the coordination process. The information from this current study, particularly the copper complex, is beneficial for exploring new compounds that have anticancer potential. Full article
(This article belongs to the Special Issue Applications and Future Trends for Novel Copper Complexes)
Show Figures

Figure 1

26 pages, 7832 KiB  
Article
Properties of Bilayer Zr- and Sm-Oxide Gate Dielectric on 4H-SiC Substrate Under Varying Nitrogen and Oxygen Concentrations
by Ahmad Hafiz Jafarul Tarek, Tahsin Ahmed Mozaffor Onik, Chin Wei Lai, Bushroa Abdul Razak, Chia Ching Kee and Yew Hoong Wong
Ceramics 2025, 8(2), 49; https://doi.org/10.3390/ceramics8020049 - 2 May 2025
Viewed by 760
Abstract
This work systematically analyses the electrical and structural properties of a bilayer gate dielectric composed of Sm2O3 and ZrO2 on a 4H-SiC substrate. The bilayer thin film was fabricated using a sputtering process, followed by a dry oxidation step [...] Read more.
This work systematically analyses the electrical and structural properties of a bilayer gate dielectric composed of Sm2O3 and ZrO2 on a 4H-SiC substrate. The bilayer thin film was fabricated using a sputtering process, followed by a dry oxidation step with an adjusted oxygen-to-nitrogen (O2:N2) gas concentration ratio. XRD analysis validated formation of an amorphous structure with a monoclinic phase for both Sm2O3 and ZrO2 dielectric thin films. High-resolution transmission emission (HRTEM) analysis verified the cross-section of fabricated stacking layers, confirmed physical oxide thickness around 12.08–13.35 nm, and validated the amorphous structure. Meanwhile, XPS confirmed the presence of more stoichiometric dielectric oxide formation for oxidized/nitrided O2:N2-incorporated samples, and more sub-stochiometric thin films for samples only oxidized in ambient O2. The oxidation/nitridation processes with N2 incorporation influenced the band offsets and revealed conduction band offsets (CBOs) ranging from 2.24 to 2.79 eV. The affected charge movement and influenced electrical performance where optimized samples with gas concentration ratio of 90% O2:10% N2 achieved the highest electrical breakdown field of 10.1 MV cm−1 at a leakage current density of 10−6 A cm−2. This gate stack also improved key parameters such as the effective dielectric constant (keff) up to 29.75, effective oxide charge (Qeff), average interface trap density (Dit), and slow trap density (STD). The bilayer gate stack of Sm2O3 and ZrO2 revealed potential attractive characteristics as a candidate for high-k gate dielectric applications in metal-oxide-semiconductor (MOS)-based devices. Full article
Show Figures

Figure 1

18 pages, 4516 KiB  
Article
Fabrication and Optoelectronic Properties of Advanced Quinary Amorphous Oxide Semiconductor InGaZnSnO Thin Film
by Hongyu Wu, Liang Fang, Zhiyi Li, Fang Wu, Shufang Zhang, Gaobin Liu, Hong Zhang, Wanjun Li and Wenlin Feng
Materials 2025, 18(9), 2090; https://doi.org/10.3390/ma18092090 - 2 May 2025
Viewed by 498
Abstract
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger [...] Read more.
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger mobility owing to the addition of Tin (Sn) in IZO. So, whether Sn doping can increase the optoelectronic properties of IGZO is a new topic worth studying. In this study, four series of quinary InGaZnSnO (IGZTO) oxide thin films were deposited on glass substrates using a high-purity IGZTO (In:Ga:Zn:Sn:O = 1:0.5:1.5:0.25:x, atomic ratio) ceramic target by RF magnetron sputtering. The effects of fabrication parameters (sputtering power, argon gas flow, and target-to-substrate distance) and film thickness on the microstructure, optical, and electrical properties of IGZTO thin films were investigated. The results show that all IGZTO thin films deposited at room temperature (RT) are amorphous and have a smooth and uniform surface with a low roughness (RMS of 0.441 nm, RA of 0.332 nm). They exhibit good average visible light transmittance (89.02~90.69%) and an optical bandgap of 3.47~3.56 eV. When the sputtering power is 90 W, the argon gas flow rate is 50 sccm, and the target-to-substrate distance is 60 mm, the IGZTO films demonstrate optimal electrical properties: carrier concentration (3.66 × 1019 cm−3), Hall mobility (29.91 cm2/Vs), and resistivity (0.54 × 10−2 Ω·cm). These results provide a valuable reference for the property modulation of IGZTO films and the potential application in optoelectronic devices such as TFTs. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

28 pages, 12427 KiB  
Review
Photocatalytic Degradation of Methyl Orange in Wastewater Using TiO2-Based Coatings Prepared by Plasma Electrolytic Oxidation of Titanium: A Review
by Stevan Stojadinović
Reactions 2025, 6(2), 25; https://doi.org/10.3390/reactions6020025 - 8 Apr 2025
Cited by 1 | Viewed by 1314
Abstract
This review analyzes TiO2-based coatings formed by the plasma electrolytic oxidation (PEO) process of titanium for the photocatalytic degradation of methyl orange (MO) under simulated solar irradiation conditions. PEO is recognized as a useful technique for creating oxide coatings on various [...] Read more.
This review analyzes TiO2-based coatings formed by the plasma electrolytic oxidation (PEO) process of titanium for the photocatalytic degradation of methyl orange (MO) under simulated solar irradiation conditions. PEO is recognized as a useful technique for creating oxide coatings on various metals, particularly titanium, to assist in the degradation of organic pollutants. TiO2-based photocatalysts in the form of coatings are more practical than TiO2-based photocatalysts in the form of powder because the photocatalyst does not need to be recycled and reused after wastewater degradation treatment, which is an expensive and time-consuming process. In addition, the main advantage of PEO in the synthesis of TiO2-based photocatalysts is its short processing time (a few minutes), as it excludes the annealing step needed to convert the amorphous TiO2 into a crystalline phase, a prerequisite for a possible photocatalytic application. Pure TiO2 coatings formed by PEO have a low photocatalytic efficiency in the degradation of MO, which is due to the rapid recombination of the photo-generated electron/hole pairs. In this review, recent advances in the sensitization of TiO2 with narrow band gap semiconductors (WO3, SnO2, CdS, Sb2O3, Bi2O3, and Al2TiO5), doping with rare earth ions (example Eu3+) and transition metals (Mn, Ni, Co, Fe) are summarized as an effective strategy to reduce the recombination of photo-generated electron/hole pairs and to improve the photocatalytic efficiency of TiO2 coatings. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

17 pages, 6367 KiB  
Article
Theoretical Calculation and Experimental Studies of Boron Phosphide Polycrystalline Synthesized at High Pressure and High Temperature
by Peng Yang, Ziwei Li, Haidong Yu, Shan Gao, Xiaopeng Jia, Hongan Ma and Xilian Jin
Nanomaterials 2025, 15(6), 446; https://doi.org/10.3390/nano15060446 - 15 Mar 2025
Viewed by 590
Abstract
In this study, a combination of theoretical calculations and experiments were carried out to analyze boron phosphide materials. Amorphous boron powder and amorphous red phosphorus were used as raw materials to directly synthesize the target samples in one step under high-pressure and high-temperature [...] Read more.
In this study, a combination of theoretical calculations and experiments were carried out to analyze boron phosphide materials. Amorphous boron powder and amorphous red phosphorus were used as raw materials to directly synthesize the target samples in one step under high-pressure and high-temperature (HPHT) conditions. Theoretical calculations were then carried out based on the XRD spectra of boron phosphide at 4 GPa and 1200 °C. The experimental results show that the target samples can be successfully prepared at HPHT. The electrical properties of the samples were characterized, and it was found that their conductivity increased with the increase in temperature, and they have a semiconducting nature, which is consistent with the theoretical calculations. Its Seebeck coefficient is positive at different temperatures, indicating that the synthesized boron phosphide is a P-type semiconductor. The combination of theoretical calculations and experiments shows that high pressure can reduce the lattice constant of boron phosphide, thus reducing its forbidden bandwidth, which improves its electrical properties. EDS shows a homogeneous distribution of the elements in the samples. Successful synthesis of BP crystals will probably stimulate more research into its semiconductor properties. It may also provide some assistance in the application of BP in aero-engine high-temperature monitoring systems as well as thermally controlled coatings for deep-space probes. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

25 pages, 5863 KiB  
Article
A Reconfigurable 1x2 Photonic Digital Switch Controlled by an Externally Induced Metasurface
by Alessandro Fantoni and Paolo Di Giamberardino
Photonics 2025, 12(3), 263; https://doi.org/10.3390/photonics12030263 - 13 Mar 2025
Viewed by 703
Abstract
This work reports the design of a 1x2 photonic digital switch controlled by an electrically induced metasurface, configurated by a rectangular array of points where the refractive index is locally changed through the application of an external bias. The device is simulated using [...] Read more.
This work reports the design of a 1x2 photonic digital switch controlled by an electrically induced metasurface, configurated by a rectangular array of points where the refractive index is locally changed through the application of an external bias. The device is simulated using the Beam Propagation Method (BPM) and Finite Difference Time Domain (FDTD) algorithms and the structure under evaluation is an amorphous silicon 1x2 multimode interference (MMI), joined to an arrayed Metal Oxide Semiconductor (MOS) structure Al/SiNx/a-Si:H/ITO to be used in active-matrix pixel fashion to control the output of the switch. MMI couplers, based on self-imaging multimode waveguides, are very compact integrated optical components that can perform many different splitting and recombining functions. The input–output model has been defined using a machine learning approach; a high number of images have been generated through simulations, based on the beam propagation algorithm, obtaining a large dataset for an MMI structure under different activation maps of the MOS pixels. This dataset has been used for training and testing of a machine learning algorithm for the classification of the MMI configuration in terms of binary digital output for a 1x2 switch. Also, a statistical analysis has been produced, targeting the definition of the most incident-activated pixel for each switch operation. An optimal configuration is proposed and applied to demonstrate the operation of a digital cascaded switch. This proof of concept paves the way to a more complex device class, supporting the recent advances in programmable photonic integrated circuits. Full article
(This article belongs to the Special Issue New Perspectives in Semiconductor Optics)
Show Figures

Figure 1

15 pages, 3190 KiB  
Article
Determination of the Band Gap Energy of SnO2 and ZnO Thin Films with Different Crystalline Qualities and Doping Levels
by Cecilia Guillén
Electron. Mater. 2025, 6(1), 3; https://doi.org/10.3390/electronicmat6010003 - 20 Feb 2025
Cited by 2 | Viewed by 2046
Abstract
This research is on the structural, optical, and electrical properties of SnO2 and ZnO thin films, which are increasingly used in many electronic devices, including gas sensors, light-emitting diodes, and solar cells. For the various applications, it is essential to accurately determine [...] Read more.
This research is on the structural, optical, and electrical properties of SnO2 and ZnO thin films, which are increasingly used in many electronic devices, including gas sensors, light-emitting diodes, and solar cells. For the various applications, it is essential to accurately determine the band gap energy, as it controls the optical and electrical behavior of the material. However, there is no single method for its determination; rather, different approximations depend on the crystalline quality and the doping level because these modify the energy band structure of the semiconductor. With the aim of analyzing the various approaches, SnO2 and ZnO films were prepared by sputtering on unheated glass substrates and subsequently annealed in N2 at various temperatures between 250 °C and 450 °C. These samples showed different crystallite sizes, absorption coefficients, and free carrier concentrations depending on the material and the annealing temperature. Analysis of the results shows that the expression developed for amorphous materials underestimates the band gap value, and the so-called unified method tends to overestimate it, while the equations for perfect or heavily doped crystals give band gap energies more consistent with the doping level, regardless of the crystalline quality of the films. Full article
Show Figures

Figure 1

28 pages, 3977 KiB  
Review
Influence of Polystyrene Molecular Weight on Semiconductor Crystallization, Morphology, and Mobility
by Zhengran He, Sheng Bi, Kyeiwaa Asare-Yeboah and Jihua Chen
Appl. Sci. 2025, 15(3), 1232; https://doi.org/10.3390/app15031232 - 25 Jan 2025
Viewed by 1071
Abstract
The morphological characteristics of organic semiconductors significantly impact their performance in many applications of organic electronics. A list of challenges such as dendritic crystal formation, thermal cracks, grain boundaries, and mobility variations must be addressed to optimize their efficiency and stability. This paper [...] Read more.
The morphological characteristics of organic semiconductors significantly impact their performance in many applications of organic electronics. A list of challenges such as dendritic crystal formation, thermal cracks, grain boundaries, and mobility variations must be addressed to optimize their efficiency and stability. This paper provides an in-depth overview of how different polymer additives (conjugated, semicrystalline, and amorphous polymers) influence the crystallization, morphology and mobility of some well-studied organic semiconductors. Conjugated polymers enhance molecular alignment and crystallinity, leading to distinct crystalline structures and improved charge transport properties. Semicrystalline polymers offer in-situ crystallization control, which improves film morphology and increases crystallinity and mobility. Amorphous polymers help minimize misalignment and promote parallel orientation of organic crystals, which is critical for effective charge transport. Special attention is given to polystyrene (PS) as a representative additive in this review, which highlights the significant effects of its molecular weight (Mw) on film morphology and charge transport properties. In particular, low-Mw PS (less than 20k) typically results in smaller, more uniform crystals, and enhances both charge transport and interface quality. Medium-Mw PS (20k to 250k) balances film stability and crystallinity, with moderate improvements in both crystal size and mobility. High-Mw PS (greater than 250k) promotes larger crystalline domains, better long-range order, and more pronounced improvement in charge transport, although it may introduce challenges such as increased phase separation and reduced solubility. This comprehensive analysis underscores the decisive role of polymer additives in optimizing the morphology of organic semiconductors and maximizing their charge transport for next-generation organic electronic applications. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

8 pages, 1488 KiB  
Article
Wrapping Amorphous Indium-Gallium-Zinc-Oxide Transistors with High Current Density
by Jiaxin Liu, Shan Huang, Zhenyuan Xiao, Ning Li, Jaekyun Kim, Jidong Jin and Jiawei Zhang
Electron. Mater. 2025, 6(1), 2; https://doi.org/10.3390/electronicmat6010002 - 23 Jan 2025
Viewed by 2264
Abstract
Amorphous oxide semiconductor transistors with a high current density output are highly desirable for large-area electronics. In this study, wrapping amorphous indium-gallium-zinc-oxide (a-IGZO) transistors are proposed to enhance the current density output relative to a-IGZO source-gated transistors (SGTs). Device performances are analyzed using [...] Read more.
Amorphous oxide semiconductor transistors with a high current density output are highly desirable for large-area electronics. In this study, wrapping amorphous indium-gallium-zinc-oxide (a-IGZO) transistors are proposed to enhance the current density output relative to a-IGZO source-gated transistors (SGTs). Device performances are analyzed using technology computer-aided design (TCAD) simulations. The TCAD simulation results reveal that, with an optimized device structure, the current density of the wrapping a-IGZO transistor can reach 7.34 μA/μm, representing an approximate two-fold enhancement compared to that of the a-IGZO SGT. Furthermore, the optimized wrapping a-IGZO transistor exhibits clear flat saturation and pinch-off behavior. The proposed wrapping a-IGZO transistors show significant potential for applications in large-area electronics. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors for Electronic Applications)
Show Figures

Figure 1

22 pages, 5992 KiB  
Review
IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies
by Youngmin Han, Juhyung Seo, Dong Hyun Lee and Hocheon Yoo
Micromachines 2025, 16(2), 118; https://doi.org/10.3390/mi16020118 - 21 Jan 2025
Cited by 1 | Viewed by 3558
Abstract
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 [...] Read more.
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 cm2/V·s and excellent transmittance of more than ~80%. Amorphous IGZO (a-IGZO) offers additional advantages, including compatibility with various processes and flexibility making it suitable for applications in flexible and wearable devices. Furthermore, IGZO-based thin-film transistors (TFTs) exhibit high uniformity and high-speed switching behavior, resulting in low power consumption due to their low leakage current. These advantages position IGZO not only as a key material in display technologies but also as a candidate for various next-generation electronic devices. This review paper provides a comprehensive overview of IGZO-based electronics, including applications in gas sensors, biosensors, and photosensors. Additionally, it emphasizes the potential of IGZO for implementing logic gates. Finally, the paper discusses IGZO-based neuromorphic devices and their promise in overcoming the limitations of the conventional von Neumann computing architecture. Full article
(This article belongs to the Special Issue Semiconductor and Energy Materials and Processing Technology)
Show Figures

Figure 1

13 pages, 2687 KiB  
Article
Quantitative Modeling of High-Energy Electron Scattering in Thick Samples Using Monte Carlo Techniques
by Bradyn Quintard, Xi Yang and Liguo Wang
Appl. Sci. 2025, 15(2), 565; https://doi.org/10.3390/app15020565 - 9 Jan 2025
Cited by 1 | Viewed by 1078
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful tool for imaging biological samples but is typically limited by sample thickness, which is restricted to a few hundred nanometers depending on the electron energy. However, there is a growing need for imaging techniques capable of studying [...] Read more.
Cryo-electron microscopy (cryo-EM) is a powerful tool for imaging biological samples but is typically limited by sample thickness, which is restricted to a few hundred nanometers depending on the electron energy. However, there is a growing need for imaging techniques capable of studying biological samples up to 10 µm in thickness while maintaining nanoscale resolution. This need motivates the use of mega-electron-volt scanning transmission electron microscopy (MeV-STEM), which leverages the high penetration power of MeV electrons to generate high-resolution images of thicker samples. In this study, we employ Monte Carlo simulations to model electron–sample interactions and explore the signal decay of imaging electrons through thick specimens. By incorporating material properties, interaction cross-sections for energy loss, and experimental parameters, we investigate the relationship between the incident and transmitted beam intensities. Key factors such as detector collection angle, convergence semi-angle, and the material properties of samples were analyzed. Our results demonstrate that the relationship between incident and transmitted beam intensities follows the Beer–Lambert law over thicknesses ranging from a few microns to several tens of microns, depending on material composition, electron energy, and collection angles. The linear depth of silicon dioxide reaches 3.9 µm at 3 MeV, about 6 times higher than that at 300 keV. Meanwhile, the linear depth of amorphous ice reaches 17.9 µm at 3 MeV, approximately 11.5 times higher than that at 300 keV. These findings are crucial for advancing the study of thick biological and semiconductor samples using MeV-STEM. Full article
Show Figures

Figure 1

Back to TopTop