Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = aminobenzoic acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3275 KB  
Article
Salts of Antifolate Pyrimethamine with Isomeric Aminobenzoic Acids: Exploring Packing Interactions and Pre-Crystallization Aggregation
by Karolina Cichocka, Magdalena Zimnicka, Karolina Kędra, Arkadiusz Gajek and Magdalena Ceborska
Int. J. Mol. Sci. 2026, 27(1), 180; https://doi.org/10.3390/ijms27010180 - 23 Dec 2025
Abstract
Pyrimethamine (PYR), a drug approved for the treatment of infections caused by protozoan parasites, is a multifunctional API based on 2,4-diaminopyrimidine scaffold. The present study aims toward the development of novel solid forms of PYR, by combining it with three isomeric aminobenzoic acids—2-aminobenzoic [...] Read more.
Pyrimethamine (PYR), a drug approved for the treatment of infections caused by protozoan parasites, is a multifunctional API based on 2,4-diaminopyrimidine scaffold. The present study aims toward the development of novel solid forms of PYR, by combining it with three isomeric aminobenzoic acids—2-aminobenzoic acid (2NH2-BA), 3-aminobenzoic acid (3NH2-BA), and 4-aminobenzoic acid (4NH2-BA). Solution crystallization led to the formation of three new solvated salts of PYR (PYR/2NH2-BA/EtOH/H2O, PYR/3NH2-BA/EtOH, and PYR/4NH2-BA/EtOH/H2O). The detailed physicochemical properties of the formed compounds were characterized by single-crystal X-ray diffraction (SC-XRD), FTIR, PXRD, thermogravimetry (TG), and differential scanning calorimetry (DSC). Additionally, the pre-crystallization solutions of PYR with 2NH2-BA, 3NH2-BA, and 4NH2-BA were studied by electrospray ionization mass spectrometry technique (ESI-MS), which enabled the observation of peaks corresponding to noncovalently bonded molecules, providing insight into their specific aggregation in a solution/gas phase environment. We identified different non-covalent aggregates, including self-aggregates of aminobenzoic acids and PYR/aminobenzoic acid associates of different stoichiometries. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

20 pages, 13362 KB  
Article
Portable Multispectral Imaging System for Sodium Nitrite Detection via Griess Reaction on Cellulose Fiber Sample Pads
by Chanwit Kataphiniharn, Nawapong Unsuree, Suwatwong Janchaysang, Sumrerng Lumjeak, Tatpong Tulyananda, Thidarat Wangkham, Preeyanuch Srichola, Thanawat Nithiwutratthasakul, Nattaporn Chattham and Sorasak Phanphak
Sensors 2025, 25(23), 7323; https://doi.org/10.3390/s25237323 - 2 Dec 2025
Viewed by 635
Abstract
This study presents a custom-built, portable multispectral imaging (MSI) system integrated with computer vision for sodium nitrite detection via the Griess reaction on paper-based substrates. The MSI system was used to investigate the absorption characteristics of sodium nitrite at concentrations from 0 to [...] Read more.
This study presents a custom-built, portable multispectral imaging (MSI) system integrated with computer vision for sodium nitrite detection via the Griess reaction on paper-based substrates. The MSI system was used to investigate the absorption characteristics of sodium nitrite at concentrations from 0 to 10 ppm across nine spectral bands spanning 360–940 nm on para-aminobenzoic acid (PABA) and sulfanilamide (SA) substrates. Upon forming azo dyes with N-(1-naphthyl) ethylenediamine (NED), the PABA and SA substrates exhibited strong absorption near 545 nm and 540 nm, respectively, as measured by a spectrometer. This agrees with the 550 nm MSI images, in which higher sodium nitrite concentration regions appeared darker due to increased absorption. A concentration-correlation analysis was conducted for each spectral band. The normalized difference index (NDI), constructed from the most and least correlated bands at 550 nm and 940 nm, showed a stronger correlation with sodium nitrite concentration than the single best-performing band for both substrates. The NDI increased the coefficient of determination (R2) by approximately 19.32% for PABA–NED and 19.89% for SA–NED. This improvement was further confirmed under varying illumination conditions and through comparison with a conventional smartphone RGB imaging approach, in which the MSI-based NDI showed substantially superior performance. The enhancement is attributed to improved contrast, illumination normalization by the NDI, and the narrower spectral bands of the MSI compared with RGB imaging. In addition, the NDI framework enabled effective image segmentation, classification, and visualization, improving both interpretability and usability and providing a practical guideline for developing more robust models with larger training datasets. The proposed MSI system offers strong advantages in portability, sub-minute acquisition time, and operational simplicity, enabling rapid, on-site, and non-destructive chemical analysis. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

33 pages, 4181 KB  
Article
Synthesis, Physicochemical Characterization, and Biocidal Evaluation of Three Novel Aminobenzoic Acid-Derived Schiff Bases Featuring Intramolecular Hydrogen Bonding
by Alexander Carreño, Vania Artigas, Belén Gómez-Arteaga, Evys Ancede-Gallardo, Marjorie Cepeda-Plaza, Jorge I. Martínez-Araya, Roxana Arce, Manuel Gacitúa, Camila Videla, Marcelo Preite, María Carolina Otero, Catalina Guerra, Rubén Polanco, Ignacio Fuentes, Pedro Marchant, Osvaldo Inostroza, Fernando Gil and Juan A. Fuentes
Int. J. Mol. Sci. 2025, 26(21), 10801; https://doi.org/10.3390/ijms262110801 - 6 Nov 2025
Viewed by 819
Abstract
Metal-free aminobenzoic acid-derived Schiff bases are attractive antimicrobial leads because their azomethine (–C=N–) functionality enables tunable electronic properties and target engagement. We investigated whether halogenation on the phenolic ring would modulate the redox behavior and enhance antibacterial potency, and hypothesized that heavier halogens [...] Read more.
Metal-free aminobenzoic acid-derived Schiff bases are attractive antimicrobial leads because their azomethine (–C=N–) functionality enables tunable electronic properties and target engagement. We investigated whether halogenation on the phenolic ring would modulate the redox behavior and enhance antibacterial potency, and hypothesized that heavier halogens would favorably tune physicochemical and electronic descriptors. We synthesized three derivatives (SB-3/Cl, SB-4/Br, and SB-5/I) and confirmed their structures using FTIR, 1H- and 13C-NMR, UV-Vis, and HRMS. For SB-5, single-crystal X-ray diffraction and Hirshfeld analysis verified the intramolecular O–H⋯N hydrogen bond and key packing contacts. Cyclic voltammetry revealed an irreversible oxidation (aminobenzoic ring) and, for the halogenated series, a reversible reduction associated with the imine; peak positions and reversibility trends are consistent with halogen electronic effects and DFT-based MEP/LHS descriptors. Antimicrobial testing showed that SB-5 was selectively potent against Gram-positive aerobes, with low-to-mid micromolar MICs across the panel. Among anaerobes, activity was more substantial: Clostridioides difficile was inhibited at 0.1 µM, and SB-3/SB-5 reduced its sporulation at sub-MICs, while Blautia coccoides was highly susceptible (MIC 0.01 µM). No activity was detected against Gram-negative bacteria at the tested concentrations. In the fungal assay, Botrytis cinerea displayed only a transient fungistatic response without complete growth inhibition. In mammalian cells (HeLa), the compounds displayed clear concentration-dependent behavior. Overall, halogenation, particularly iodination, emerges as a powerful tool to couple redox tuning with selective Gram-positive activity and a favorable cellular tolerance window, nominating SB-5 as a promising scaffold for further antimicrobial optimization. Full article
Show Figures

Figure 1

18 pages, 3251 KB  
Article
Exploring the Synthesis, Anti-Inflammatory and Anti-Tumor Potential of 4-Maleimidylphenyl-Hydrazide Derivatives
by Francis Cloutier, Alexis Paquin, Maude Cloutier, Yassine Oufqir, Laurie Fortin, Julie Girouard, Heidar-Ali Tajmir-Riahi, Carlos Reyes-Moreno and Gervais Bérubé
Molecules 2025, 30(20), 4035; https://doi.org/10.3390/molecules30204035 - 10 Oct 2025
Viewed by 625
Abstract
The design of innovative compounds displaying anti-inflammatory activity in oncological context is a subject of great interest in drug development. It has been proved that a pro-inflammatory microenvironment which accelerates cancer growth and cellular differentiation is often present in malignant bladder tumor. In [...] Read more.
The design of innovative compounds displaying anti-inflammatory activity in oncological context is a subject of great interest in drug development. It has been proved that a pro-inflammatory microenvironment which accelerates cancer growth and cellular differentiation is often present in malignant bladder tumor. In earlier work, we reported the synthesis of p-aminobenzoic acid derivatives that act as anti-inflammatory compounds able to inhibit the pro-inflammatory markers present in bladder cancer microenvironment. DAB-1 rapidly emerged as an effective lead candidate in this investigation, with its ability to shrink by 90% in 25 days the size of human bladder cancer tumors in an ectopic mouse model. This manuscript discloses the synthesis of 23 new hydrazide derivatives of DAB-1 and reports their in vitro and in vivo biological evaluation. It was discovered that most of the new compounds are essentially nontoxic against RAW 264.7 cells, as evaluated by an MTT assay. Anti-inflammatory activity of the new derivatives was investigated by evaluation of their impact on cellular nitric oxide production, measured by a Griess assay. Some compounds did significatively inhibit nitric oxide production much more effectively than the original DAB-1. Striking activity of 14, which is around four times more potent than DAB-1, promotes this derivative as new lead compound in this study. The study of these analogs reveals that a phenolic/anisole core is a key component to achieve high biological activity. Furthermore, mice models of acute inflammation and invasive BCa tumors were used to assess the in vivo impact of derivative 14, and it was found that this compound does reduce inflammation in these mice, possess similar anti-inflammatory activity but higher anti-tumoral activity compared to DAB-1 with no apparent signs of toxicity. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Graphical abstract

14 pages, 1767 KB  
Article
Enhancing Docosahexaenoic Acid Production by Schizochytrium sp. via Periodic Hydrogen Peroxide and p-Aminobenzoate Control
by Luqiang Jia, Mengyao Ma, Xingyue Wang, Ruoyu Wang and Shuqi Xin
Fermentation 2025, 11(10), 558; https://doi.org/10.3390/fermentation11100558 - 27 Sep 2025
Viewed by 1324
Abstract
In producing docosahexaenoic acid (DHA) with Schizochytrium sp., the production yield of DHA can be effectively increased through using hydrogen peroxide (H2O2) and controlling its concentration at the desired level, since H2O2 is a common regulatory [...] Read more.
In producing docosahexaenoic acid (DHA) with Schizochytrium sp., the production yield of DHA can be effectively increased through using hydrogen peroxide (H2O2) and controlling its concentration at the desired level, since H2O2 is a common regulatory mediator for lipid accumulation in oleaginous microorganisms. However, when exposed to the environment of oxidative stress induced by the long-term exogenous addition of H2O2 over an extended time span, cells’ metabolic activity would be gradually decreased or even stopped, which ultimately results in a limited duration for producing DHA efficiently. In fact, the severe accumulation of ROS cannot be avoided when implementing the normal DHA fermentation batch without the use of exogenous H2O2 because of the necessity of supplying a mass of oxygen for cell respiration. Aiming to overcome these issues, a novel periodic feeding strategy for H2O2 and p-aminobenzoate was proposed, and the underlying principle of this strategy is that the substantial harm inflicted on cells due to their continuous exposure to the oxidative stress environment can be effectively alleviated through the implementation of a recovery treatment (p-aminobenzoate, reducing agent) subsequent to the environmental stimulus. When using this strategy, it was achieved that, concurrently, activities of the vital enzymes participating in lipid biosynthesis were maintained at their maximum levels and the maintenance coefficient of glucose reduced to its minimum level (0.0034 1/h vs. 0.0027 1/h) by controlling ROS concentration at lower and desired levels, and thus DHA concentration reached the maximum value of 1.49 ± 0.20 g/L, with a 49% increase compared to the control group. Full article
Show Figures

Graphical abstract

2 pages, 150 KB  
Retraction
RETRACTED: Naamneh et al. Structure–Activity Relationship of Synthetic Linear KTS-Peptides Containing Meta-Aminobenzoic Acid as Antagonists of α1β1 Integrin with Anti-Angiogenic and Melanoma Anti-Tumor Activities. Pharmaceuticals 2024, 17, 549
by Majdi Saleem Naamneh, Tatjana Momic, Michal Klazas, Julius Grosche, Johannes A. Eble, Cezary Marcinkiewicz, Netaly Khazanov, Hanoch Senderowitz, Amnon Hoffman, Chaim Gilon, Jehoshua Katzhendler and Philip Lazarovici
Pharmaceuticals 2025, 18(9), 1400; https://doi.org/10.3390/ph18091400 - 18 Sep 2025
Viewed by 491
Abstract
The journal retracts the article titled “Structure–Activity Relationship of Synthetic Linear KTS-Peptides Containing Meta-Aminobenzoic Acid as Antagonists of α1β1 Integrin with Anti-Angiogenic and Melanoma Anti-Tumor Activities” [...] Full article
20 pages, 3069 KB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Cited by 1 | Viewed by 1573
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

22 pages, 3666 KB  
Article
Green Solid-State Synthesis of Antibacterial Binary Organic Material: Crystal Growth, Physicochemical Properties, Thermal Study, Antibacterial Activity, and Hirshfeld Surface Analysis
by Adarsh Rai, Sumit Chaudhary, Surya Prakash Dube, Szymon Bajda, Richa Raghuwanshi, Shiva Kant Mishra, Gaetano Palumbo and Rama Nand Rai
Int. J. Mol. Sci. 2025, 26(12), 5509; https://doi.org/10.3390/ijms26125509 - 9 Jun 2025
Cited by 1 | Viewed by 1043
Abstract
The organic compounds 2-aminopyrimidine (AP) and 4-aminobenzoic acid (PABA) were selected for the synthesis of a compound by establishing the phase diagram and adopting the solid-state synthesis method. The phase diagram analysis suggested the formation of a novel intermolecular compound (IMC) at a [...] Read more.
The organic compounds 2-aminopyrimidine (AP) and 4-aminobenzoic acid (PABA) were selected for the synthesis of a compound by establishing the phase diagram and adopting the solid-state synthesis method. The phase diagram analysis suggested the formation of a novel intermolecular compound (IMC) at a 1:1 stoichiometric ratio of AP and PABA, along with two eutectics at 0.25 and 0.90 mole fractions of AP. FTIR and NMR spectroscopy were used for the structure elucidation of the intermolecular compound. The powder X-ray diffraction analysis revealed the novel nature of IMC (APPABA) and the mechanical mixture nature of eutectics. The sharp and single peak of the DSC curve suggested the melting and pure nature of the synthesized IMC. Various thermodynamic parameters of IMC and eutectics were studied. A single crystal of the IMC was grown from solution and its single-crystal X-ray diffraction analysis revealed that it crystallized in a monoclinic system with the P21/n space group. Hirshfeld surface analysis further validated the weak non-covalent interactions summarized through the single-crystal X-ray analysis. Studies on the IMC were thoroughly conducted to evaluate its antibacterial activity with reference to antibiotics, and it showed significant positive responses against various pathogenic microbial isolates (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella aerogenes, and Shigella boydii) and non-pathogenic microbial isolates (Enterobacter cloacae, Pseudomonas azotoformans, and Burkholderia paludis). It was also found effective against methicillin-resistant bacterial strains viz. Staphylococcus aureus MRSA. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

17 pages, 2002 KB  
Communication
Towards a Rational Design of Biosensors: Engineering Covalently Grafted Interfacial Adlayers as a Testbed Platform for Electrochemical Detection of Epinephrine
by Xiaoli Chang, Yuan Fang and Oleksandr Ivasenko
Molecules 2025, 30(10), 2236; https://doi.org/10.3390/molecules30102236 - 21 May 2025
Viewed by 855
Abstract
The performance of electrochemical (bio)sensors is fundamentally determined by the precise engineering of interfacial layers that govern (bio)analyte–surface interactions. However, elucidating structure–function relationships remains challenging due to the complex architecture of modern sensors and the irregular nanoscale morphology of many high-performance materials. In [...] Read more.
The performance of electrochemical (bio)sensors is fundamentally determined by the precise engineering of interfacial layers that govern (bio)analyte–surface interactions. However, elucidating structure–function relationships remains challenging due to the complex architecture of modern sensors and the irregular nanoscale morphology of many high-performance materials. In this study, we present a strategy for designing custom functional interfaces as well-defined platforms for probing interfacial processes. Focusing on epinephrine (EP) detection as an important representative of catecholamines, we compare the interfacial behavior of two carboxy-functionalized electrodes—grafted with either para-aminobenzoic acid (PAB) or 3,4,5-tricarboxybenzenediazonium (ATA)—against atomically flat highly oriented pyrolytic graphite (HOPG) as a control. While both modifiers introduce carboxyl groups, PAB forms disordered multilayers that inhibit surface responsiveness, whereas ATA yields an ultrathin monolayer with accessible COOH groups. Electrochemical analysis reveals that ATA-HOPG significantly enhances EP detection at sub-micromolar levels, facilitated by electrostatic interactions between surface-bound COO and protonated EP and its redox products. These results demonstrate that nanoscale control of diazonium grafting is crucial for optimizing bioanalyte recognition. More broadly, this work highlights how molecular-level surface engineering on high-quality carbon substrates can serve as a test-bed platform for the rational design of advanced electrochemical sensing interfaces. Full article
(This article belongs to the Special Issue Physicochemical Research on Material Surfaces)
Show Figures

Figure 1

14 pages, 3439 KB  
Article
Synthesis and Characterisation of Multivariate Metal–Organic Frameworks for Controlled Doxorubicin Absorption and Release
by Ahmed Ahmed, Andrey Bezrukov, Debobroto Sensharma, Ciaran O’Malley, Michael J. Zaworotko, Davide Tiana and Constantina Papatriantafyllopoulou
Molecules 2025, 30(9), 1968; https://doi.org/10.3390/molecules30091968 - 29 Apr 2025
Viewed by 1248
Abstract
The development of drug carriers with efficient absorption and controlled delivery properties is crucial for advancing medical treatments. Metal–organic frameworks (MOFs) with tunable porosity and a large surface area represent a promising class of materials for this application. Among them, NUIG4 stands out [...] Read more.
The development of drug carriers with efficient absorption and controlled delivery properties is crucial for advancing medical treatments. Metal–organic frameworks (MOFs) with tunable porosity and a large surface area represent a promising class of materials for this application. Among them, NUIG4 stands out as a biocompatible MOF that exhibits exceptionally high doxorubicin (Dox) absorption (1995 mg dox/g NUIG4) and pH-controlled release properties. In this study, we report the synthesis and characterisation of multivariate MOFs (MV-NUIG4), which are analogues of NUIG4 that maintain the same topology while incorporating different functional groups within their framework. Eight new MV-NUIG4 MOFs have been synthesised through in situ reactions of the corresponding 4-aminobenzoic acid derivative with 4-formylbenzoic acid. The compounds were thoroughly characterised using a range of techniques, including powder X-ray diffraction, infrared spectroscopy, 1H-NMR, and single-crystal X-ray crystallography. The experimental ratio of the reagents and ligand precursors for the synthesis of MV-NUIG4 MOFs matched the ratio of the linkers in the final products. These structures incorporate additional functional groups, such as methyl and hydroxyl, in varying ratios. Computational modelling was used to provide further insight into the crystal structure of the MOFs, revealing a random distribution of the functional groups in the framework. The Dox absorption and release capacity of all analogues were studied, and the results revealed that all analogues displayed high drug absorption in the range of 1234–1995 mg Dox/g MOF. Furthermore, the absorption and release rates of the drug are modulated by the ratio of functional groups, providing a promising approach for controlling drug delivery properties in MOFs. Full article
Show Figures

Figure 1

20 pages, 5562 KB  
Article
Antifungal and Antibiofilm Activities of 2-Aminobenzoic Acid Derivatives Against a Clinical Ocular Candida albicans Isolate for Biomedical Applications
by Francesco Petrillo, Angela Maione, Marisa Spampinato, Lea Di Massa, Marco Guida, Armando Zarrelli, Emilia Galdiero and Luigi Longobardo
Antibiotics 2025, 14(5), 432; https://doi.org/10.3390/antibiotics14050432 - 25 Apr 2025
Cited by 1 | Viewed by 1258
Abstract
Ocular fungal infections are slow-progressing conditions that primarily affect the cornea but can also involve the entire eyeball. Candida albicans is one of the most involved species. Both diagnosing and treating these infections require prompt and effective action. However, the currently available treatment [...] Read more.
Ocular fungal infections are slow-progressing conditions that primarily affect the cornea but can also involve the entire eyeball. Candida albicans is one of the most involved species. Both diagnosing and treating these infections require prompt and effective action. However, the currently available treatment options mainly rely on azoles and polyenes, which are known for their poor penetration into ocular tissue and associated toxicity. Moreover, conventional antifungals are usually ineffective when tested against biofilm-associated infections, mainly due to the metabolically inactive state of dormant cells embedded in the extracellular biofilm matrix. Here, analysis of the in vitro antifungal activity of four 2-aminobenzoic acid derivatives synthesized using a green method and their combination with Fluconazole (FLC) showed efficacy against the FLC-resistant clinical isolate of C. albicans under both planktonic and biofilm formation conditions. Results showed that compounds 1 and 2 exhibited the best antifungal activity in the checkerboard association test, presenting a synergistic effect towards antifungal action. The downregulation of HWP, ERG11, and ASL3 genes during biofilm inhibition suggested a reduced capacity of the four compounds for hyphal growth and adhesion, as well as a decrease in pathogenicity due to the downregulation of some SAP genes. In vitro and in vivo toxicity profiles indicated that these compounds exhibited low toxicity, as well as the absence of genotoxic effects. Therefore, green-synthetized 2-aminobenzoic acid derivatives may have potential as antifungal agents for the inhibition of C. albicans growth and biofilm formation. Full article
Show Figures

Figure 1

16 pages, 4767 KB  
Article
Non-Enzymatic Electrochemical Sensing of Glucose with Silver Nanoparticles Supported on Poly(3-aminobenzoic acid)
by América Susana Mares-García, Claudia Alejandra Hernández-Escobar, Sonia Kimberly Enriquez-Durán, Anayansi Estrada-Monje, Erasto Armando Zaragoza-Contreras and Claudia Ivone Piñón-Balderrama
Chemosensors 2025, 13(4), 133; https://doi.org/10.3390/chemosensors13040133 - 6 Apr 2025
Cited by 2 | Viewed by 1503
Abstract
This study explores the development of a non-enzymatic electrochemical glucose sensor based on poly(3-aminobenzoic acid) (P3ABA) combined with silver nanoparticles (AgNPs). Incorporating AgNPs into the P3ABA matrix enhances the sensor’s electrocatalytic properties, leading to a system with greater stability. Cyclic voltammetry and chronoamperometry [...] Read more.
This study explores the development of a non-enzymatic electrochemical glucose sensor based on poly(3-aminobenzoic acid) (P3ABA) combined with silver nanoparticles (AgNPs). Incorporating AgNPs into the P3ABA matrix enhances the sensor’s electrocatalytic properties, leading to a system with greater stability. Cyclic voltammetry and chronoamperometry were employed to evaluate the sensor’s performance, demonstrating a sensitivity of 50.71 µA mM−1 cm−2 and a limit of detection (LOD) of 0.2 µM. The sensor exhibited a linear response over a broad concentration range (1 to 16 mM), with a coefficient of determination (R2) of 0.998, indicating good reproducibility and precision. These results highlight the potential of the P3ABA/AgNP composite for glucose sensing applications, offering an extended linear range, allowing for the quantification of glucose concentrations from very low to significantly high levels, covering both physiological and pathological conditions. Full article
(This article belongs to the Special Issue Advances in Electrochemical Sensing and Analysis)
Show Figures

Figure 1

15 pages, 2303 KB  
Article
Influence of Corrosion-Inhibiting Monolayers on the Bond Strength and Durability of Reinforced Concrete Structures Under Service Conditions
by Pablo Monzón-Bello, Roberto Vengut-Tro, Juan Soto-Camino and Manuel Octavio Valcuende-Payá
Materials 2025, 18(7), 1656; https://doi.org/10.3390/ma18071656 - 4 Apr 2025
Viewed by 798
Abstract
Corrosion protection in reinforced concrete structures exposed to aggressive environments remains a critical challenge in civil and architectural engineering. One promising approach involves the application of corrosion-inhibiting monolayers on the reinforcement, such as those formed using 4-aminobenzoic acid. Two methods have previously been [...] Read more.
Corrosion protection in reinforced concrete structures exposed to aggressive environments remains a critical challenge in civil and architectural engineering. One promising approach involves the application of corrosion-inhibiting monolayers on the reinforcement, such as those formed using 4-aminobenzoic acid. Two methods have previously been employed to generate these monolayers: one relying on the adhesion of an organic compound and the other utilising an externally modified approach via electrolysis. This study assesses the influence of this treatment on the steel–concrete bond strength and durability, both critical properties for the structural performance of reinforced concrete under service conditions. For this purpose, pull-out tests were performed on specimens subjected to load–unload cycles to analyse bond behaviour and monolayer integrity. The results indicate that these treatments do not adversely affect the bond strength between reinforcement and concrete. Furthermore, the rebars treated with the inhibitor exhibit less corrosion damage than the untreated rebars. This fact is particularly significant in the rebars treated using the natural adhesion method, with the steel section loss being 32–37% lower than in the untreated rebars. These findings support the feasibility of applying this treatment without compromising structural functionality. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 3972 KB  
Article
Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation
by Weitao Li, Qian Niu, Xinglong Pang, Shang Li, Yang Liu, Boyu Li, Shuangyan Li, Lei Wang, Huazhang Guo and Liang Wang
Molecules 2025, 30(6), 1244; https://doi.org/10.3390/molecules30061244 - 10 Mar 2025
Cited by 4 | Viewed by 1238
Abstract
Graphene quantum dots (GQDs) represent a class of promising nanomaterials characterized by adjustable optical properties, making them well suited for applications in biosensing and chemical detection. However, challenges persist in achieving scalable, cost-effective synthesis and enhancing detection sensitivity. In this study, we have [...] Read more.
Graphene quantum dots (GQDs) represent a class of promising nanomaterials characterized by adjustable optical properties, making them well suited for applications in biosensing and chemical detection. However, challenges persist in achieving scalable, cost-effective synthesis and enhancing detection sensitivity. In this study, we have developed a simple and environmentally friendly method to prepare blue graphene quantum dots, c-GQDs, using nitronaphthalene as a precursor, and yellow graphene quantum dots, y-GQDs, using nitronaphthalene doped acid. The quantum yield is 29.75%, and the average thickness is 2.08 nm and 3.95 nm, respectively. The synthesized c-GQDs exhibit a prominent cyan fluorescence at a wavelength of 490 nm under excitation at 380 nm, while the y-GQDs show a distinct yellow fluorescence at a wavelength of 540 nm under excitation at 494 nm. The introduction of p-aminobenzoic acid (PABA) introduced a marked red shift in fluorescence, attributed to the electron-withdrawing effect of the carboxyl groups on PABA. This key finding significantly enhanced the sensitivity of GQDs for detecting trace copper(II) ions (Cu2+), a heavy metal contaminant posing serious environmental risks. The fluorescence of the GQDs was selectively quenched in the presence of Cu2+, facilitating accurate and sensitive detection even in complex ion matrices. Mechanistic studies revealed that the quenching effect is driven by strong static quenching interactions, which inhibit non-radiative transitions. This work not only introduces a scalable method for producing high-performance GQDs but also highlights their potential as effective fluorescent probes for environmental monitoring and heavy metal ion detection. Full article
Show Figures

Figure 1

28 pages, 2987 KB  
Review
Towards Improved Bioavailability of Cereal Inositol Phosphates, Myo-Inositol and Phenolic Acids
by Krzysztof Żyła and Aleksandra Duda
Molecules 2025, 30(3), 652; https://doi.org/10.3390/molecules30030652 - 1 Feb 2025
Cited by 5 | Viewed by 3849
Abstract
Cereals are among the foods rich in myo-inositol hexakisphosphate (phytic acid, IP6), lower myo-inositol phosphates (IPx), a wide range of phenolic compounds, as well as vitamins, minerals, oligosaccharides, phytosterols and para-aminobenzoic acid, and are attributed with multiple bioactivities, particularly associated with [...] Read more.
Cereals are among the foods rich in myo-inositol hexakisphosphate (phytic acid, IP6), lower myo-inositol phosphates (IPx), a wide range of phenolic compounds, as well as vitamins, minerals, oligosaccharides, phytosterols and para-aminobenzoic acid, and are attributed with multiple bioactivities, particularly associated with the prevention of metabolic syndrome and colon cancer. The bran fraction of wheat, maize, brown rice and other cereals contains high levels of phytate, free and total phenolics, and endogenous enzymes such as amylases, phytase, xylanase, β-glucanase and feruloyl esterase, whose activities can be increased by germination. The preliminary steps of digestion begin in the oral cavity where substrates for the action of endogenous cereal and salivary enzymes start to be released from the food matrix. IP6 released from phytate complexes with arabinoxylans, starch and protein bodies would eventually enhance the absorption of nutrients, including phenolics, by regulating tight junctions and, together with ferulic acid (FA), would maintain cell barrier integrity and epithelial antibacterial immunity. In addition, both IP6 and FA exert potent and complementary antioxidant effects, while FA together with IPx generated through advanced hydrolysis of IP6 by endogenous and microbial phytases may affect digestive enzyme activity and incretin secretion, resulting in modulated insulin and glucagon release and prevention of various diabetic complications. Contrary to widespread negative attitudes towards phytate, in this review, we present the strategy of selecting cereals with high phytate and phenolic content, as well as high endogenous phytase, feruloyl esterase and endoxylanase activities, to produce value-added health-promoting foods. The advanced hydrolysis of phytate and phenolic compounds by cereal and/or microbial enzymes would generate substantial amounts of “enzymatically generated inositol” (EGI), including IP6, IPx and myo-inositol, the compounds that, together with free FA, provide enhanced bioavailability of cereal nutrients through multiple synergistic effects not previously realised. Full article
Show Figures

Graphical abstract

Back to TopTop