Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = aluminum and magnesium coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6934 KiB  
Article
In Situ High-Resolution Optical Microscopy Survey of the Initial Reactivity of Multiphase ZnAlMgSi Coating on Steel
by Guilherme Adinolfi Colpaert Sartori, Oumayma Gabsi, Tiago Machado Amorim, Viacheslav Shkirskiy and Polina Volovitch
Metals 2025, 15(8), 821; https://doi.org/10.3390/met15080821 - 23 Jul 2025
Viewed by 282
Abstract
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 [...] Read more.
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 aqueous solutions. In both environments, galvanic coupling between different coating phases and the anodic behavior decreased in the order binary ZnAl > binary Zn/Zn2Mg > Zn2Mg > Al(Zn); dendrites were evidenced for the coating exposed alone as well as in galvanic coupling with steel. Contrary to the observations known for Zn-rich ZnAlMg coatings, pure Zn2Mg was less reactive than the pure ZnAl phase, underlining the importance of the microstructure for reactivity. Si-needles were systematically cathodic, and Al(Zn) dendrites have shown cathodic behavior in some couplings. In the configuration of coupling with steel, corrosion started at the interfaces “binary ZnAl/steel substrate” or “binary ZnAl/Si particle”. The distribution and nature of the corrosion products formed during the experiment were assessed using X-ray microanalysis in scanning electron microscopy and confocal Raman microscopy. In the sulfate environment, a homogenous and stable corrosion product layer formed from the first steps of the degradation; this was in contrast to the chloride environment, where no surface film formed on the dendrites. Full article
Show Figures

Figure 1

14 pages, 5535 KiB  
Article
Studies on the Coating Formation and Structure Property for Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy
by Yingting Ye, Lishi Wang, Xinbin Hu and Zhixiang Bu
Coatings 2025, 15(7), 846; https://doi.org/10.3390/coatings15070846 - 19 Jul 2025
Viewed by 332
Abstract
Plasma electrolytic oxidation (PEO) is an advanced electrochemical surface treatment technology. It can effectively improve the corrosion resistance of magnesium and its alloys. This paper aims to form protective PEO coatings on an AZ31 substrate with different electrolytes, while monitoring the micro-discharge evolution [...] Read more.
Plasma electrolytic oxidation (PEO) is an advanced electrochemical surface treatment technology. It can effectively improve the corrosion resistance of magnesium and its alloys. This paper aims to form protective PEO coatings on an AZ31 substrate with different electrolytes, while monitoring the micro-discharge evolution by noise intensity and morphology analysis. By setting the PEO parameters and monitoring process characteristics, such as current density, spark appearance, and noise intensity, it was deduced that the PEO process consists of the following three stages: anodic oxidation, spark discharge, and micro-arc discharge. The PEO oxide coating formed on the AZ31 alloy exhibits various irregular volcano-like structures. Oxygen species are uniformly distributed along the coating cross-section. Phosphorus species tend to be enriched inwards to the coating/magnesium substrate interface, while aluminum piles up towards the surface region. Surface roughness of the PEO coating formed in the silicate-based electrolyte was the lowest in an arithmetic average height (Sa) of 0.76 μm. Electrochemical analysis indicated that the corrosion current density of the PEO coating decreased by about two orders of magnitude compared to that of untreated blank AZ31 substrate, while, at the same time, the open-circuit potential shifted significantly to the positive direction. The corrosion current density of the 10 min/400 V coating was 1.415 × 10−6 A/cm2, approximately 17% lower than that of the 2 min/400 V coating (1.738 × 10−6 A/cm2). For a fixed 10 min treatment, the longer the PEO duration time, the lower the corrosion current density. Finally, the tested potentiodynamic polarization curve reveals the impact of different types of PEO electrolytes and different durations of PEO treatment on the corrosion resistance of the oxide coating surface. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

15 pages, 4658 KiB  
Article
Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy
by Qingrong Tan, Ying Zhang, Min Jiang and Jiyuan Zhu
Coatings 2025, 15(6), 722; https://doi.org/10.3390/coatings15060722 - 17 Jun 2025
Viewed by 643
Abstract
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term [...] Read more.
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term corrosion resistance were fabricated on the surface of Mg alloys using the hydrothermal method. Among them, the calcium hydroxide/calcium nitrate–alumina coating successfully filled the cracks in the magnesium hydroxide coating. Meanwhile, we explored the influences of different heating times and temperatures on the coating and analyzed its composition. After immersing the coating in a 3.5% NaCl solution for 168 h, only a small portion of the surface dissolved. Electrochemical test results indicated that the corrosion potential and corrosion current density of the coating increased by three orders of magnitude, significantly improving corrosion resistance in comparison to bare samples. Adhesion tests showed that the coating exhibited good bonding performance to the substrate. This method features a simple, pollution-free preparation process and does not require complex instrumentation, thereby enhancing the longevity of the magnesium alloy. Full article
Show Figures

Graphical abstract

13 pages, 2809 KiB  
Article
Initial Stages of Al-AM60-Modified Surface of Magnesium Alloy Activity Exposed to Simulated Marine Environment
by Gerardo Sánchez, Lucien Veleva and Eduardo Flores
Coatings 2025, 15(6), 661; https://doi.org/10.3390/coatings15060661 - 30 May 2025
Viewed by 543
Abstract
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β [...] Read more.
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β-Mg17Al12 secondary phase. The aluminum nanofilm was composed of (111) and (200) crystal planes of metallic aluminum (Al0) and Al2O3 (Al3+). After 30 days of immersion in a simulated marine environment (SME, pH 7.8), the Al-AM60 maintained a lower alkaline value (pH~8.13) of SME than that of uncoated AM60, attributed to α-Mg electrochemical oxidation to Al2O3 and its posterior dissolution, consuming OH ions. Consequently, the concentration of the released Mg2+ ions from the Al-AM60 surface was reduced ~2.3 times (~15 mg L−1). The Rp (polarization resistance), as inversely proportional to the corrosion current, was extracted from the EIS impedance data fitted to an equivalent electrical circuit. After 30 days in SME solution, the Rp value of the Al-AM60 modified surface was ~3.5 times higher than that of AM60 (~15.46 kΩ cm2), confirming that the sputtered aluminum nano-deposit layer can hinder the corrosion process. These reported findings indicated that sputtered Al nano-coatings can mitigate the surface degradation of Mg-Al alloys in saline aggressive marine environments. Full article
Show Figures

Figure 1

31 pages, 2749 KiB  
Review
Modern Innovations and Applications in Plasma Electrolytic Oxidation Coatings on Aluminum, Magnesium, and Titanium
by Angus G. McCarroll and Pradeep L. Menezes
Coatings 2025, 15(5), 592; https://doi.org/10.3390/coatings15050592 - 16 May 2025
Viewed by 765
Abstract
Plasma electrolytic oxidation (PEO) is an electrochemical surface modification technique for producing dense oxide layers on valve metals. This review compiles the various modifications to the PEO process that have been used to improve the produced coatings and make them suitable for specific [...] Read more.
Plasma electrolytic oxidation (PEO) is an electrochemical surface modification technique for producing dense oxide layers on valve metals. This review compiles the various modifications to the PEO process that have been used to improve the produced coatings and make them suitable for specific applications, with a focus on examples of aluminum, magnesium, and titanium substrates. An overview of the PEO process is given, highlighting the various process parameters and their effects on the final surface. The challenges with light metals that motivate the use of surface modifications are summarized, along with some of the other modifications that attempt to overcome them. Two broad categories of modifications to the PEO process are presented: in situ modifications, influencing the properties of the coating during its formation, and ex situ modifications, augmenting the properties of an already-formed coating. Finally, specific examples of applications for modified PEO processes are discussed, including battery, biomedical, water treatment, and energy production applications. Full article
Show Figures

Graphical abstract

17 pages, 2794 KiB  
Article
Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study
by Kiana Modaresahmadi, Amid P. Khodadoust and James Wescott
Separations 2025, 12(5), 119; https://doi.org/10.3390/separations12050119 - 7 May 2025
Viewed by 487
Abstract
Defluoridation of water was investigated in an adsorption column study using Al-Mg-Ca-coated sand (AMCCS), a ternary metal oxide adsorbent with eco-friendly components that were shown to be effective for water defluoridation, in a batch adsorption study. A packed column of the AMCCS sorbent [...] Read more.
Defluoridation of water was investigated in an adsorption column study using Al-Mg-Ca-coated sand (AMCCS), a ternary metal oxide adsorbent with eco-friendly components that were shown to be effective for water defluoridation, in a batch adsorption study. A packed column of the AMCCS sorbent was evaluated as function of column flow rate, solution type, and sorbent recyclability. Adsorption column experiments included two column flow rates of 2 mL/min and 10 mL/min using two different solutions: deionized water and a synthetic solution representative of groundwater. Greater fluoride column adsorption capacity was obtained at the lower flow rate for both solutions, mainly due to longer contact times between solution and AMCCS sorbent. Adsorption of fluoride occurred through physical adsorption, which followed the Langmuir adsorption model and second-order kinetics for deionized water and synthetic solution. A lower AMCCS column fluoride adsorption capacity was observed for the synthetic solution due to the competition from adsorption of other ions in the synthetic solution, whereas fluoride adsorption by the AMCCS column was influenced by interphase mass transfer to a lesser extent using the synthetic solution than deionized water. The re-coating of spent AMCCS sorbent in the adsorption column resulted in effective recycling and reuse of the AMCCS adsorption column for both deionized water and the synthetic solution, rendering the AMCCS adsorption column a recyclable and sustainable flow through water defluoridation system. Full article
Show Figures

Graphical abstract

24 pages, 7632 KiB  
Article
Quantitative Microstructure of Multiphase Al-Zn-Si-(Mg) Coatings and Their Effects on Sacrificial Protection for Steel
by Guilherme Adinolfi Colpaert Sartori, Blandine Remy, Tiago Machado Amorim and Polina Volovitch
Metals 2025, 15(5), 476; https://doi.org/10.3390/met15050476 - 23 Apr 2025
Cited by 1 | Viewed by 511
Abstract
A new combined analysis of SEM-BSE and EDX images using AphelionTM software was proposed to describe the quantitative microstructure (quantity and neighborhood of sacrificial phases) of Al-Zn-Si-(Mg) coatings on steel. Three materials with different Al/Zn ratios and Mg content were analyzed. The [...] Read more.
A new combined analysis of SEM-BSE and EDX images using AphelionTM software was proposed to describe the quantitative microstructure (quantity and neighborhood of sacrificial phases) of Al-Zn-Si-(Mg) coatings on steel. Three materials with different Al/Zn ratios and Mg content were analyzed. The quantitative microstructure allowed us to describe their corrosion behaviors in a chloride environment and understand their ranking for sacrificial protection of steel in accelerated corrosion tests. For the analyses, interdendritic Zn-rich or Mg-rich phases were expected to be more sacrificial to steel than Al-rich dendrites. Without Mg (AZ coating), Al-rich dendrites created a percolating network, but interdendritic phases did not, suggesting their sacrificial protection to steel to be very limited. Additionally, significant Zn gradients inside dendrites led to a premature coating consumption on the surface, creating new zones of naked steel. In the coatings with Mg (AZM), sacrificial interdendritic phases created a percolating network, which is expected to improve long-time sacrificial protection and contribute to a more uniform formation of Zn corrosion products. For Al content between 30 wt.% and 45 wt.%, a lowering of the Al/Zn ratio (L-AZM) increased the connectivity of the sacrificial interdendritic phases, which is expected to improve the long-term sacrificial effect. Accelerated corrosion tests of scratches in the steel coatings validated the hypotheses. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Graphical abstract

18 pages, 3943 KiB  
Article
The Potential Application of AZ31-Mg(OH)2/CeO2 as Temporary Medical Implants: Evaluation of the Corrosion Resistance and Biocompatibility Properties
by Edgar Onofre-Bustamante, Rosa M. Lozano, María L. Escudero, Ana C. Espíndola-Flores and Sandra E. Benito-Santiago
Coatings 2025, 15(4), 450; https://doi.org/10.3390/coatings15040450 - 10 Apr 2025
Viewed by 818
Abstract
Magnesium-based alloys are considered to be promising materials for the fabrication of temporary bone repair medical implants. The AZ31 magnesium-based (AZ31-Mg) alloy contains 3% aluminum and 1% zinc in its microstructure, which gives it mechanical strength and corrosion resistance. Nonetheless, the corrosion rate [...] Read more.
Magnesium-based alloys are considered to be promising materials for the fabrication of temporary bone repair medical implants. The AZ31 magnesium-based (AZ31-Mg) alloy contains 3% aluminum and 1% zinc in its microstructure, which gives it mechanical strength and corrosion resistance. Nonetheless, the corrosion rate is high, which can lead to implant failure due to rapid degradation, which triggers the release of harmful metal ions. In the present work, a passive layer was obtained on the AZ31-Mg alloy, and subsequently, a cerium oxide (CeO2) coating was deposited through a chemical conversion treatment using 0.01 M CeO2 as a precursor. Based on X-ray photoelectron spectroscopy, the calculated amount of Ce(IV) and Ce(III) present in AZ31-Mg(OH)2/CeO2 was 93.6% and 6.4%, respectively. AZ31-Mg(OH)2/CeO2 showed improved corrosion resistance compared with the bare sample. The in vitro assessment of MC3T3-E1 pre-osteoblast cell viability showed that AZ31-Mg(OH)2/CeO2 was biocompatible after incubation for 24 and 72 h. The results revealed that the CeO2 coating confers greater electrochemical stability and biocompatibility properties, mostly due to the presence of Ce4+ ions. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion Science for Coatings)
Show Figures

Figure 1

16 pages, 12954 KiB  
Article
A Study on the Charging–Discharging Mechanism of All Solid-State Aluminum–Carbon Composite Secondary Batteries
by Jia-Ying Lin, Bo-Ding Wu and Fei-Yi Hung
J. Compos. Sci. 2025, 9(4), 166; https://doi.org/10.3390/jcs9040166 - 29 Mar 2025
Viewed by 622
Abstract
Aluminum solid-state batteries are emerging as one of the most promising energy storage systems, offering advantages such as low cost and high safety. This study adopts a safe and cost-effective approach by alloying and doping the all-solid-state aluminum-ion battery to enhance its electrochemical [...] Read more.
Aluminum solid-state batteries are emerging as one of the most promising energy storage systems, offering advantages such as low cost and high safety. This study adopts a safe and cost-effective approach by alloying and doping the all-solid-state aluminum-ion battery to enhance its electrochemical performance. This research further explores the electrochemical impacts of these modifications on the performance of solid-state aluminum batteries. In this experiment, aluminum-based anodes were deposited onto nickel foil using the thermal evaporation (TE) method. At the same time, the graphite film (GF) cathode material was enriched with sodium (GFN) through a solution-based process. The system was combined with magnesium silicate solid electrolytes to investigate the all-solid-state aluminum-carbon battery′s structural characteristics and charge–discharge mechanisms. The experimental results demonstrate that the aluminum-coated electrode alloying effects and the graphite film modification significantly improve battery performance. The system achieved a maximum specific capacity of approximately 700 mAh g−1, with a cycle life exceeding 100 cycles. Furthermore, the microstructural characteristics and phase structure of the aluminum evaporation film were confirmed. Analysis of ion transport pathways during the charge–discharge cycles of the all-solid-state aluminum-carbon battery revealed that both aluminum and magnesium ions play critical roles in the electrode processes. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

12 pages, 5731 KiB  
Article
Examples of the Superiority of Ionic Liquids and Deep Eutectic Solvents over Aqueous Solutions in Electrodeposition Processes
by Ashraf Bakkar
ChemEngineering 2025, 9(1), 16; https://doi.org/10.3390/chemengineering9010016 - 12 Feb 2025
Cited by 1 | Viewed by 1374
Abstract
The current electrolytes used for metal electrodeposition mostly use aqueous solutions that limit the range and quality of possible coatings. Also, some of these solutions may contain toxic and corrosive chemicals. Thus, the importance of ionic liquids (ILs) and deep eutectic solvents (DES) [...] Read more.
The current electrolytes used for metal electrodeposition mostly use aqueous solutions that limit the range and quality of possible coatings. Also, some of these solutions may contain toxic and corrosive chemicals. Thus, the importance of ionic liquids (ILs) and deep eutectic solvents (DES) becomes clear, as they can be used as green non-aqueous electrolytes for the electrodeposition of a range of reactive metals that are impossible to deposit in aqueous solutions and for the improved electrodeposition of metals that are deposable in aqueous solutions. This paper presents some examples of electrodeposition in ILs and DESs that are considered specific processes. Aluminum, as an active metal that it is impossible to electrodeposit in aqueous solution, was electrodeposited from a chloroaluminate IL. Moreover, the electrodeposition of Al was carried out in open air using a novel approach. Chromium was electrodeposited from a DES containing the environmentally friendly form of Cr (III) instead of toxic Cr (VI). Magnesium alloys, as water-sensitive substrates, were electroplated in an air and water-stable DES. Also, this paper discloses, for the first time, the procedure of pretreatment of Mg alloys for successful electroplating. Full article
Show Figures

Figure 1

15 pages, 2434 KiB  
Review
Processes and Properties of Self-Lubricating Coatings Fabricated on Light Alloys by Using Micro-Arc Oxidation: A Review
by Rui Li, Xingyu He, Chenyu Li, Ruimeng Zhang, Fei Meng, Hongliang Zhang, Xue Cui and Zhisheng Nong
Crystals 2024, 14(10), 845; https://doi.org/10.3390/cryst14100845 - 27 Sep 2024
Cited by 3 | Viewed by 1696
Abstract
A self-lubricating coating is a kind of coating formed on the surface of the material by various processes that can self-replenish lubricating substances during the friction and wear process. This paper presents a comprehensive review of the processes and properties of self-lubricating ceramic [...] Read more.
A self-lubricating coating is a kind of coating formed on the surface of the material by various processes that can self-replenish lubricating substances during the friction and wear process. This paper presents a comprehensive review of the processes and properties of self-lubricating ceramic coatings developed through Micro-arc Oxidation (MAO) on light alloys, including aluminum, magnesium, and titanium. Three technical approaches for the preparation of self-lubricating coatings via MAO are recapitulated. The structures and properties of the self-lubricating coatings prepared by each technical route are compared and analyzed, and the future development tendency of this field is also anticipated. Full article
Show Figures

Figure 1

14 pages, 4069 KiB  
Article
Electroless ZnO Deposition on Mg-Al Alloy for Improved Corrosion Resistance to Marine Environments
by Luis Chávez, Lucien Veleva and Andrea Castillo-Atoche
Coatings 2024, 14(9), 1192; https://doi.org/10.3390/coatings14091192 - 15 Sep 2024
Cited by 1 | Viewed by 1136
Abstract
Electroless ZnO (≈900 nm) was deposited on the surface of an Mg-Al alloy (AM60) to reduce its degradation in the marine environment. Uncoated and coated ZnO samples were exposed to an SME simulated marine solution for up to 30 days. The AFM and [...] Read more.
Electroless ZnO (≈900 nm) was deposited on the surface of an Mg-Al alloy (AM60) to reduce its degradation in the marine environment. Uncoated and coated ZnO samples were exposed to an SME simulated marine solution for up to 30 days. The AFM and optical images revealed that the corrosion attack on the ZnO-AM60 surface was reduced due to an increase in the surface hydrophobicity of the ZnO coating (contact angle of ≈91.6°). The change in pH to more alkaline values over time was less pronounced for ZnO-AM60 (by ≈13%), whereas the release of Mg2+ ions was reduced by 34 times, attributed to the decrease in active sites on the Mg-matrix provided by the electroless ZnO coating. The OCP (free corrosion potential) of ZnO-AM60 shifted towards less negative values of ≈100 mV, indicating that electroless ZnO may serve as a good barrier for AM60 in a marine environment. The calculated polarization resistance (Rp), based on EIS data, was ≈3 times greater for ZnO-AM60 than that of the uncoated substrate. Full article
(This article belongs to the Special Issue Surface Modification of Magnesium, Aluminum Alloys, and Steel)
Show Figures

Figure 1

15 pages, 11362 KiB  
Article
Influence of Laser Scanning Speed on Wear and Corrosion Resistance of Aluminum–Nickel Coating on Magnesium Alloy
by Yali Gao, Shan Jiang, Pengyong Lu, Sicheng Bai, Dongdong Zhang and Meng Jie
Processes 2024, 12(8), 1689; https://doi.org/10.3390/pr12081689 - 13 Aug 2024
Viewed by 1421
Abstract
To improve the wear and corrosion resistance, Al-Ni coating was prepared on Mg alloy by laser cladding, and the influence of the laser scanning speed on the microstructure, wear and corrosion resistance of the coatings was systematically analyzed. The results showed that the [...] Read more.
To improve the wear and corrosion resistance, Al-Ni coating was prepared on Mg alloy by laser cladding, and the influence of the laser scanning speed on the microstructure, wear and corrosion resistance of the coatings was systematically analyzed. The results showed that the coatings with different scanning speeds were composed of Al3Ni2, Mg17Al12 and Mg2Al3 phases. The coatings presented fine needle-like grains. Under different scanning speeds, the microhardness of the coatings was 3.3–4.8 times that of the substrate, and the wear volume of the coatings was decreased by 40.08–51.38%. The coating with a laser scanning speed of 600 mm/min had the highest hardness, the best wear and corrosion resistance. Full article
(This article belongs to the Special Issue Microstructure, Processing and Numerical Simulation of Coatings)
Show Figures

Figure 1

12 pages, 3759 KiB  
Article
Controlling the Size of Hydrotalcite Particles and Its Impact on the Thermal Insulation Capabilities of Coatings
by Yanhua Zhao, Guanhua Shen, Yongli Wang, Xiangying Hao and Huining Li
Materials 2024, 17(9), 2046; https://doi.org/10.3390/ma17092046 - 26 Apr 2024
Viewed by 1326
Abstract
This study focuses on the development of high-performance insulation materials to address the critical issue of reducing building energy consumption. Magnesium–aluminum layered double hydroxides (LDHs), known for their distinctive layered structure featuring positively charged brucite-like layers and an interlayer space, have been identified [...] Read more.
This study focuses on the development of high-performance insulation materials to address the critical issue of reducing building energy consumption. Magnesium–aluminum layered double hydroxides (LDHs), known for their distinctive layered structure featuring positively charged brucite-like layers and an interlayer space, have been identified as promising candidates for insulation applications. Building upon previous research, which demonstrated the enhanced thermal insulation properties of methyl trimethoxysilane (MTS) functionalized LDHs synthesized through a one-step in situ hydrothermal method, this work delves into the systematic exploration of particle size regulation and its consequential effects on the thermal insulation performance of coatings. Our findings indicate a direct correlation between the dosage of MTS and the particle size of LDHs, with an optimal dosage of 4 wt% MTS yielding LDHs that exhibit a tightly interconnected hydrotalcite lamellar structure. This specific modification resulted in the most significant improvement in thermal insulation, achieving a temperature difference of approximately 25.5 °C. Furthermore, to gain a deeper understanding of the thermal insulation mechanism of MTS-modified LDHs, we conducted a thorough characterization of their UV-visible diffuse reflectance and thermal conductivity. This research contributes to the advancement of LDH-based materials for use in thermal insulation applications, offering a sustainable solution to energy conservation in the built environment. Full article
(This article belongs to the Special Issue Polymer Surface Modification and Characterization)
Show Figures

Figure 1

16 pages, 13197 KiB  
Article
Roles of Al and Mg on the Microstructure and Corrosion Resistance of Zn-Al-Mg Hot-Dipped Coated Steel
by Taixiong Guo, Yuhao Wang, Liusi Yu, Yongqing Jin, Bitao Zeng, Baojie Dou, Xiaoling Liu and Xiuzhou Lin
Materials 2024, 17(7), 1512; https://doi.org/10.3390/ma17071512 - 27 Mar 2024
Cited by 2 | Viewed by 2100
Abstract
In this work, a novel zinc–aluminum–magnesium (Zn-Al-Mg, ZM) coated steel was prepared using the hot-dip method. The microstructure and corrosion resistance of the ZM-coated steel were investigated. Compared to the conventional galvanized steel (GI), the ZM coating demonstrated a distinctive phase structure, consisting [...] Read more.
In this work, a novel zinc–aluminum–magnesium (Zn-Al-Mg, ZM) coated steel was prepared using the hot-dip method. The microstructure and corrosion resistance of the ZM-coated steel were investigated. Compared to the conventional galvanized steel (GI), the ZM coating demonstrated a distinctive phase structure, consisting of Zn phase, binary eutectic (Zn/MgZn2), and ternary eutectic (Zn/Al/MgZn2). The corrosion resistance of the ZM-coated and GI-coated steels was evaluated by neutral salt spray test (NSST), polarization and electrochemical impedance spectroscopy (EIS). The results indicated that ZM-coated steel provided superior long-term corrosion protection in a NaCl environment compared to GI-coated steel. The scanning vibrating electrode technique (SVET) proved to be an effective method for investigating the evolution of the anodic and cathodic on the local coating surface. GI-coated steel exhibited a potential and current density distribution between the cathodic and anodic sites nearly three orders of magnitude higher than that of ZM-coated steel, suggesting a higher corrosion rate for GI-coated steel. Full article
Show Figures

Figure 1

Back to TopTop