Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = ammonia oxidation inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17113 KiB  
Article
Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils
by Jing Wang, Qiao Huang, Debang Yu, Yuxuan Zhang, Yves Uwiragiye, Nyumah Fallah, Meiqi Chen and Yi Cheng
Agronomy 2025, 15(7), 1536; https://doi.org/10.3390/agronomy15071536 - 25 Jun 2025
Viewed by 397
Abstract
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely [...] Read more.
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely recognized to effectively mitigate N2O emissions by depressing the nitrification process. However, the effectiveness of NIs on N2O emissions reduction under different alkaline amendments remains largely unknown, hindering our knowledge of the optimal soil acidification mitigation strategies. In this study, the effects of NIs in combination with different alkaline amendments on N2O emissions were assessed on typical acid soils collected from four sites during a 28-day aerobic incubation experiment. Treatments included four alkaline amendments (quicklime, chicken manure, cow dung, biochar) and no amendment control, designated as CaO, CM, CD, BC, and CK, combined with a typical NI (3,4 dimethylpyrazole phosphate, DMPP) applied at 2 mg soil kg−1 or non-NI applied, respectively. Both individual amendments and their combination with DMPP significantly elevated the soil pH by 4.9–64.2% compared with the CK treatment, with the effectiveness ranking as CaO > CM ≈ CD > BC. Cumulative N2O emissions were stimulated by the individual application of CaO, CM, and CD but were reduced by BC application compared with the CK treatment. Changes in N2O emissions were positively correlated with the responses of the net N mineralization and nitrification rates to individual amendments, which were regulated by changes in the soil pH. The suppressive effects of NI combined with individual amendments on N2O emissions were significant in the CaO treatment with a reduction ranging from 3.3% to 60.2%, which was attributed to decreased abundances of ammonia-oxidizing bacteria (AOB). Therefore, we concluded that the combined application of CaO and DMPP could be considered as a suitable mitigation strategy for addressing soil acidification through optimized N management. Additionally, BC can serve as a supplementary practice to simultaneously improve soil fertility. These insights are crucial for developing integrated fertilization management strategies to mitigate soil acidification with low N loss risks. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

25 pages, 2553 KiB  
Review
A Review of Plant-Mediated and Fertilization-Induced Shifts in Ammonia Oxidizers: Implications for Nitrogen Cycling in Agroecosystems
by Durga P. M. Chinthalapudi, William Kingery and Shankar Ganapathi Shanmugam
Land 2025, 14(6), 1182; https://doi.org/10.3390/land14061182 - 30 May 2025
Viewed by 856
Abstract
Nitrogen (N) cycling in agroecosystems is a complex process regulated by both biological and agronomic factors, with ammonia-oxidizing archaea (AOA) and bacteria (AOB) playing pivotal roles in nitrification. Despite extensive fertilizer applications to achieve maximum crop yields, nitrogen use efficiency (NUE) remains less [...] Read more.
Nitrogen (N) cycling in agroecosystems is a complex process regulated by both biological and agronomic factors, with ammonia-oxidizing archaea (AOA) and bacteria (AOB) playing pivotal roles in nitrification. Despite extensive fertilizer applications to achieve maximum crop yields, nitrogen use efficiency (NUE) remains less than ideal, with substantial losses contributing to environmental degradation. This review synthesizes current knowledge on plant-mediated and fertilization-induced shifts in ammonia-oxidizer communities and their implications on nitrogen cycling. We highlight the differential ecological niches of AOA and AOB, emphasizing their responses to plant community composition, root exudates, and allelopathic compounds. Fertilization regimes of inorganic nitrogen inputs and biological nitrification inhibition (BNI) are examined in the context of microbial adaptation and ammonia tolerance. Our review highlights the need for integrated nitrogen management strategies comprising optimized fertilization timing, nitrification inhibitors, and plant–microbe interactions in order to optimize NUE and mitigate nitrogen losses. Future research directions must involve applications of metagenomic and isotopic tracing techniques to unravel the mechanistic AOA and AOB pathways that are involved in regulating these dynamics. An improved understanding of these microbial interactions will inform the creation of more sustainable agricultural systems that aim to optimize nitrogen retention and reduce environmental footprint. Full article
Show Figures

Figure 1

12 pages, 1706 KiB  
Article
Effect of Biological Denitrification Inhibitor on N2O Emissions from Paddy Soil and Microbial Mechanisms
by Longfei Wang, Kaikuo Wu, Furong Xiao, Ping Gong, Yan Xue, Yuchao Song, Ruizhuo Wang, Zhijie Wu and Lili Zhang
Microorganisms 2025, 13(6), 1232; https://doi.org/10.3390/microorganisms13061232 - 27 May 2025
Viewed by 397
Abstract
The denitrification process is the main process of the soil nitrogen (N) cycle in paddy fields, which leads to the production of large amounts of nitrous oxide (N2O) and increases N loss in paddy soil. Plant-derived bio denitrification inhibitor procyanidins are [...] Read more.
The denitrification process is the main process of the soil nitrogen (N) cycle in paddy fields, which leads to the production of large amounts of nitrous oxide (N2O) and increases N loss in paddy soil. Plant-derived bio denitrification inhibitor procyanidins are thought to inhibit soil denitrification, thereby reducing N2O emissions and soil N loss. However, the denitrification inhibition effect of procyanidins in paddy soils with high organic matter content remains unclear, and their high price is not conducive to practical application. Therefore, this study conducted a 21-day incubation experiment using low-cost proanthocyanidins (containing procyanidins) and paddy soil with high organic matter content in Northeast China to explore the effects of proanthocyanidins on N2O emissions and related microorganisms in paddy soil. The results of the incubation experiment showed that the application of proanthocyanidins in paddy soil in Northeast China could promote the production of N2O in the first three days but inhibited the production of N2O thereafter. Throughout the incubation period, proanthocyanidins inhibited the enzyme nitrate reductase (NaR) activity and the abundance of nirS and nirk denitrifying bacteria, with a significant dose-response relationship. Although the application of proanthocyanidins also reduced the soil nitrate nitrogen (NO3-N) content, the soil NO3-N content increased significantly with increasing incubation time. In addition, the application of proanthocyanidins increased soil microbial respiration, ammonia-oxidizing archaea (AOA) amoA gene abundance, and soil ammonium nitrogen (NH4+-N) content. Therefore, the application of proanthocyanidins to paddy soil in Northeast China can effectively regulate denitrification. However, in future studies, it is necessary to explore the impact of proanthocyanidins on the nitrification process and use them in combination with urease inhibitors and/or nitrification inhibitors to better regulate soil N transformation and reduce N2O emissions in paddy soil. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

11 pages, 3377 KiB  
Article
A Poly(Acrylamide-co-Acrylic Acid)-Encapsulated Nitrification Inhibitor with Good Soil-Loosening, Phosphorous-Solubilizing, and Nitrogen Fixation Abilities and High-Temperature Resistance
by Hui Gao, Yuli Fu, Tianyu Wang, Meijia Liu, Jianzhen Mao and Feng Xu
Polymers 2025, 17(9), 1280; https://doi.org/10.3390/polym17091280 - 7 May 2025
Viewed by 348
Abstract
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA- [...] Read more.
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA-co-AM)-e-NI) is synthesized by incorporating linear P(AM-co-AA) macromolecular structures into NI systems. The P(AA-co-AM)-e-NI demonstrates an obvious phase transition from a glassy state to a rubbery state, with a glass transition temperature of ~150 °C. Only 5 wt% of the weight loss occurs at 220 °C, meeting the temperature requirements of the high-tower melt granulation process (≥165 °C). The DMPZ content in P(AA-co-AM)-e-NI is 1.067 wt%, representing a 120% increase compared to our previous products (0.484 wt%). P(AA-co-AM)-e-NI can effectively reduce the abundance of ammonia-oxidizing bacteria and prolong the duration during which nitrogen fertilizers exist in the form of ammonium nitrogen. It can also cooperatively enhance the conversion of insoluble phosphorus into soluble phosphorus in the presence of ammonium nitrogen (NH4+-N). In addition, upon adding P(AA-co-AM)-e-NI into soils, soil bulk density and hardness decrease by 9.2% and 10.5%, respectively, and soil permeability increases by 10.5%, showing that it has a good soil-loosening ability and capacity to regulate the soil environment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 2351 KiB  
Article
Regulatory Mechanisms of Exogenous Acyl-Homoserine Lactones in the Aerobic Ammonia Oxidation Process Under Stress Conditions
by Chen Qiu, Kailing Pan, Yuxuan Wei, Xiaolin Zhou, Qingxian Su, Xuejun Bi and Howyong Ng
Microorganisms 2025, 13(3), 663; https://doi.org/10.3390/microorganisms13030663 - 14 Mar 2025
Viewed by 597
Abstract
This study investigated the mechanism by which N-acyl-homoserine lactone (AHL) signaling molecules influence ammonia-oxidizing microorganisms (AOMs) under inhibitory conditions. In laboratory-scale sequential batch reactors (SBRs), the effects of different AHLs (C6-HSL and C8-HSL) on the metabolic activity, microbial community structure, and quorum sensing [...] Read more.
This study investigated the mechanism by which N-acyl-homoserine lactone (AHL) signaling molecules influence ammonia-oxidizing microorganisms (AOMs) under inhibitory conditions. In laboratory-scale sequential batch reactors (SBRs), the effects of different AHLs (C6-HSL and C8-HSL) on the metabolic activity, microbial community structure, and quorum sensing (QS) system response of AOMs were examined. Caffeic acid, 1-octyne, and allylthiourea were used as ammoxidation inhibitors. The results indicated that under inhibitory conditions, AHLs effectively reduced the loss of ammonia oxidation activity and enhanced the resistance of AOMs to unfavorable environments. Additionally, AHLs enriched AOMs in the microbial community, wherein C6-HSL significantly increased the abundance of amoA genes in AOMs. Furthermore, AHLs maintained the activity of QS-related genes and preserved the communication ability between microorganisms. Correlation analysis revealed a positive relationship between AOMs and QS functional bacteria, suggesting that AHLs can effectively regulate the ammonia oxidation process. Overall, exogenous AHLs can improve the metabolic activity and competitive survival of AOMs under inhibitory conditions. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

26 pages, 4436 KiB  
Article
Exploring Suitable Nitrification Inhibitor in an Intensively Cultivated Greenhouse Soil and Its Effect on the Abundance and Community of Soil Ammonia Oxidizers
by Xing Liu, Yanan Cheng, Ying Zhang, Fei Wang, Yonggang Li, Changwei Shen and Bihua Chen
Agronomy 2025, 15(2), 255; https://doi.org/10.3390/agronomy15020255 - 21 Jan 2025
Cited by 1 | Viewed by 1069
Abstract
The application of nitrification inhibitors (NIs) is an effective way to reduce soil nitrogen (N) losses and increase crop N uptake. Yet, the efficacy of NIs commonly varies with dosages, crop systems and soil environmental conditions. Hence, clarifying the suitable type and dosage [...] Read more.
The application of nitrification inhibitors (NIs) is an effective way to reduce soil nitrogen (N) losses and increase crop N uptake. Yet, the efficacy of NIs commonly varies with dosages, crop systems and soil environmental conditions. Hence, clarifying the suitable type and dosage of NIs is extremely important for structuring the best N management regime at a regional scale. Here, based on microcosm experiments, we evaluated the influence of three widely used NIs [Dicyandiamide, DCD; 3,4-Dimethylpyrazole phosphate, DMPP; 2-chloro-6-(trichloromethyl) pyridine, Nitrapyrin] on the nitrification activity of an intensively cultivated greenhouse soil. The results showed that both DCD and DMPP imposed a transient inhibition on nitrification (less than five days) regardless of the dosages applied, and, on the contrary, Nitrapyrin presented a persistent suppression, with a longer duration of the inhibition action by a higher dosage. Accordingly, the incorporation of Nitrapyrin at 2% of the applied N rate (w/w) is a recommendable dosage for local intensive greenhouse production. Further, we assessed the influence of various dosages of Nitrapyrin incorporation (0%, 0.25%, 0.5%, 2% and 5%) on the abundance and community of three groups of soil ammonia oxidizers [i.e., ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and completely ammonia-oxidizing bacteria (Comammox Nitrospira)] by qPCR and high-throughput amplicon sequencing. Nitrapyrin incorporation strongly lowered both the AOB and Comammox Nitrospira abundances and their community richness even at the lowest dosage. Nitrapyrin incorporation also significantly altered the community structure of all of the tested ammonia oxidizers, and the average relative abundance of some major community members (i.e., the Nitrososphaerales Clade Nitrososphaera, Nitrososphaerales Clade A, Nitrosospira briensis Clade, Nitrosospira multiformis Clade, Comammox Nitrospira Clade A.2 and Comammox Nitrospira Clade A-associated) obviously responded to Nitrapyrin incorporation. Overall, our findings indicated that AOB and Comammox Nitrospira were more sensitive to Nitrapyrin incorporation as compared with AOA. The results obtained here highlight the importance of optimizing the type and dosage of NIs for N fertilization management in intensive greenhouse vegetable production. Nitrapyrin incorporation inhibits soil nitrification probably by suppressing the Nitrosospira multiformis Clade in the AOB community at the level tested herein. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1988 KiB  
Article
Impact of Drying–Wetting Cycles on Nitrification Inhibitors (DMPP and DMPSA) in a Greenhouse Experiment with Two Contrasting Mediterranean Soils
by Laura Sánchez-Martin, Adrián Bozal-Leorri, Janaina M. Rodrigues, Carmen González-Murua, Pedro Aparicio, Sonia García-Marco and Antonio Vallejo
Agronomy 2024, 14(11), 2620; https://doi.org/10.3390/agronomy14112620 - 6 Nov 2024
Viewed by 1405
Abstract
Studies of the impact of nitrification inhibitors (NIs), specifically DMPP and DMPSA, on N2O emissions during “hot moments” have produced conflicting results regarding their effectiveness after rewetting. This study aimed to clarify the effectiveness of NIs in reducing N2O [...] Read more.
Studies of the impact of nitrification inhibitors (NIs), specifically DMPP and DMPSA, on N2O emissions during “hot moments” have produced conflicting results regarding their effectiveness after rewetting. This study aimed to clarify the effectiveness of NIs in reducing N2O emissions by assessing residual DMP concentration and its influence on ammonia-oxidizing bacteria (AOB) in two pot experiments using calcareous (Soil C, Calcic Haploxerept) and acidic soils (Soil A, Dystric Xerochrepts). Fertilizer treatments included urea (U), DMPP, and DMPSA. The experiments were divided into Phase I (water application to dry period, 44 days) and Phase II (rewetting from days 101 to 121). In both phases for Soil C, total N2O emissions were reduced by 88% and 90% for DMPP and DMPSA, respectively, compared with U alone. While in Phase I, the efficacy of NIs was linked to the regulation of AOB populations, in Phase II this group was not affected by NIs, suggesting that nitrification may not be the predominant process after rewetting. In Soil A, higher concentrations of DMP from DMPP were maintained compared to Soil C at the end of each phase. Despite this, NIs had no significant effect due to low nitrification rates and limited amoA gene abundance, indicating unfavorable conditions for nitrifiers. The study highlights the need to optimize NIs to reduce N2O emissions and improve nitrogen efficiency, while understanding their interactions with the soil. This knowledge is necessary in order to design fertilization strategies that improve the sustainability of agriculture under climate change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 502 KiB  
Article
Effect of the Nitrification Inhibitor DMPP on Blueberry Planted in Neutral Soil
by Yiru Yang, Qilong Zeng, Hong Yu, Jiguang Wei, Jiafeng Jiang and Liangliang Tian
Agronomy 2024, 14(9), 2029; https://doi.org/10.3390/agronomy14092029 - 5 Sep 2024
Cited by 1 | Viewed by 1402
Abstract
In order to increase nutrient input and alleviate the poor growth of blueberry (Vaccinium corymbosum L.) in neutral soil with strong nitrification, the application of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) as an enhanced efficiency fertilizer is a strategy to reduce nitrogen (N) [...] Read more.
In order to increase nutrient input and alleviate the poor growth of blueberry (Vaccinium corymbosum L.) in neutral soil with strong nitrification, the application of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) as an enhanced efficiency fertilizer is a strategy to reduce nitrogen (N) loss and improve N supply. However, few studies have systematically investigated the effect of DMPP application on blueberry and its soil condition in detail so far. In this study, a pot experiment was conducted to elucidate the effect of DMPP at four gradient levels including 0.5% (w/w applied-N) DMPP (DL), 1% DMPP (DM), 2% DMPP (DH), and no DMPP (CK) on the dynamics of soil mineral N (NH4+-N and NO3-N), soil chemical properties, as well as the agronomic characteristics and physiological indexes of blueberry plants in the neutral soil–blueberry system. The addition of DMPP significantly increased the retention of soil ammonium nitrogen and the content of total mineral nitrogen. qPCR analysis showed that DMPP inhibited the ammoxidation process mainly by reducing the abundance of the ammonia-oxidizing bacteria (AOB) amoA gene rather than the ammonia-oxidizing archaea (AOA) amoA gene. No significant inhibitory effect of DMPP was observed for the nitrite dehydrogenase gene nxrA and nitrite reductase gene nirS. Soil NH4+-N and available phosphorus content were both enhanced with the DMPP application rates both in bulk and rhizosphere soil. Applying 1% DMPP to the neutral soil for blueberry was sufficient to safely inhibit soil nitrification, not only increasing ammonium nitrogen content by 10.42% and 26.79%, but also enhancing available phosphorus content by 9.19% and 22.41% compared with CK in bulk and rhizosphere soil, respectively. Moreover, 1% DMPP addition increased the nitrogen and phosphorus concentration of blueberry leaves by 12.17% and 26.42%, respectively, compared with CK. The total branch length and the dry weight of blueberry plant were also increased by 16.8% and 33.1%, respectively. These results provide valuable agronomic information for the application of DMPP in blueberry cultivation. Fertilization applied with 1% DMPP has great economic potential to improve both nitrogen and phosphorus absorption of blueberry so as to promote the vegetative growth of blueberry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 1512 KiB  
Article
Subsurface Drainage and Nitrogen Fertilizer Management Affect Fertilizer Fate in Claypan Soils
by Harpreet Kaur and Kelly A. Nelson
Sustainability 2024, 16(15), 6477; https://doi.org/10.3390/su16156477 - 29 Jul 2024
Cited by 1 | Viewed by 1409
Abstract
Sustainable nitrogen (N) fertilizer management practices in the Midwest U.S. strive to optimize crop production while minimizing N gas emission losses and nitrate-N (NO3-N) losses in subsurface drainage water. A replicated site in upstate Missouri from 2018 to 2020 investigated the [...] Read more.
Sustainable nitrogen (N) fertilizer management practices in the Midwest U.S. strive to optimize crop production while minimizing N gas emission losses and nitrate-N (NO3-N) losses in subsurface drainage water. A replicated site in upstate Missouri from 2018 to 2020 investigated the influence of different N fertilizer management practices on nutrient concentrations in drainage water, nitrous oxide (N2O) emissions, and ammonia (NH3) volatilization losses in a corn (Zea mays, 2018, 2020)–soybean (Glyince max, 2019) rotation. Four N treatments applied to corn included fall anhydrous ammonia with nitrapyrin (fall AA + NI), spring anhydrous ammonia (spring AA), top dressed SuperU and ESN as a 25:75% granular blend (TD urea), and non-treated control (NTC). All treatments were applied to subsurface-drained (SD) and non-drained (ND) replicated plots, except TD urea, which was only applied with SD. Across the years, NO3-N concentration in subsurface drainage water was similar for fall AA + NI and spring AA treatments. The NO3-N concentration in subsurface drainage water was statistically (p < 0.0001) lower with TD urea (9.1 mg L−1) and NTC (8.9 mg L−1) compared to fall AA + NI (14.6 mg L−1) and spring AA (13.8 mg L−1) in corn growing years. During corn years (2018 and 2020), cumulative N2O emissions were significantly (p < 0.05) higher with spring AA compared to other fertilizer treatments with SD and ND. Reduced corn growth and plant N uptake in 2018 caused greater N2O loss with TD urea and spring AA compared to the NTC and fall AA + NI in 2019. Cumulative NH3 volatilization was ranked as TD urea > spring AA > fall AA + NI. Due to seasonal variability in soil moisture and temperature, gas losses were higher in 2018 compared to 2020. There were no environmental benefits to applying AA in the spring compared to AA + NI in the fall on claypan soils. Fall AA with a nitrification inhibitor is a viable alternative to spring AA, which maintains flexible N application timings for farmers. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

10 pages, 1035 KiB  
Article
Screening Potential Nitrification Inhibitors through a Structure–Activity Relationship Study—The Case of Cinnamic Acid Derivatives
by Jie Zhang, Jia Liu, Guilong Li and Meng Wu
Sustainability 2024, 16(13), 5791; https://doi.org/10.3390/su16135791 - 8 Jul 2024
Viewed by 2041
Abstract
Using a nitrification inhibitor to decrease nitrification rates in soil represents a promising strategy to improve nitrogen fertilizer use efficiency. Nonetheless, rapid screening of nitrification inhibitors remains challenging. In this study, we propose a strategy to screen potential nitrification inhibitors through a structure–activity [...] Read more.
Using a nitrification inhibitor to decrease nitrification rates in soil represents a promising strategy to improve nitrogen fertilizer use efficiency. Nonetheless, rapid screening of nitrification inhibitors remains challenging. In this study, we propose a strategy to screen potential nitrification inhibitors through a structure–activity relationship (SAR) study based on a rapid determination of nitrification inhibition. To demonstrate this, the nitrification inhibition potentials of cinnamic acid derivatives against Nitrosomonas europaea growth were evaluated in a liquid culture. The SAR study showed that hydroxyl and fluoride groups were the favorable substituents on the benzene ring, and the ester group and double bond in the side chain were essential for maintaining high inhibition efficacy. Three compounds with notable inhibitory efficacy (EC50 = 8–25 μM) were further assessed in agricultural soil, and they displayed a noteworthy reduction in nitrification rate and bacterial amoA gene numbers. Based on the results, we identified methyl cinnamate, methyl 4-hydroxycinnamate, and methyl 4-fluorocinnamate as promising candidates for nitrification inhibition. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 1704 KiB  
Article
Urea Fertilization Significantly Promotes Nitrous Oxide Emissions from Agricultural Soils and Is Attributed to the Short-Term Suppression of Nitrite-Oxidizing Bacteria during Urea Hydrolysis
by Yiming Jiang, Yueyue Zhu, Weitie Lin and Jianfei Luo
Microorganisms 2024, 12(4), 685; https://doi.org/10.3390/microorganisms12040685 - 28 Mar 2024
Cited by 5 | Viewed by 1871
Abstract
The application of urea in agricultural soil significantly boosts nitrous oxide (N2O) emissions. However, the reason for nitrite accumulation, the period of nitrite-oxidizing bacteria (NOB) suppression, and the main NOB species for nitrite removal behind urea fertilization have not been thoroughly [...] Read more.
The application of urea in agricultural soil significantly boosts nitrous oxide (N2O) emissions. However, the reason for nitrite accumulation, the period of nitrite-oxidizing bacteria (NOB) suppression, and the main NOB species for nitrite removal behind urea fertilization have not been thoroughly investigated. In this study, four laboratory microcosm experiments were conducted to simulate urea fertilization in agricultural soils. We found that within 36 h of urea application, nitrite oxidation lagged behind ammonia oxidation, leading to nitrite accumulation and increased N2O emissions. However, after 36 h, NOB activity recovered and then removed nitrite, leading to reduced N2O emissions. Urea use resulted in an N2O emission rate tenfold higher than ammonium. During incubation, Nitrobacter-affiliated NOB growth decreased initially but increased later with urea use, while Nitrospira-affiliated NOB appeared unaffected. Chlorate suppression of NOB lasted longer, increasing N2O emissions. Urease inhibitors effectively reduced N2O emissions by slowing urea hydrolysis and limiting free ammonia production, preventing short-term NOB suppression. In summary, short-term NOB suppression during urea hydrolysis played a crucial role in increasing N2O emissions from agricultural soils. These findings revealed the reasons behind the surge in N2O emissions caused by extensive urea application and provided guidance for reducing N2O emissions in agricultural production processes. Full article
Show Figures

Figure 1

12 pages, 2117 KiB  
Article
Response of Nitrification and Crop Yield to the Presence of NBPT and DCD in a Wheat-Corn Double Cropping System
by Zhaoqi Qu, Xuejing Xia, Dan Liu, Huimin Dong, Tingliang Pan, Haojie Feng, Yanhong Lou, Hui Wang, Quangang Yang, Zhongchen Yang, Hong Pan and Yuping Zhuge
Agronomy 2024, 14(2), 285; https://doi.org/10.3390/agronomy14020285 - 27 Jan 2024
Cited by 4 | Viewed by 1893
Abstract
The excessive application of nitrogen fertilizer aggravated the loss of nitrogen in farmland and exerted detrimental effects on the soil and water environment. Examining the effects of N-(n-Butyl)thiophosphoric triamide (NBPT) and nitrification inhibitor dicyandiamide (DCD) on nitrification and crop yield in wheat-corn double [...] Read more.
The excessive application of nitrogen fertilizer aggravated the loss of nitrogen in farmland and exerted detrimental effects on the soil and water environment. Examining the effects of N-(n-Butyl)thiophosphoric triamide (NBPT) and nitrification inhibitor dicyandiamide (DCD) on nitrification and crop yield in wheat-corn double cropping systems would provide valuable insights for improving nitrogen efficiency and ensuring a rational application of inhibitors. A field experiment lasting one and a half years was performed in the winter wheat–summer maize double agroecosystem in North China. The four treatments that were applied included (I) conventional fertilization without inhibitors (CK), (II) conventional fertilization with 0.26 g/m2 NBPT (NBPT), (III) conventional fertilization with 1.00 g/m2 DCD (DCD), and (IV) conventional fertilization with 0.26 g/m2 NBPT and 1.00 g/m2 DCD (NBPT + DCD). The results demonstrated that the combined use of NBPT and DCD exerted better effects in reducing NO3-N leaching. Nitrification could be inhibited for up to 95 days by combining NBPT and DCD, while 21 days by DCD. Ammonia-oxidizing archaea (AOA) (R2 = 0.07159, p < 0.01) along with ammonia-oxidizing bacteria (AOB) (R2 = 0.09359, p < 0.01), rather than a complete ammonia oxidizer (comammox), were significantly and positively correlated with NO3-N content, which indicated that the ammoxidation process was mainly regulated by AOA and AOB, instead of comammox in the winter wheat–summer maize double agroecosystem in North China. Full article
(This article belongs to the Special Issue Applied Research and Extension in Agronomic Soil Fertility Series II)
Show Figures

Figure 1

11 pages, 3640 KiB  
Article
Synthesizing a Water-Soluble Polymeric Nitrification Inhibitor with Novel Soil-Loosening Ability
by Yu Liu, Hui Gao, Shanshan Liu, Jinrong Li and Fangong Kong
Polymers 2024, 16(1), 107; https://doi.org/10.3390/polym16010107 - 29 Dec 2023
Cited by 2 | Viewed by 1495
Abstract
Nitrification inhibitor is essential for increasing the nitrogen utilization efficiency of agricultural plants, thus reducing environmental pollution and increasing crop yield. However, the easy volatilization and limited functional property is still the bottleneck of nitrification inhibitors. Herein, a novel water-soluble polymeric nitrification inhibitor [...] Read more.
Nitrification inhibitor is essential for increasing the nitrogen utilization efficiency of agricultural plants, thus reducing environmental pollution and increasing crop yield. However, the easy volatilization and limited functional property is still the bottleneck of nitrification inhibitors. Herein, a novel water-soluble polymeric nitrification inhibitor was synthesized through the copolymerization of acrylamide and bio-based acrylic acid, which was synthesized from biomass-derived furfural, and the complexation of carboxyl groups and 3,4-dimethylpyrazole. The results showed that the nitrification inhibitor was an amorphous polymer product with a glass transition temperature of 146 °C and a thermal decomposition temperature of 176 °C, and the content of 3,4-dimethylpyrazole reached 2.81 wt%, which was 115% higher than our earlier product (1.31 wt%). The polymeric nitrification inhibitor can inhibit the activity of ammonia-oxidizing bacteria effectively, thus inhibiting the conversion of ammonium nitrogen to nitrate nitrogen and converting the insoluble phosphate into soluble and absorbable phosphate. By introducing a copolymer structure with a strong flocculation capacity, the polymeric nitrification inhibitor is further endowed with a soil-loosening function, which can increase the porosity of soil to improve the soil environment. Therefore, the nitrification inhibitor can be used in water-soluble and liquid fertilizers, as well as in high tower melting granulated compound fertilizers. Full article
Show Figures

Graphical abstract

16 pages, 2103 KiB  
Article
Short-Term Nitrous Oxide Emissions from Cattle Slurry for Silage Maize: Effects of Placement and the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP)
by Arezoo Taghizadeh-Toosi, Khagendra Raj Baral, Peter Sørensen and Søren O. Petersen
Sustainability 2023, 15(22), 15810; https://doi.org/10.3390/su152215810 - 10 Nov 2023
Cited by 1 | Viewed by 1571
Abstract
Cattle slurry is an important nitrogen source for maize on dairy farms. Slurry injection is an effective measure to reduce ammonia emissions after field application, but with higher risk of nitrous oxide emission than surface application. This study compared soil mineral nitrogen dynamics [...] Read more.
Cattle slurry is an important nitrogen source for maize on dairy farms. Slurry injection is an effective measure to reduce ammonia emissions after field application, but with higher risk of nitrous oxide emission than surface application. This study compared soil mineral nitrogen dynamics and nitrous oxide emissions with two ways of application. First, traditional injection at 25 cm spacing between rows followed by ploughing (called “non-placed slurry”), and second, injection using a new so-called goosefoot slurry injector that placed the slurry in ploughed soil as a 30 cm broad band at 10 cm depth below maize crop rows with 75 cm spacing (named “placed slurry”). Furthermore, the effect of treating slurry with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in Vizura® was tested with both application methods. The field experiment was conducted on a sandy loam soil in a temperate climate. Both nitrous oxide emissions, and the dynamics of soil mineral nitrogen, were monitored for eight weeks after slurry application and seeding of maize using static chambers. The level of nitrous oxide emissions was higher with non-placed compared to placed slurry (p < 0.01), mainly due to higher emissions during the first four weeks. This might be due to higher rates of nitrification and in turn stimulation of denitrification. In both placed and non-placed slurry treatments, Vizura® caused higher soil ammonium concentrations and lower nitrate concentrations (p < 0.001), particularly from 3 to 8 weeks after slurry application. The final level of soil nitrate was similar with and without the nitrification inhibitor, but higher with placed compared to non-placed slurry. Adding Vizura® to non-placed slurry reduced nitrous oxide emissions by 70% when compared to untreated slurry. Surprisingly, there was a non-significant trend towards higher cumulative emissions from placed slurry with the nitrification inhibitor compared to untreated slurry, which was due to higher emissions in the last part of the monitoring period (5–7 weeks after slurry application). Possibly, degradation of the nitrification inhibitor and nitrification activity inside the slurry band as the soil dried promoted nitrous oxide emissions by this time. In summary, placement of untreated slurry in a broad band under maize seeds reduced nitrous oxide emissions compared to non-placed slurry with more soil contact. A comparable reduction was achieved by adding a nitrification inhibitor to non-placed slurry. The pattern of nitrous oxide emissions from placed slurry treated with the inhibitor was complex and requires more investigation. The emission of nitrous oxide was highest when nitrate accumulated in soil around decomposing cattle slurry, and mitigation strategies should aim to prevent this. This study demonstrated a potential for mitigation of nitrous oxide emission by placement of cattle slurry, which may be an alternative to the use of a nitrification inhibitor. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

11 pages, 1099 KiB  
Article
Contributions of Ammonia-Oxidizing Archaea and Bacteria to Nitrous Oxide Production in Intensive Greenhouse Vegetable Fields
by Yubing Dong, Xintong Xu, Junqian Zhang, Ying Jiao, Bingxue Wang, Chenyuan Wang and Zhengqin Xiong
Agronomy 2023, 13(9), 2420; https://doi.org/10.3390/agronomy13092420 - 20 Sep 2023
Cited by 8 | Viewed by 1787
Abstract
With excessive nitrogen (N) input, high nitrous oxide (N2O) emissions are frequently observed in greenhouse vegetable fields. We hypothesized that the underlying production mechanisms can be derived across a wide selection of vegetable fields in the middle and lower reaches of [...] Read more.
With excessive nitrogen (N) input, high nitrous oxide (N2O) emissions are frequently observed in greenhouse vegetable fields. We hypothesized that the underlying production mechanisms can be derived across a wide selection of vegetable fields in the middle and lower reaches of the Yangtze River. Thus, we investigated the emission characteristics and relative contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and other microbial processes to the N2O production from five long-term greenhouse vegetable fields through an incubation experiment with combined inhibition methods. The results showed that the ammonia oxidation process is the dominant contributor to N2O production at all five sites, accounting for 88–97% of the total N2O emissions. Regardless of acidic, neutral, or alkaline soil, AOA-driven N2O emission rates were consistently higher than AOB-driven N2O emission rates. Both AOA-driven and AOB-driven N2O emissions exhibited positive correlations with soil pH, with significant increases in soil N2O production associated with high pH levels. Therefore, general production mechanisms were derived, such that more attention should be paid to AOA-driven N2O emissions and to vegetable soils with a relatively high pH in the middle and lower reaches of the Yangtze River. Full article
Show Figures

Figure 1

Back to TopTop