Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,395)

Search Parameters:
Keywords = alternative futures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1088 KB  
Article
Bioleaching of Lithium-Ion Battery Black Mass: A Comparative Study on Gluconobacter oxydans and Acidithiobacillus thiooxidans
by Matthias Markus Mandl, Reinhard Lerchbammer and Eva Gerold
Metals 2025, 15(10), 1112; https://doi.org/10.3390/met15101112 - 7 Oct 2025
Abstract
The growing demand for lithium-ion batteries (LIBs) requires efficient and sustainable recycling solutions. This study investigates bioleaching as an alternative to conventional hydrometallurgical methods, focusing on (i) organic acid-mediated leaching with Gluconobacter oxydans and (ii) sulfuric acid bioleaching with Acidithiobacillus thiooxidans. Experiments [...] Read more.
The growing demand for lithium-ion batteries (LIBs) requires efficient and sustainable recycling solutions. This study investigates bioleaching as an alternative to conventional hydrometallurgical methods, focusing on (i) organic acid-mediated leaching with Gluconobacter oxydans and (ii) sulfuric acid bioleaching with Acidithiobacillus thiooxidans. Experiments were conducted at 26 °C with leaching durations of one to three weeks, depending on the microbial system, at pH 1.35 for sulfuric acid treatments, and with liquid-to-solid ratios equivalent to 100 mL g−1 (A. thiooxidans) or 100 mL g−1 in culture medium (G. oxydans). Results show that indirect bioleaching with G. oxydans achieved high recovery rates for cobalt (96%), manganese (100%), nickel (65%), and lithium (68%), while the direct approach was less effective due to microbial inhibition by black mass components. Similarly, biologically produced sulfuric acid exhibited moderate leaching efficiencies, but chemically synthesized sulfuric acid outperformed it, particularly for nickel (93%) and lithium (76%) after one week of leaching. These findings suggest that bioleaching is a promising, eco-friendly alternative for LIB recycling but requires further process optimization to improve metal recovery and industrial scalability. Future research should explore hybrid approaches combining bioleaching with conventional leaching techniques. Full article
Show Figures

Figure 1

18 pages, 1427 KB  
Article
Plant Growth-Promoting Bacteria from Tropical Soils: In Vitro Assessment of Functional Traits
by Juliana F. Nunes, Maura S. R. A. da Silva, Natally F. R. de Oliveira, Carolina R. de Souza, Fernanda S. Arcenio, Bruno A. T. de Lima, Irene S. Coelho and Everaldo Zonta
Microorganisms 2025, 13(10), 2321; https://doi.org/10.3390/microorganisms13102321 - 7 Oct 2025
Abstract
Plant growth-promoting bacteria (PGPBs) offer a sustainable alternative for enhancing crop productivity in low-fertility tropical soils. In this study, 30 bacterial isolates were screened in vitro for multiple PGP traits, including phosphate solubilization (from aluminum phosphate—AlPO4 and thermophosphate), potassium release from phonolite [...] Read more.
Plant growth-promoting bacteria (PGPBs) offer a sustainable alternative for enhancing crop productivity in low-fertility tropical soils. In this study, 30 bacterial isolates were screened in vitro for multiple PGP traits, including phosphate solubilization (from aluminum phosphate—AlPO4 and thermophosphate), potassium release from phonolite rock, siderophore production, indole-3-acetic acid (IAA) synthesis, ACC deaminase activity, and antagonism against Fusarium spp. Statistical analysis revealed significant differences (p < 0.05) among the isolates. The most efficient isolates demonstrated a solubilization capacity ranging from 24.0 to 45.2 mg L−1 for thermophosphate and 21.7 to 23.5 mg L−1 for potassium from phonolite. Among them, Pseudomonas azotoformans K22 showed the highest AlPO4 solubilization (16.6 mg L−1). IAA production among the isolates varied widely, from 1.34 to 9.65 µg mL−1. Furthermore, 17 isolates produced carboxylate-type siderophores, and only Pseudomonas aeruginosa SS183 exhibited ACC deaminase activity, coupled with strong antifungal activity (91% inhibition). A composite performance index identified P. azotoformans K22, E. hormaechei SS150, S. sciuri SS120, and B. cereus SS18 and SS17 as the most promising isolates. This study provides a valuable foundation for characterizing plant growth-promoting traits and identifies key candidates for future validation and the development of microbial consortia. Full article
(This article belongs to the Special Issue Plant Growth-Promoting Bacteria)
Show Figures

Figure 1

25 pages, 800 KB  
Review
Smart but Unlivable? Rethinking Smart City Rankings Through Livability and Urban Sustainability: A Comparative Perspective Between Athens and Zurich
by Alessandro Bove and Marco Ghiraldelli
Sustainability 2025, 17(19), 8901; https://doi.org/10.3390/su17198901 - 7 Oct 2025
Abstract
While the ‘smart city’ concept is central to urban innovation, promising enhanced efficiency and livability, this paper interrogates a critical paradox: can cities be ‘smart’ yet ‘unlivable’? Existing indices, such as the IMD Smart City Index and the IESE Cities in Motion Index, [...] Read more.
While the ‘smart city’ concept is central to urban innovation, promising enhanced efficiency and livability, this paper interrogates a critical paradox: can cities be ‘smart’ yet ‘unlivable’? Existing indices, such as the IMD Smart City Index and the IESE Cities in Motion Index, while standard references, tend to prioritize technological and economic metrics, potentially failing to fully capture urban quality of life and sustainability. This study presents a preliminary attempt, based on an analysis of scientific literature, to critically examine current smart city indicators and propose a set of alternative indicators more representative of quality of life (QoL) and livability. The objective is not to overturn the rankings of cities like Zurich (high-ranking) and Athens (low-ranking), but to explore how a livability-focused approach, using more representative QoL indicators, might narrow the perceived gap between them, thereby highlighting diverse dimensions of urban performance. This research critically evaluates current smart city rankings. It aims to determine if livability-based indicators, supported by scientific literature, can provide a more balanced view of urban performance. This paper details how these alternative indicators were chosen, justifying their relevance to QoL with scientific support, and maps them to established smart city verticals (Smart Mobility, Smart Environment, Smart Governance, Smart Living, Smart People, Smart Economy). Finally, it outlines future research directions to further develop and validate this human-centric approach. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

14 pages, 293 KB  
Review
Tooth Allografts as Natural Biocomposite Bone Grafts: Can They Revolutionize Regenerative Dentistry?
by Ishita Singhal, Gianluca Martino Tartaglia, Sourav Panda, Seyda Herguner Siso, Angelo Michele Inchingolo, Massimo Del Fabbro and Funda Goker
J. Compos. Sci. 2025, 9(10), 550; https://doi.org/10.3390/jcs9100550 - 7 Oct 2025
Abstract
For decades, regeneration of alveolar bone defects has depended on traditional grafting options, such as autogenous/allogenic grafts or allografts. Recently, extracted teeth was introduced as an alternative graft source. Tooth autografts are being used and have gained significant attention due to their biocompatibility, [...] Read more.
For decades, regeneration of alveolar bone defects has depended on traditional grafting options, such as autogenous/allogenic grafts or allografts. Recently, extracted teeth was introduced as an alternative graft source. Tooth autografts are being used and have gained significant attention due to their biocompatibility, osteoconductivity, osteoinductivity, and osteogenic properties. Furthermore, tooth allografts have potential to act as natural biocomposites for oral regeneration procedures and might be advantageous options in near future. Recent advances in tooth banking, including cryopreservation, can serve to maintain bioactivity and to improve the safety, viability, and regenerative potential of teeth. They might be revolutionary in oral surgery, offering a more sustainable solution to the growing demand for bone regeneration procedures. Nevertheless, challenges such as immunogenic responses, ethical issues, and regulatory constraints persist. Ongoing research and technological innovation continue to address these problems. To date, the success rates of tooth autografts are promising, and they are regarded as a reliable option in clinical practice, with predictable outcomes in alveolar ridge preservation, sinus augmentation, periodontal regeneration, guided bone regeneration (GBR), and endodontic surgery by providing natural scaffolds for cell integration and bone remodeling. However, the scientific literature on tooth allografts is lacking. Therefore, this review aimed to comprehensively evaluate the scientific literature for comparing the properties of tooth grafts with other grafting options, in terms of processing techniques, and various clinical applications, positioning them as versatile biocomposites for the future, bridging material science and regenerative dentistry. Furthermore, possible applications of allogenic tooth grafts and overcoming current limitations are also discussed. Full article
47 pages, 1739 KB  
Review
Edible Insects as Future Proteins: Nutritional Value, Functional Properties, Bioactivities, and Safety Perspectives
by Xinyan Xu, Mengmeng Feng, Tongwei Wei, Fei Pan, Liang Zhao and Lei Zhao
Nutrients 2025, 17(19), 3165; https://doi.org/10.3390/nu17193165 - 7 Oct 2025
Abstract
The growing demand for sustainable and nutritionally balanced protein sources has intensified global interest in edible insects as an emerging alternative to conventional animal- and plant-based proteins. This review synthesizes current knowledge on insect proteins with a clear focus on four dimensions: nutritional [...] Read more.
The growing demand for sustainable and nutritionally balanced protein sources has intensified global interest in edible insects as an emerging alternative to conventional animal- and plant-based proteins. This review synthesizes current knowledge on insect proteins with a clear focus on four dimensions: nutritional value, functional properties, bioactivities, and safety considerations. Edible insects such as Bombyx mori, Acheta domesticus (A. domesticus), Tenebrio molitor, and Hermetia illucens provide high-quality proteins rich in essential amino acids, with favorable digestibility and bioavailability. Their unique functional characteristics—including solubility, emulsification, foaming, and gelation—support versatile applications in food formulations ranging from meat analogs to protein-fortified products. Insect-derived peptides further exhibit diverse bioactivities, such as antioxidant, anti-hypertensive, antidiabetic, and antimicrobial effects, highlighting their potential as functional food ingredients. Nevertheless, allergenicity and consumer acceptance remain critical challenges that must be addressed through improved processing technologies and regulatory frameworks. By systematically integrating these perspectives, this review underscores the promise of insect proteins as future food and health resources while outlining key barriers and research priorities for their safe and sustainable utilization. Full article
(This article belongs to the Special Issue Animal-Originated Food and Food Compounds in Health and Disease)
25 pages, 1363 KB  
Review
Guardians in the Gut: Mechanistic Insights into a Hidden Ally Against Triple-Negative Breast Cancer
by Kayla Jaye, Muhammad A. Alsherbiny, Dennis Chang, Chun-Guang Li and Deep Jyoti Bhuyan
Cancers 2025, 17(19), 3248; https://doi.org/10.3390/cancers17193248 - 7 Oct 2025
Abstract
The gut microbiome possesses a diverse range of biological properties that play a role in maintaining host health and preventing disease. Gut microbial metabolites, including short-chain fatty acids, natural purine nucleosides, ellagic acid derivatives, and tryptophan metabolites, have been observed to have complex [...] Read more.
The gut microbiome possesses a diverse range of biological properties that play a role in maintaining host health and preventing disease. Gut microbial metabolites, including short-chain fatty acids, natural purine nucleosides, ellagic acid derivatives, and tryptophan metabolites, have been observed to have complex and multifaceted roles in the gut and in wider body systems in the management of disease, including cancer. Triple-negative breast cancer is the most aggressive subtype of breast cancer, with restricted treatment options and poor prognoses. Recently, preclinical research has investigated the antiproliferative potential of gut microbial metabolites against this type of breast cancer with promising results. However, little is understood about the mechanisms of action and molecular pathways driving this antiproliferative potential. Understanding the complex mechanisms of action of gut microbial metabolites on triple-negative breast cancer will be instrumental in the investigation of the combined administration with standard chemotherapeutic drugs. To date, there is a paucity of research studies investigating the potential synergistic interactions between gut microbial metabolites and standard chemotherapeutic drugs. The identification of synergistic potential between these compounds may provide alternate and more effective therapeutic options in the treatment and management of triple-negative breast cancer. Further investigation into the mechanistic action of gut microbial metabolites against this breast cancer subtype may support the administration of more cost-effective treatment options for breast cancer, with an aim to reduce side effects associated with standard treatments. Additionally, future research will aim to identify more potent metabolite–drug combinations in the mitigation of triple-negative breast cancer progression and metastasis. Full article
(This article belongs to the Special Issue Gut Microbiome, Diet and Cancer Risk)
Show Figures

Graphical abstract

25 pages, 7216 KB  
Article
Visual Foundation Models for Archaeological Remote Sensing: A Zero-Shot Approach
by Jürgen Landauer and Sarah Klassen
Geomatics 2025, 5(4), 52; https://doi.org/10.3390/geomatics5040052 - 7 Oct 2025
Abstract
We investigate the applicability of visual foundation models, a recent advancement in artificial intelligence, for archaeological remote sensing. In contrast to earlier approaches, we employ a strictly zero-shot methodology, testing the hypothesis that such models can perform archaeological feature detection without any fine-tuning [...] Read more.
We investigate the applicability of visual foundation models, a recent advancement in artificial intelligence, for archaeological remote sensing. In contrast to earlier approaches, we employ a strictly zero-shot methodology, testing the hypothesis that such models can perform archaeological feature detection without any fine-tuning or other adaptation for the remote sensing domain. Across five experiments using satellite imagery, aerial LiDAR, and drone video data, we assess the models’ ability to detect archaeological features. Our results demonstrate that such foundation models can achieve detection performance comparable to that of human experts and established automated methods. A key advantage lies in the substantial reduction of required human effort and the elimination of the need for training data. To support reproducibility and future experimentation, we provide open-source scripts and datasets and suggest a novel workflow for remote sensing projects. If current trends persist, foundation models may offer a scalable and accessible alternative to conventional archaeological prospection. Full article
Show Figures

Figure 1

15 pages, 7140 KB  
Article
Tuning the Carbonation Resistance of Metakaolin–Fly Ash-Based Geopolymers: The Dual Role of Reactive MgO in Microstructure and Degradation Mechanisms
by Shuai Li and Dongyu Ji
J. Compos. Sci. 2025, 9(10), 549; https://doi.org/10.3390/jcs9100549 - 7 Oct 2025
Abstract
Geopolymers, as a novel class of low-carbon and eco-friendly cementitious material, exhibit outstanding durability and promote the resource utilization of industrial solid wastes. However, as a promising alternative to ordinary Portland cement, its susceptibility to carbonation-induced degradation may limit its widespread application. To [...] Read more.
Geopolymers, as a novel class of low-carbon and eco-friendly cementitious material, exhibit outstanding durability and promote the resource utilization of industrial solid wastes. However, as a promising alternative to ordinary Portland cement, its susceptibility to carbonation-induced degradation may limit its widespread application. To address this challenge, this study systematically examined the effects of magnesium oxide (MgO) content and the metakaolin-to-fly ash ratio on the carbonation performance, mechanical properties, pH value, and microstructures of metakaolin–fly ash-based (MF-based) geopolymer pastes. The findings revealed that an increase in the fly ash ratio correlated with a decline in the compressive strength of MF-based geopolymer pastes. Conversely, the incorporation of MgO significantly enhanced the compressive strength, with higher fly ash ratios leading to more substantial improvements in strength. Furthermore, the addition of MgO and fly ash effectively mitigated the penetration of carbonation and the associated decrease in the pH value of the MF-based geopolymer pastes. Specifically, compared to the control group without MgO (M8F2-0%), MF-based geopolymer pastes with 4% and 8% MgO additions exhibited reductions in carbonation depth of 69.4% and 80.4%, respectively, after 28 days of carbonation, while pH values were observed to be 1.22 and 1.15 units higher, respectively. Additionally, microscopic structural analysis revealed that the inclusion of MgO resulted in a reduction in pore size, porosity, and mean pore diameter within the geopolymer pastes. This improvement was mainly attributed to the promotion of hydration processes by MgO, leading to the formation of fine Mg(OH)2 crystals within the high-alkalinity pore solution, which enhances microstructural densification. In conclusion, the incorporation of MgO significantly improves the carbonation resistance and mechanical performance of MF-based geopolymers. It is recommended that future studies explore the long-term performance under combined environmental actions and evaluate the economic and environmental benefits of MgO-modified geopolymers for large-scale applications. Full article
(This article belongs to the Special Issue Composite Materials for Civil Engineering Applications)
Show Figures

Figure 1

41 pages, 200492 KB  
Article
A Context-Adaptive Hyperspectral Sensor and Perception Management Architecture for Airborne Anomaly Detection
by Linda Eckel and Peter Stütz
Sensors 2025, 25(19), 6199; https://doi.org/10.3390/s25196199 - 6 Oct 2025
Abstract
The deployment of airborne hyperspectral sensors has expanded rapidly, driven by their ability to capture spectral information beyond the visual range and to reveal objects that remain obscured in conventional imaging. In scenarios where prior target signatures are unavailable, anomaly detection provides an [...] Read more.
The deployment of airborne hyperspectral sensors has expanded rapidly, driven by their ability to capture spectral information beyond the visual range and to reveal objects that remain obscured in conventional imaging. In scenarios where prior target signatures are unavailable, anomaly detection provides an effective alternative by identifying deviations from the spectral background. However, real-world reconnaissance and monitoring missions frequently take place in complex and dynamic environments, requiring anomaly detectors to demonstrate robustness and adaptability. These requirements have rarely been met in current research, as evaluations are still predominantly based on small, context-restricted datasets, offering only limited insights into detector performance under varying conditions. To address this gap, we propose a context-adaptive hyperspectral sensor and perception management (hSPM) architecture that integrates sensor context extraction, band selection, and detector management into a single adaptive processing pipeline. The architecture is systematically evaluated on a new, large-scale airborne hyperspectral dataset comprising more than 1100 annotated samples from two diverse test environments, which we publicly release to support future research. Comparative experiments against state-of-the-art anomaly detectors demonstrate that conventional methods often lack robustness and efficiency, while hSPM consistently achieves superior detection accuracy and faster processing. Depending on evaluation conditions, hSPM improves anomaly detection performance by 28–204% while reducing computation time by 70–99%. These results highlight the advantages of adaptive sensor processing architectures and underscore the importance of large, openly available datasets for advancing robust airborne hyperspectral anomaly detection. Full article
(This article belongs to the Section Sensing and Imaging)
60 pages, 2685 KB  
Review
Cellulose-Based Ion Exchange Membranes for Electrochemical Energy Systems: A Review
by Nur Syahirah Faiha Shawalludin, Saidatul Sophia Sha’rani, Mohamed Azlan Suhot, Shamsul Sarip and Mohamed Mahmoud Nasef
Membranes 2025, 15(10), 304; https://doi.org/10.3390/membranes15100304 - 6 Oct 2025
Abstract
Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive [...] Read more.
Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive filler to facilitate charge transport between the polymer matrix and conductive components. Recently, cellulose-based ion exchange membranes (IEMs) have gained strong attention as alternatives to environmentally burdening synthetic polymers in electrochemical energy systems, owing to their renewable nature and versatile chemical structure. This article provides a comprehensive review of the structures, fabrication aspects and properties of various cellulose-based membranes for fuel cells and water electrolyzers, batteries, supercapacitors, and reverse electrodialysis (RED) applications. The scope includes an overview of various cellulose-based membrane fabrication methods, different forms of cellulose, and their applications in energy conversion and energy storage systems. The review also discusses the fundamentals of electrochemical energy systems, the role of IEMs, and recent advancements in the cellulose-based membranes’ research and development. Finally, it highlights current challenges to their performance and sustainability, along with recommendations for future research directions. Full article
(This article belongs to the Section Membrane Applications for Energy)
17 pages, 1534 KB  
Article
Improving Telenomus remus (Hymenoptera: Scelionidae) Adoption: Contribution of Different Egg Parasitoid Densities, Fed Adults, and Their Storage for Successful Biological Control of Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Weidson P. Sutil, Adeney de F. Bueno, Leonardo Roswadoski, Rafael S. Iasczczaki, Gabriel S. Carneiro and Yelitza C. Colmenarez
Insects 2025, 16(10), 1032; https://doi.org/10.3390/insects16101032 - 6 Oct 2025
Abstract
Egg parasitoids, such as Telenomus remus (Hymenoptera: Scelionidae), face significant challenges after release, as their pupae are exposed to various mortality factors that reduce the efficiency of biological control programs. Therefore, this study aimed to evaluate a honey-solid diet that can feed adults [...] Read more.
Egg parasitoids, such as Telenomus remus (Hymenoptera: Scelionidae), face significant challenges after release, as their pupae are exposed to various mortality factors that reduce the efficiency of biological control programs. Therefore, this study aimed to evaluate a honey-solid diet that can feed adults still inside the capsules without sticking the wasps on its surface, enabling parasitoid storage and later field release. Three independent bioassays were performed, each with 20 completely randomized replications. The first bioassay evaluated the acceptance of a solid feed—honey soaked in cotton thread—compared to the traditional form—honey droplets. In the second bioassay, the storage periods after emergence of adults in capsules with honey-solid food were analyzed at 2, 4, 6, and 8 days post-emergence, and the third bioassay studied the efficacy of different release densities of fed adults under field conditions. Parasitoids fed on the honey-solid diet exhibited a 13.3% reduction in parasitism compared to honey droplets. However, the sticky, viscous nature of honey can lead to parasitoids becoming glued, potentially leading to their death. T. remus feeding on the honey-solid diet resulted in low mortality inside the capsules, living up to six days with only 22.2% reduction in parasitism capacity, making it a viable alternative to release and transport fed adult parasitoids, with an increase of around 30% in the released density of parasitoids compared with the parasitoids fed on honey droplets. This flexibility of releasing T. remus up to six days after emergence provided valuable knowledge to establish T. remus as a biocontrol agent. Furthermore, the highest tested parasitoid density of 20,000 parasitoids per hectare obtained the highest parasitism of Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs. However, future studies are still required with higher releasing densities and less expensive methods of mass rearing the parasitoid for those higher densities to be economically viable. Full article
Show Figures

Figure 1

32 pages, 6546 KB  
Review
Sputter-Deposited Superconducting Thin Films for Use in SRF Cavities
by Bharath Reddy Lakki Reddy Venkata, Aleksandr Zubtsovskii and Xin Jiang
Nanomaterials 2025, 15(19), 1522; https://doi.org/10.3390/nano15191522 - 5 Oct 2025
Abstract
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant [...] Read more.
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant structures for the acceleration of charged particles. The performance of such cavities is governed by inherent superconducting material properties such as the transition temperature, critical fields, penetration depth, and other related parameters and material quality. For the last few decades, bulk niobium has been the preferred material for SRF cavities, enabling accelerating gradients on the order of ~50 MV/m; however, its intrinsic limitations, high cost, and complicated manufacturing have motivated the search for alternative strategies. Among these, sputter-deposited superconducting thin films offer a promising route to address these challenges by reducing costs, improving thermal stability, and providing access to numerous high-Tc superconductors. This review focuses on progress in sputtered superconducting materials for SRF applications, in particular Nb, NbN, NbTiN, Nb3Sn, Nb3Al, V3Si, Mo–Re, and MgB2. We review how deposition process parameters such as deposition pressure, substrate temperature, substrate bias, duty cycle, and reactive gas flow influence film microstructure, stoichiometry, and superconducting properties, and link these to RF performance. High-energy deposition techniques, such as HiPIMS, have enabled the deposition of dense Nb and nitride films with high transition temperatures and low surface resistance. In contrast, sputtering of Nb3Sn offers tunable stoichiometry when compared to vapour diffusion. Relatively new material systems, such as Nb3Al, V3Si, Mo-Re, and MgB2, are just a few of the possibilities offered, but challenges with impurity control, interface engineering, and cavity-scale uniformity will remain. We believe that future progress will depend upon energetic sputtering, multilayer architectures, and systematic demonstrations at the cavity scale. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

11 pages, 1059 KB  
Article
Sex-Specific Safety Signals of Trelegy Ellipta: A FAERS Pharmacovigilance Analysis
by Josef Yayan, Christian Biancosino, Marcus Krüger and Kurt Rasche
Med. Sci. 2025, 13(4), 221; https://doi.org/10.3390/medsci13040221 - 5 Oct 2025
Abstract
Background: Trelegy Ellipta is a widely prescribed triple inhaler therapy for chronic obstructive pulmonary disease (COPD). Although its clinical efficacy is well established, evidence on sex-specific differences in adverse event (AE) profiles from real-world pharmacovigilance data remains limited. In addition, some AEs [...] Read more.
Background: Trelegy Ellipta is a widely prescribed triple inhaler therapy for chronic obstructive pulmonary disease (COPD). Although its clinical efficacy is well established, evidence on sex-specific differences in adverse event (AE) profiles from real-world pharmacovigilance data remains limited. In addition, some AEs may reflect underlying disease characteristics rather than drug exposure, which complicates interpretation of safety signals. Objective: To explore sex-related differences in AEs associated with Trelegy Ellipta using the FDA Adverse Event Reporting System (FAERS). The study aimed to identify potential safety signals while accounting for alternative explanations, including comorbidity burden and disease-related variation. Methods: We retrospectively analyzed FAERS reports from January 2018 to April 2025, identifying 4555 AEs attributed to Trelegy Ellipta. Events were coded by System Organ Class (SOC) and stratified by patient sex. Frequencies were compared between male (n = 1621) and female (n = 2934) patients using chi-square tests, and associations were expressed as reporting odds ratios (RORs) with 95% confidence intervals (CIs). Results: Male patients more frequently reported hypertension (63.4% vs. 47.0%; p = 0.01), pneumonia (87.8% vs. 76.8%; p < 0.001), anxiety (91.0% vs. 66.9%; p < 0.001), sleep disorders (20.1% vs. 6.8%; p < 0.001), and hyperglycemia (92.7% vs. 52.1%; p < 0.001). Female patients more often reported headache (56.7% vs. 32.6%; p < 0.001), depression (33.1% vs. 9.0%; p < 0.001), and osteoporosis (41.7% vs. 2.4%; p < 0.001). Further variation was observed across neurological, musculoskeletal, and respiratory categories, suggesting a multidimensional pattern of sex differences. Conclusions: This FAERS-based analysis indicates distinct sex-specific safety signals for Trelegy Ellipta, particularly in cardiovascular, neuropsychiatric, and steroid-related domains. These findings are hypothesis-generating and highlight the importance of incorporating sex-disaggregated analyses into future pharmacovigilance and clinical studies. Full article
(This article belongs to the Section Pneumology and Respiratory Diseases)
Show Figures

Figure 1

20 pages, 7185 KB  
Article
Evaluating Students’ Dose of Ambient PM2.5 While Active Home-School Commuting with Spatiotemporally Dense Observations from Mobile Monitoring Fleets
by Xuying Ma, Xinyu Zhao, Zelei Tan, Xiaoqi Wang, Yuyang Tian, Siyuan Nie, Anya Wu and Yanhao Guan
Environments 2025, 12(10), 358; https://doi.org/10.3390/environments12100358 - 4 Oct 2025
Abstract
Understanding the dose of ambient PM2.5 inhaled by middle school students during active commuting between home and school is essential for optimizing their travel routes and reducing associated health risks. However, accurately modeling this remains challenging due to the difficulty of measuring [...] Read more.
Understanding the dose of ambient PM2.5 inhaled by middle school students during active commuting between home and school is essential for optimizing their travel routes and reducing associated health risks. However, accurately modeling this remains challenging due to the difficulty of measuring ambient PM2.5 concentrations along commuting routes at a population scale. In this study, we overcome this limitation by employing spatiotemporally dense observations of on-road ambient PM2.5 concentrations collected through a massive mobile monitoring fleet consisting of around 200 continuously operating taxis installed with air quality monitoring instruments. Leveraging these rich on-road PM2.5 observations combined with a GIS-terrain-based PM2.5 dosage modeling approach, we (1) assess middle school students’ PM2.5 dosages during morning (7:00 am–8:00 am) home–school walking commuting along the shortest-distance route; (2) examine the feasibility of identifying an alternative route for each student that minimizes PM2.5 dosages during commuting; (3) investigate the trade-off between the relative reduction in PM2.5 dosage and the relative increase in route length when opting for the alternative lowest-dosage route; and (4) examine whether exposure inequalities exist among students of different family socioeconomic statuses (SES) during their home–school commutes. The results show that (1) 18.8–57.6% of the students can reduce the dose of PM2.5 by walking along an alternative lowest-dose route; (2) an alternative lowest-dose route could be found by walking along a parallel, less-polluted local road or walking on the less-trafficked side of the street; (3) seeking an alternative lowest-dose route offers a favorable trade-off between effectiveness and cost; and (4) exposure inequities do exist in a portion of students’ walking commutes and those students from higher-SES are more likely to experience higher exposure risks. The findings in our study could offer valuable insights into commuter exposure and inspire future research. Full article
Show Figures

Figure 1

10 pages, 287 KB  
Opinion
Value-Based Care and Accountable Care Organizations: Implications for Early Autism Diagnosis and Access to Quality Care
by Kyle M. Frost, Heather E. Hsu, Marisa Petruccelli, Rebecca McNally Keehn, Hanna Rue, Angela Beeler and Sarabeth Broder-Fingert
Behav. Sci. 2025, 15(10), 1354; https://doi.org/10.3390/bs15101354 - 4 Oct 2025
Abstract
The incentives in fee-for-service healthcare payment systems to increase clinical volume often work in opposition to efforts to coordinate care or improve care delivery in partnership with community-based services. There has been increasing interest in and adoption of value-based care as an alternative [...] Read more.
The incentives in fee-for-service healthcare payment systems to increase clinical volume often work in opposition to efforts to coordinate care or improve care delivery in partnership with community-based services. There has been increasing interest in and adoption of value-based care as an alternative healthcare delivery model in which clinician reimbursement is based on measures of healthcare quality and patient outcomes, meant to shift the focus from generating volume toward providing more efficient, coordinated care. In this commentary, we discuss potential benefits, challenges, and unintended consequences of this fundamental shift in payment systems and the specific implications for autism services, highlighting critical areas of focus for future research and policy development. Full article
(This article belongs to the Special Issue Early Identification and Intervention of Autism)
Back to TopTop