Effect of the Nitrification Inhibitor DMPP on Blueberry Planted in Neutral Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Management
2.3. Soil Sampling and Analysis
2.4. Soil DNA Extraction and Quantitative PCR
2.5. Determination of Leaf Chlorophyll Content in Blueberry
2.6. Agronomic Index and Plant Nutrient Analysis
2.7. Statistical Analysis
3. Results
3.1. Dynamic Change of Soil Mineral Nitrogen Content
3.2. Soil Chemical Properties Analysis
3.3. Leaf Chlorophyll Content of Blueberry
3.4. Agronomic Characteristics and Biomass of Blueberry Plants
3.5. Nutrient Content of Blueberry Leaves
3.6. Nitrifier and Denitrifier Gene Abundance
3.7. Pearson Correlation Analysis among Investigated Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camp, W.H. The North American blueberries with notes on other groups of vacciniaceae. Brittonia 1945, 5, 203–275. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Veiga, M.; Morais, R.M.; Calhau, C.; Pintado, M. Health promoting properties of blueberries: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, H.; Chen, L. The blueberry industry of China: The past 10 years and the future. Acta Hortic. 2017, 1180, 531–536. [Google Scholar] [CrossRef]
- Caspersen, S.; Svensson, B.; Håkansson, T.; Winter, C.; Khalil, S.; Asp, H. Blueberry–Soil interactions from an organic perspective. Sci. Hortic. 2016, 208, 78–91. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Li, Y.J.; Zeng, Q.L.; Wei, J.G.; Yu, H. The effect of soil pH on plant growth, leaf chlorophyll fluorescence and mineral element content of two blueberries. Acta Hortic. 2017, 1180, 269–276. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Zeng, Q.L.; Wei, J.G.; Jiang, J.F.; Li, Y.J.; Chen, J.B.; Yu, H. Growth, fruit yield, photosynthetic characteristics, and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef]
- Oertli, J.J. Effect of form of nitrogen and pH on growth of blueberry plants. Agronomy 1963, 55, 305–307. [Google Scholar] [CrossRef]
- Townsend, L.R.; Blatt, C.R. Lowbush blueberry: Evidence for the absence of a nitrate reducing system. Plant Soil 1966, 25, 456–460. [Google Scholar] [CrossRef]
- Sugiyama, N.; Hanawa, S. Growth responses of rabbiteye blueberry plants to N forms at constant pH in solution culture. J. Japan. Soc. Hort. Sci. 1992, 61, 25–29. [Google Scholar] [CrossRef]
- Barker, A.V.; Mills, H.A. Ammonium and nitrate nutrition of horticulture crops. Hort. Rev. 1980, 2, 395–423. [Google Scholar]
- Daims, H.; Lücker, S.; Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016, 24, 699–712. [Google Scholar] [CrossRef]
- Spiers, J.M. Fertilization, incorporated organic matter, and early growth of rabbiteye blueberries. J. Am. Soc. Hort. Sci. 1982, 107, 1054–1058. [Google Scholar] [CrossRef]
- Hanson, E.J. Nitrogen nutrition of highbush blueberry. Acta Hortic. 2006, 715, 347–351. [Google Scholar] [CrossRef]
- Bañados, M.P.; Strik, B.C.; Bryla, D.R.; Righetti, T.L. Response of highbush blueberry to nitrogen fertilizer during field establishment, I: Accumulation and allocation of fertilizer nitrogen and biomass. HortScience 2012, 47, 648–655. [Google Scholar] [CrossRef]
- Li, H.; Liang, X.Q.; Chen, Y.X.; Lian, Y.F.; Tian, G.M.; Ni, W.Z. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. J. Environ. Sci. 2008, 20, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.Y. Heterotrophic nitrification and nitrifier denitrification. In Nitrification; Ward, B.B., Arp, D.J., Klotz, M.G., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 95–114. [Google Scholar]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agric. Ecosyst. Environ. 2005, 109, 202–212. [Google Scholar] [CrossRef]
- Gilsanz, C.; Báez, D.; Misselbrook, T.H.; Dhanoa, M.S.; Cárdenas, L.M. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric. Ecosyst. Environ. 2016, 216, 1–8. [Google Scholar] [CrossRef]
- Corrochano-Monsalve, M.; González-Murua, C.; Bozal-Leorri, A.; Lezama, L.; Artetxe, B. Mechanism of action of nitrification inhibitors based on dimethylpyrazole: A matter of chelation. Sci. Total Environ. 2021, 752, 141885. [Google Scholar] [CrossRef]
- Chaves, B.; Opoku, A.; De Neve, S.; Boeckx, P.; Van Cleemput, O.; Hofman, G. Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residues. Biol. Fertil. Soils 2006, 43, 62–68. [Google Scholar] [CrossRef]
- Dong, D.; Kou, Y.P.; Yang, W.C.; Chen, G.X.; Xu, H. Effects of urease and nitrification inhibitors on nitrous oxide emissions and nitrifying/denitrifying microbial communities in a rainfed maize soil: A 6-year field observation. Soil Tillage Res. 2018, 180, 82–90. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3,4-Dimethylpyrazole phosphate (DMPP)—A new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Benckiser, G.; Christ, E.; Herbert, T.; Weiske, A.; Blome, J.; Hardt, M. The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP)—Quantification and effects on soil metabolism. Plant Soil 2013, 371, 257–266. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.T.; Wang, C.Y.; Zhang, Q.Q.; Dong, Y.B.; Xiong, Z.Q. DMPP mitigates N2O and NO productions by inhibiting ammonia-oxidizing bacteria in an intensified vegetable field under different temperature and moisture regimes. Pedosphere 2024, 34, 652–663. [Google Scholar] [CrossRef]
- Pasda, G.; Hähndel, R.; Zerulla, W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol. Fertil. Soils 2001, 34, 85–97. [Google Scholar] [CrossRef]
- Yu, Q.G.; Chen, Y.X.; Ye, X.Z.; Zhang, Q.L.; Zhang, Z.J.; Tian, P. Evaluation of nitrification inhibitor, 3,4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns. Chemosphere 2007, 67, 872–878. [Google Scholar] [CrossRef]
- Bai, J.; Li, Y.; Zhang, W.; Liu, L.X.; Wang, R.; Qiu, Z.J.; Liu, Y.W.; Meng, Q.X.; Zhang, Q.; Yang, Z.P.; et al. Ammonia-oxidizing bacteria are the primary N2O producers in long-time tillage and fertilization of dryland calcareous soil. Soil Tillage Res. 2023, 234, 105820. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol. Fertil. Soils 2001, 34, 98–102. [Google Scholar]
- Menéndez, S.; Barrena, I.; Setien, I.; González-Murua, C.; Estavillo, J.M. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol. Biochem. 2012, 53, 82–89. [Google Scholar] [CrossRef]
- Xu, L.; Chen, H.; Xu, J.J.; Yang, J.B.; Li, X.C.; Liu, M.Q.; Jiao, J.G.; Hu, F.; Li, H.X. Nitrogen transformation and plant growth in response to different urea-application methods and the addition of DMPP. J. Plant Nutr. Soil Sci. 2014, 177, 271–277. [Google Scholar] [CrossRef]
- Weiske, A.; Benckiser, G.; Herbert, T.; Ottow, J.C.G. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol. Fertil. Soils 2001, 34, 109–117. [Google Scholar]
- Hu, H.W.; Macdonald, C.A.; Trivedi, P.; Holmes, B.; Bodrossy, L.; He, J.Z.; Singh, B.K. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environ. Microbiol. 2014, 17, 444–461. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.A.; Irfan, M.; Umar, W.; Wakeel, A.; Schmitz, R.A. Mediation of gaseous emissions and improving plant productivity by DCD and DMPP nitrification inhibitors: Meta-analysis of last three decades. Environ. Sci. Pollut. Res. Int. 2023, 30, 64719–64735. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, J.; Mirsyed Hosseini, H.; Etesami, H.; Majidi, A. Biochar counteracts nitrification inhibitor DMPP-mediated negative effect on spinach (Spinacia oleracea L.) growth. Ecotoxicol. Environ. Saf. 2020, 191, 110243. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Stewart, B.A. Responses of crop plants to ammonium and nitrate N. Adv. Agron. 2013, 118, 205–397. [Google Scholar]
- Qiao, C.L.; Liu, L.L.; Hu, S.J.; Compton, J.E.; Greaver, T.L.; Li, Q.L. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Change Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
- Zhang, J.S.; Tong, T.Y.; Potcho, P.M.; Huang, S.H.; Ma, L.; Tang, X.R. Nitrogen Effects on yield, quality and physiological characteristics of giant rice. Agronomy 2020, 10, 1816. [Google Scholar] [CrossRef]
- Polychronaki, E.; Douma, C.; Giourga, C.; Loumou, A. Assessing nitrogen fertilization strategies in winter wheat and cotton crops in northern Greece. Pedosphere 2012, 22, 689–697. [Google Scholar] [CrossRef]
- Persson, T.; Wirén, A. Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant Soil 1995, 168, 55–65. [Google Scholar] [CrossRef]
- Lu, R.K. Analysis Methods for Soil and Agro-Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 156–160+308–316. (In Chinese) [Google Scholar]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Rotthauwe, J.H.; Witzel, K.P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef]
- Yang, M.; Fang, Y.T.; Sun, D.; Shi, Y.L. Efficiency of two nitrification inhibitors (dicyandiamide and 3,4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Sci. Rep. 2016, 6, 22075. [Google Scholar]
- Linzmeier, W.; Gutser, R.; Schmidthalter, U. Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). Biol. Fertil. Soils 2001, 34, 103–108. [Google Scholar]
- McCarty, G.W.; Bremner, J.M. Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Biol. Fertil. Soils 1989, 8, 204–211. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U. Influence of soil parameters on the efficiency of the new nitrification inhibitor DMPP (ENTEC®). In Plant Nutrition—Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Kluwer Academic Publischers: Dordrecht, The Netherlands, 2001; pp. 756–757. [Google Scholar]
- Shi, X.Z.; Hu, H.W.; Müller, C.; He, J.Z.; Chen, D.L.; Suter, H.C. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Appl. Environ. Microbiol. 2016, 82, 5236–5248. [Google Scholar] [CrossRef]
- Zhang, H.J.; Wu, Z.J.; Zhou, Q.X. Dicyandiamide sorption-desorption behaviour on soils and peat humus. Pedosphere 2004, 14, 395–399. [Google Scholar]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M. Scope and strategies for regulation of nitrification in agricultural systems—Challenges and opportunities. Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef]
- Prosser, J.I.; Nicol, G.W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialization and differentiation. Trends Microbiol. 2012, 20, 523–531. [Google Scholar] [CrossRef]
- Chen, Q.H.; Qi, L.Y.; Bi, Q.F.; Dai, P.B.; Sun, D.S.; Sun, C.L.; Liu, W.J.; Lu, L.L.; Ni, W.Z.; Lin, X.Y. Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Appl. Microbiol. Biotechnol. 2015, 99, 477–487. [Google Scholar] [CrossRef]
- Duan, Y.F.; Kong, X.W.; Schramm, A.; Labouriau, R.; Eriksen, J.; Petersen, S.O. Microbial N transformations and N2O emission after simulated grassland cultivation: Effects of the nitrification inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP). Appl. Environ. Microbiol. 2016, 83, e02019-16. [Google Scholar] [PubMed]
- Shen, T.L.; Stieglmeier, M.; Dai, J.L.; Urich, T.; Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol. Lett. 2013, 344, 121–129. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, L.L.; Wu, Z.J.; Chen, Z.H.; Chen, L.J. Responses of ammonia-oxidizing bacteria and archaea in two agricultural soils to nitrification inhibitors DCD and DMPP: A pot experiment. Pedosphere 2013, 23, 729–739. [Google Scholar] [CrossRef]
- Ruser, R.; Schulz, R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—A review. J. Plant Nutr. Soil Sci. 2015, 178, 171–188. [Google Scholar] [CrossRef]
- Höfferle, Š.; Nicol, G.W.; Pal, L.; Hacin, J.; Prosser, J.I.; Mandić-Mulec, I. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. FEMS Microbiol. Ecol. 2010, 74, 302–315. [Google Scholar] [CrossRef]
- Li, K.K.; Hao, Z.H.; Chen, L.; Sha, Y.; Wang, E.; Sui, X.H.; Mi, G.H. Conservation strip-till modifies rhizosphere ammonia-oxidizing archaea and bacteria, increases nitrate accumulation and promotes maize growth at grain filling stage. Soil Tillage Res. 2023, 234, 105821. [Google Scholar] [CrossRef]
- Segal, L.M.; Miller, D.N.; McGhee, R.P.; Loecke, T.D.; Cook, K.L.; Shapiro, C.A.; Drijber, R.A. Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site. Soil Tillage Res. 2017, 168, 110–117. [Google Scholar] [CrossRef]
- Yao, H.Y.; Gao, Y.M.; Nicol, G.W.; Campbell, C.D.; Prosser, J.I.; Zhang, L.M.; Han, W.Y.; Singh, B.K. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl. Environ. Microbiol. 2011, 77, 4618–4625. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.J.; Shi, P.H.; Omasa, K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 2014, 10, 36. [Google Scholar] [CrossRef]
- Patra, A.K.; Chhonkar, P.K.; Khan, M.A. Effect of green manure Sesbania sesban and nitrification inhibitor encap sulated calcium carbide (ECC) on soil mineral-N, enzyme activity and nitrifying organisms in a rice-wheat cropping system. Eur. J. Soil Biol. 2006, 42, 173–180. [Google Scholar] [CrossRef]
- Tamada, T. Effects of nitrogen sources on growth and leaf nutrient concentrations of ‘Tifblue’ rabbiteye blueberry under water culture. Small Fruits Rev. 2004, 3, 149–158. [Google Scholar] [CrossRef]
- Wang, R.Z.; Yang, J.J.; Liu, H.Y.; Sardans, J.; Zhang, Y.H.; Wang, X.B.; Wei, C.Z.; Lü, X.T.; Dijkstra, F.A.; Jiang, Y.; et al. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology 2021, 103, e3616. [Google Scholar] [CrossRef]
- Hu, B.; Jiang, Z.M.; Wang, W.; Qiu, Y.H.; Zhang, Z.H.; Liu, Y.Q.; Li, A.F.; Gao, X.K.; Liu, L.C.; Qian, Y.W.; et al. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 2019, 5, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Li, Z.; Wang, W.; Jiang, Z.M.; Guo, L.P.; Wang, X.H.; Qian, Y.W.; Huang, X.H.; Liu, Y.Q.; Liu, X.J.; et al. Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. Mol. Plant 2021, 14, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H.; Röemheld, V.; Cakmak, I. Root-induced changes of nutrient availability in the rhizosphere. J. Plant Nutr. 1987, 10, 1175–1184. [Google Scholar] [CrossRef]
Soil Chemical Properties | Treatment | ||||
---|---|---|---|---|---|
CK | DL | DM | DH | ||
NH4+-N (μg g−1) | bulk soil | 803 ± 18 a | 854 ± 32 b | 887 ± 25 b | 888 ± 14 b |
rhizosphere soil | 406 ± 13 a | 472 ± 13 b | 515 ± 8 c | 537 ± 22 c | |
NO3–-N (μg g−1) | bulk soil | 131 ± 11 c | 104 ± 7 b | 74 ± 10 a | 78 ± 10 a |
rhizosphere soil | 125 ± 4 d | 96 ± 4 c | 67 ± 2 a | 75 ± 1 b | |
pH | bulk soil | 6.23 ± 0.04 a | 6.19 ± 0.03 a | 6.24 ± 0.06 a | 6.23 ± 0.06 a |
rhizosphere soil | 6.31 ± 0.10 a | 6.30 ± 0.10 a | 6.30 ± 0.04 a | 6.31 ± 0.04 a | |
EC | bulk soil | 1.42 ± 0.16 a | 1.55 ± 0.23 a | 1.76 ± 0.19 a | 1.68 ± 0.33 a |
rhizosphere soil | 1.33 ± 0.04 a | 1.46 ± 0.03 ab | 1.50 ± 0.10 b | 1.44 ± 0.07 ab | |
AP (μg g−1) | bulk soil | 374 ± 4 a | 392 ± 19 ab | 408 ± 13 b | 408 ± 16 b |
rhizosphere soil | 246 ± 4 a | 282 ± 2 b | 301 ± 14 c | 315 ± 13 c | |
AK (mg g−1) | bulk soil | 2.02 ± 0.03 a | 2.03 ± 0.06 a | 2.05 ± 0.04 a | 2.08 ± 0.05 a |
rhizosphere soil | 1.23 ± 0.05 a | 1.27 ± 0.03 a | 1.28 ± 0.04 a | 1.29 ± 0.01 a | |
Urease (NH4+-N μg g−1 24h−1) | bulk soil | 503 ± 49 a | 589 ± 52 ab | 605 ± 69 ab | 630 ± 61 b |
rhizosphere soil | 581 ± 46 a | 608 ± 22 a | 632 ± 20 ab | 687 ± 48 b | |
Phosphatase (p-nitrophenol μg g−1 h−1) | bulk soil | 1.21 ± 0.19 a | 1.43 ± 0.10 ab | 1.52 ± 0.13 ab | 1.61 ± 0.19 b |
rhizosphere soil | 1.90 ± 0.19 a | 2.14 ± 0.25 ab | 2.27 ± 2.27 ab | 2.35 ± 0.07 b |
Treatment | Chlorophyll-a (mg g−1 FW) | Chlorophyll-b (mg g−1 FW) | ||||
---|---|---|---|---|---|---|
Inner | Middle | Outer | Inner | Middle | Outer | |
CK | 0.77 ± 0.06 a | 0.67 ± 0.05 ab | 0.34 ± 0.03 a | 0.40 ± 0.02 a | 0.39 ± 0.06 a | 0.25 ± 0.00 a |
DL | 1.10 ± 0.08 b | 0.64 ± 0.05 a | 0.35 ± 0.06 a | 0.51 ± 0.02 b | 0.37 ± 0.06 a | 0.26 ± 0.03 a |
DM | 1.09 ± 0.16 b | 0.90 ± 0.09 c | 0.56 ± 0.05 b | 0.50 ± 0.06 b | 0.45 ± 0.04 a | 0.35 ± 0.04 b |
DH | 0.86 ± 0.04 a | 0.77 ± 0.07 b | 0.57 ± 0.06 b | 0.44 ± 0.02 a | 0.42 ± 0.02 a | 0.34 ± 0.04 b |
Agronomic Characteristics | Treatment | ||||
---|---|---|---|---|---|
CK | DL | DM | DH | ||
Total branch length (cm) | 450 ± 4 a | 457 ± 18 a | 525 ± 26 b | 607 ± 16 c | |
Number of branches | Primary order | 8 ± 1 a | 8 ± 1 ab | 9 ± 1 ab | 9 ± 0 b |
Secondary order | 16 ± 1 a | 21 ± 3 b | 18 ± 1 ab | 22 ± 2 b | |
Tertiary order | 9 ± 1 b | 5 ± 2 a | 10 ± 1 b | 7 ± 2 ab | |
Total branching number | 33 ± 1 a | 34 ± 2 a | 37 ± 1 b | 37 ± 1 b | |
Dry weight (g) | 23 ± 2 a | 24 ± 5 a | 31 ± 1 b | 28 ± 2 ab | |
Height (cm) | 41.7 ± 1.2 a | 42.3 ± 2.5 a | 45 ± 4.4 a | 42.7 ± 4.2 a | |
Basal diameter (mm) | 7.5 ± 0.4 a | 7.6 ± 0.9 a | 7.6 ± 0.2 a | 7.7 ± 0.6 a |
Treatment | N (mg g−1) | P (mg g−1) | K (mg g−1) |
---|---|---|---|
CK | 25.54 ± 1.11 a | 1.11 ± 0.04 a | 13.26 ± 0.81 a |
DL | 26.75 ± 1.88 ab | 1.22 ± 0.05 a | 12.65 ± 0.61 a |
DM | 28.65 ± 1.98 bc | 1.40 ± 0.13 b | 12.65 ± 0.71 a |
DH | 30.96 ± 0.34 c | 1.42 ± 0.12 b | 13.03 ± 0.96 a |
Treatment | Quantity Mean (Copies g−1) | |||
---|---|---|---|---|
AOB amoA | AOA amoA | nxrA | nirS | |
CK | 1.09 × 107 ± 3.55 × 106 | 9.24 × 106 ± 3.00 × 106 | 1.86 × 107 ± 4.89 × 106 | 1.65 × 107 ± 2.52 × 106 |
DH | 2.72 × 104 ± 1.48 × 104 | 1.73 × 107 ± 5.93 × 106 | 1.19×107 ± 3.77×106 | 2.14 × 107 ± 1.63 × 106 |
Parameter | NH4+-N (BS) | NH4+-N (RS) | NO3−-N (BS) | NO3−-N (RS) | pH (BS) | pH (RS) | EC (BS) | EC (RS) | AP (BS) | AP (RS) | AK (BS) | AK (RS) | Urease (BS) | Urease (RS) | Pase (BS) | Pase (RS) | Height | BD | TBL | NB | DW | Leaf N | Leaf P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NH4+-N (RS) | 0.793 ** | — | |||||||||||||||||||||
NO3−-N (BS) | −0.768 ** | −0.920 ** | — | ||||||||||||||||||||
NO3−-N (RS) | −0.846 ** | −0.942 ** | 0.925 ** | — | |||||||||||||||||||
pH (BS) | 0.008 | 0.165 | −0.177 | −0.153 | — | ||||||||||||||||||
pH (RS) | −0.332 | 0.087 | −0.080 | 0.003 | 0.131 | — | |||||||||||||||||
EC (BS) | 0.609 * | 0.521 | −0.436 | −0.551 | −0.145 | −0.502 | — | ||||||||||||||||
EC (RS) | 0.460 | 0.606 * | −0.670 * | −0.661 * | 0.379 | 0.239 | 0.017 | — | |||||||||||||||
AP (BS) | 0.669 * | 0.705 * | −0.694 * | −0.733 ** | 0.024 | −0.118 | 0.639 * | 0.559 | — | ||||||||||||||
AP (RS) | 0.729 ** | 0.966 ** | −0.930 ** | −0.902 ** | 0.228 | 0.088 | 0.473 | 0.662 * | 0.758 ** | — | |||||||||||||
AK (BS) | 0.345 | 0.375 | −0.336 | −0.304 | 0.251 | −0.178 | 0.529 | −0.034 | 0.532 | 0.436 | — | ||||||||||||
AK (RS) | 0.443 | 0.623 * | −0.352 | −0.556 | 0.088 | 0.328 | 0.280 | 0.443 | 0.495 | 0.511 | 0.204 | — | |||||||||||
Urease (BS) | 0.848 ** | 0.567 | −0.564 | −0.626 * | 0.094 | −0.251 | 0.267 | 0.344 | 0.440 | 0.529 | 0.433 | 0.341 | — | ||||||||||
Urease (RS) | 0.684 * | 0.667 * | −0.642 * | −0.597 * | −0.295 | −0.335 | 0.666 * | 0.050 | 0.694 * | 0.667 * | 0.504 | 0.193 | 0.465 | — | |||||||||
Pase (BS) | 0.558 | 0.751 ** | −0.850 ** | −0.681 * | 0.080 | 0.030 | 0.423 | 0.334 | 0.510 | 0.818 ** | 0.542 | 0.061 | 0.454 | 0.681 * | — | ||||||||
Pase (RS) | 0.499 | 0.667 * | −0.771 ** | −0.680 * | 0.105 | 0.155 | 0.093 | 0.388 | 0.414 | 0.720 ** | 0.396 | 0.116 | 0.590 * | 0.521 | 0.823 ** | — | |||||||
Height | 0.263 | 0.304 | −0.429 | −0.325 | 0.719 ** | −0.221 | 0.145 | 0.499 | 0.126 | 0.398 | 0.127 | −0.193 | 0.149 | −0.040 | 0.390 | 0.182 | — | ||||||
BD | 0.156 | 0.122 | −0.151 | −0.024 | 0.455 | 0.250 | −0.059 | 0.399 | 0.286 | 0.192 | 0.325 | 0.252 | 0.217 | −0.085 | 0.070 | −0.129 | 0.322 | — | |||||
TBL | 0.730 ** | 0.821 ** | −0.703 * | −0.720 ** | 0.165 | −0.011 | 0.528 | 0.215 | 0.654 * | 0.779 ** | 0.551 | 0.531 | 0.577 * | 0.791 ** | 0.612 * | 0.533 | 0.098 | 0.192 | — | ||||
NB | 0.687 * | 0.671 * | −0.645 * | −0.599 * | −0.290 | −0.332 | 0.665 * | 0.056 | 0.698 * | 0.671 * | 0.508 | 0.195 | 0.469 | 1.000 ** | 0.684 * | 0.523 | −0.036 | −0.076 | 0.794 ** | — | |||
DW | 0.595 * | 0.586 * | −0.685 * | −0.691 * | 0.261 | 0.119 | 0.463 | 0.439 | 0.737 ** | 0.581 * | 0.591 * | 0.388 | 0.526 | 0.436 | 0.503 | 0.510 | 0.157 | 0.357 | 0.605 * | 0.441 | — | ||
Leaf N | 0.678 * | 0.779 ** | −0.710 ** | −0.712 ** | −0.050 | 0.116 | 0.392 | 0.152 | 0.515 | 0.694 * | 0.523 | 0.511 | 0.651 * | 0.736 ** | 0.664 * | 0.721 ** | −0.136 | −0.008 | 0.862 ** | 0.738 ** | 0.626 * | — | |
Leaf P | 0.872 ** | 0.766 ** | −0.677 * | −0.850 ** | −0.012 | −0.282 | 0.615 * | 0.273 | 0.616 * | 0.679 * | 0.342 | 0.482 | 0.731 ** | 0.690 * | 0.481 | 0.573 | 0.065 | −0.199 | 0.777 ** | 0.689 * | 0.577 * | 0.759 ** | — |
Leaf K | 0.030 | −0.170 | 0.380 | 0.209 | 0.165 | −0.252 | −0.106 | −0.117 | −0.176 | −0.302 | −0.242 | 0.309 | 0.032 | −0.182 | −0.653 * | −0.565 | −0.127 | 0.134 | 0.045 | −0.183 | −0.249 | −0.121 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zeng, Q.; Yu, H.; Wei, J.; Jiang, J.; Tian, L. Effect of the Nitrification Inhibitor DMPP on Blueberry Planted in Neutral Soil. Agronomy 2024, 14, 2029. https://doi.org/10.3390/agronomy14092029
Yang Y, Zeng Q, Yu H, Wei J, Jiang J, Tian L. Effect of the Nitrification Inhibitor DMPP on Blueberry Planted in Neutral Soil. Agronomy. 2024; 14(9):2029. https://doi.org/10.3390/agronomy14092029
Chicago/Turabian StyleYang, Yiru, Qilong Zeng, Hong Yu, Jiguang Wei, Jiafeng Jiang, and Liangliang Tian. 2024. "Effect of the Nitrification Inhibitor DMPP on Blueberry Planted in Neutral Soil" Agronomy 14, no. 9: 2029. https://doi.org/10.3390/agronomy14092029
APA StyleYang, Y., Zeng, Q., Yu, H., Wei, J., Jiang, J., & Tian, L. (2024). Effect of the Nitrification Inhibitor DMPP on Blueberry Planted in Neutral Soil. Agronomy, 14(9), 2029. https://doi.org/10.3390/agronomy14092029