Plant Growth-Promoting Bacteria from Tropical Soils: In Vitro Assessment of Functional Traits
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin of Bacterial Isolates
2.2. Bacterial Identification by MALDI-TOF Mass Spectrometry
2.3. Inoculum Preparation
2.4. Solubilization of Phosphate Sources
2.5. Potassium Solubilization
2.6. Siderophore Production
2.7. Production of Indole-3-Acetic Acid (IAA)
2.8. Production of ACC-Deaminase
2.9. Antagonist Activity
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Fertilizer Association. Fertilizer Outlook 2022–2026; IFA: Paris, France, 2022; Available online: https://www.ifastat.org/publications/new?title=Outlook (accessed on 15 August 2025).
- International Fertilizer Association. Fertilizer Statistics—Preliminary Consumption Results 2022/2023; IFA: Paris, France, 2023; Available online: https://www.ifastat.org/market-reports (accessed on 15 August 2025).
- FAO on Behalf of the IPPC Secretariat. Scientific Review of the Impact of Climate Change on Plant Pests; FAO on Behalf of the IPPC Secretariat: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- United States Geological Survey. Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023. [CrossRef]
- United Nations Environment Programme. A Snapshot of the World’s Water Quality: Towards a Global Assessment; UNEP: Nairobi, Kenya, 2016; Available online: https://wesr.unep.org/media/docs/assessments/unep_wwqa_report_web.pdf (accessed on 15 August 2025).
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-Specific Effects of Neonicotinoid Pesticides on Honey Bees and Wild Bees. Science 2017, 356, 1393–1395. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion on the Peer Review of the Pesticide Risk Assessment for Bees for the Active Substance Clothianidin. EFSA J. 2018, 16, 5170. [Google Scholar] [CrossRef]
- Jacobsen, C.S.; Hjelmsø, M.H. Agricultural Soils, Pesticides and Microbial Diversity. Curr. Opin. Biotechnol. 2014, 27, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; Kamnev, A.A.; de-Bashan, L.E. Tricalcium Phosphate is Inappropriate as a Universal Selection Factor for Isolating and Testing Phosphate-Solubilizing Bacteria that Enhance Plant Growth: A Proposal for an Alternative Procedure. Biol. Fertil. Soils 2013, 49, 465–479. [Google Scholar] [CrossRef]
- Novais, R.F.; Smyth, T.J.; Nunes, F.N. Fósforo. In Fertilidade do Solo; Novais, R.F., Alvarez, V.H., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Neves, J.C.L., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2007; pp. 275–374. [Google Scholar]
- Guelfi, D.; Nunes, A.P.P.; Sarkis, L.F.; Oliveira, D.P. Innovative Phosphate Fertilizer Technologies to Improve Phosphorus Use Efficiency in Agriculture. Sustainability 2022, 14, 14266. [Google Scholar] [CrossRef]
- Zapata, F.; Roy, R.N. Use of Phosphate Rocks for Sustainable Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; Available online: http://www.fao.org/3/y5053e/y5053e00.htm (accessed on 26 August 2025).
- Empresa Brasileira de Pesquisa Agropecuária. Fonolito: Rocha para Produção de Fertilizante Potássico; Comunicado Técnico 256; Embrapa: Brasília, Brazil, 2021; Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1137873/fonolito-rocha-para-producao-de-fertilizante-potassico (accessed on 16 August 2025).
- Santos, W.O.; Mattiello, E.M.; Vergütz, L.; Costa, R.F. Production and Evaluation of Potassium Fertilizers from Silicate Rock. J. Plant Nutr. Soil Sci. 2015, 179, 547–556. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- de Andrade, L.A.; Santos, C.H.B.; Frezarin, E.T.; Sales, L.R.; Rigobelo, E.C. Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. Microorganisms 2023, 11, 1088. [Google Scholar] [CrossRef]
- Fasusi, O.A.; Babalola, O.O.; Adejumo, T.O. Harnessing of Plant Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungi in Agroecosystem Sustainability. CABI Agric. Biosci. 2023, 4, 26. [Google Scholar] [CrossRef]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium Solubilizing Bacteria (KSB): Mechanisms, Promotion of Plant Growth, and Future Prospects a Review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Soares, E.V. Perspective on the Biotechnological Production of Bacterial Siderophores and Their Use. Appl. Microbiol. Biotechnol. 2022, 106, 3985–4004. [Google Scholar] [CrossRef] [PubMed]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-Acetic Acid in Plant–Microbe Interactions. Antonie Van Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef]
- Glick, B.R.; Nascimento, F.X. 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase from Pseudomonas and its Role in Beneficial Plant-Microbe Interactions. Microorganisms 2021, 9, 2467. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Simões, D.; Andrade, E.D. Fusarium Species Responsible for Tomato Diseases and Mycotoxin Contamination and Biocontrol Opportunities. In Fusarium—Recent Studies; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Xavier, J.F. Isolamento e Caracterização de Bactérias Associadas À Rizosfera de Plantas Halófitas. Master’s Thesis, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil, 2021. [Google Scholar]
- Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Ceballos-Aguirre, N.; Restrepo, G.M.; Patiño, S.; Cuéllar, J.A.; Sánchez, Ó.J. Utilization of Gluconacetobacter diazotrophicus in Tomato Crop: Interaction with Nitrogen and Phosphorus Fertilization. Agriculture 2025, 15, 1191. [Google Scholar] [CrossRef]
- Rajawat, M.V.S.; Singh, S.; Tyagi, S.P.; Saxena, A.K. A Modified Plate Assay for Rapid Screening of Potassium-Solubilizing Bacteria. Pedosphere 2016, 26, 768–773. [Google Scholar] [CrossRef]
- Silva, F.G. Determinação de Potássio em Solos Tropicais via Fotometria de Chama: Construção de Curva Padrão e Aplicações Metodológicas. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2009. [Google Scholar]
- Dias, R.D.C. Potencial e Eficiência da Utilização de Rochas Silicáticas como Fonte de Potássio na Agricultura. Ph.D. Thesis, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil, 2022. [Google Scholar]
- Schwyn, B.; Neilands, J.B. Universal Chemical Assay for the Detection and Determination of Siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Empresa Brasileira de Pesquisa Agropecuária. Bioprospecção de Microrganismos para o Uso em Bioinsumos: Métodos para Triagem Inicial de Bioativos Visando à Nutrição de Plantas e à Tolerância a Estresses Abióticos e Bióticos; Documentos 456; Embrapa: Brasília, Brazil, 2024; Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1164913/bioprospeccao-de-microrganismos-para-o-uso-em-bioinsumos-metodos-para-triagem-inicial-de-bioativos-visando-a-nutricao-de-plantas-e-a-tolerancia-a-estresses-abioticos-e-bioticos (accessed on 16 August 2025).
- Gordon, S.A.; Weber, R.P. Colorimetric Estimation of Indoleacetic Acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Lana, U.G.P.; Gomes, E.A.; Ribeiro, V.P.; Santos, F.M.; Marriel, I.E. Seleção em Larga Escala de Bactérias Produtoras do Hormônio Ácido Indolacético (AIA), Auxina Associada à Promoção de Crescimento em Plantas; Comunicado Técnico 126; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2016; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/166896/1/CT-126.pdf (accessed on 26 November 2024).
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-Acetic Acid in Microbial and Microorganism-Plant Signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, M.; Foster, J.W. Experiments with Some Microorganisms Which Utilize Ethane and Hydrogen. J. Bacteriol. 1958, 75, 592–603. [Google Scholar] [CrossRef]
- Pedrosa, F.O.; Monteiro, R.A.; Wassem, R.; Cruz, L.M.; Ayub, R.A.; Colauto, N.B.; Fernandez, M.A.; Fungaro, M.H.P.; Grisard, E.C.; Hungria, M.; et al. Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses. PLoS Genet. 2011, 7, e1002064. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.F.R.; Ribeiro, T.G.; Rouws, J.R.C.; Soares, L.H.B.; Zilli, J.É. Biotechnological Potential of Bacteria from Genera Bacillus, Paraburkholderia, and Pseudomonas to Control Seed Fungal Pathogens. Braz. J. Microbiol. 2021, 52, 705–714. [Google Scholar] [CrossRef]
- Bizzini, A.; Greub, G. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry, a Revolution in Clinical Microbial Identification. Clin. Microbiol. Infect. 2010, 16, 1614–1619. [Google Scholar] [CrossRef]
- Branquinho, R.; Sousa, C.; Lopes, J.; Pintado, M.E.; Peixe, L.V.; Osório, H. Differentiation of Bacillus pumilus and Bacillus safensis Using MALDI-TOF-MS. PLoS ONE 2014, 9, e110127. [Google Scholar] [CrossRef]
- Dutra, M.P.; Baldotto, M.A.; Silva, L.F.; Oliveira, V.C.; Baldotto, L.E.B. Bactérias Solubilizadoras de Fosfato em Associação com Termofosfato e Fertilizante Organomineral. In O Equilíbrio da Natureza: Explorando a Complexidade do Meio Ambiente; Baldotto, M.A., Ed.; Atena Editora: Ponta Grossa, Brazil, 2023; pp. 41–50. Available online: https://atenaeditora.com.br/catalogo/post/bacterias-solubilizadoras-de-fosfato-em-associacao-com-termofosfato-e-fertilizante-organomineral (accessed on 16 August 2025).
- Silva, U.C.; Marriel, I.E.; Paiva, C.A.O.; Gomes, E.A.; Resende, Á.V.D.; Lana, U.G.D.P. Biossolubilização de Potássio in Vitro a Partir da Rocha Fonolito por Microrganismos do Solo; Documentos 177; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2015; Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1024827/1/doc177.pdf (accessed on 16 August 2025).
- Pádua, S.D.; Florentino, L.A. Uso do Fonolito e Bactérias Solubilizadoras de Potássio na Cultura do Feijoeiro. Res. Soc. Dev. 2022, 11, e26248. [Google Scholar] [CrossRef]
- Miranda, C.C.B.; Florentino, L.A.; de Rezende, A.V.; Nogueira, D.A.; Leite, R.F.; Naves, L.P. Desenvolvimento de Urochloa brizantha Adubada com Fonolito e Inoculada com bactérias diazotróficas Solubilizadoras de potássio. Rev. Ciências Agrárias 2018, 41, 625–632. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits That Go Far Beyond Biological Nitrogen Fixation. AMB Express 2018, 8, 73. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. Phytohormones and Induction of Plant-Stress Tolerance and Defense Genes by Seed and Foliar Inoculation with Azospirillum brasilense Cells and Metabolites Promote Maize Growth. AMB Express 2017, 7, 153. [Google Scholar] [CrossRef]
- Pappalettere, L.; Bartolini, S.; Toffanin, A. Auxin-Producing Bacteria Used As Microbial Biostimulants Improve the Growth of Tomato (Solanum lycopersicum L.) Seedlings in Hydroponic Systems. BioTech 2024, 13, 32. [Google Scholar] [CrossRef]
- Alori, E.T.; Babalola, O.O. Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S. ACC Deaminase Producing Bacteria with Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Front. Microbiol. 2019, 10, 1506. [Google Scholar] [CrossRef] [PubMed]
- Schalk, I.J.; Rigouin, C.; Godet, J. An Overview of Siderophore Biosynthesis Among Fluorescent Pseudomonas and New Insights into Their Complex Cellular Organization. Environ. Microbiol. 2020, 22, 1447–1466. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Holmström, S.J.M. Siderophores in Environmental Research: Roles and Applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Serafim, B.; Bernardino, A.R.; Freitas, F.; Torres, C.A.V. Recent Developments in the Biological Activities, Bioproduction, and Applications of Pseudomonas spp. Phenazines. Molecules 2023, 28, 1368. [Google Scholar] [CrossRef]
- Hussain, S.; Tai, B.; Ali, M.; Jahan, I.; Sakina, S.; Wang, G.; Zhang, X.; Yin, Y.; Xing, F. Antifungal Potential of Lipopeptides Produced by the Bacillus siamensis Sh420 Strain Against Fusarium graminearum. Microbiol. Spectr. 2024, 12, e04008-23. [Google Scholar] [CrossRef]
- Diniz, G.D.F.D.; Figueiredo, J.E.F.; Canuto, K.M.; Cota, L.V.; Souza, A.S.D.Q.; Simeone, M.L.F.; Tinoco, S.M.D.S.; Ribeiro, P.R.V.; Ferreira, L.V.S.; Marins, M.S.; et al. Chemical and Genetic Characterization of Lipopeptides from Bacillus velezensis and Paenibacillus ottowii with Activity Against Fusarium verticillioides. Front. Microbiol. 2024, 15, 1443327. [Google Scholar] [CrossRef]
- Poloni, N.M.; Carvalho, G.; Vicentini, S.N.C.; Dorigan, A.F.; Maciel, J.L.N.; McDonald, B.A.; Moreira, S.I.; Hawkins, N.; Fraaije, B.A.; Kelly, D.E.; et al. Widespread Distribution of Resistance to Triazole Fungicides in Brazilian Populations of the Wheat Blast Pathogen. Plant Pathol. 2021, 70, 436–448. [Google Scholar] [CrossRef]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance: The Assessment of Risk, 2nd ed.; FRAC Monograph No. 2; Fungicide Resistance Action Committee: Brussels, Belgium, 2007; Available online: https://www.frac.info/media/23rp130k/monograph-2.pdf (accessed on 20 September 2025).
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. Plant Dis. 2016, 100, 10–24. [Google Scholar] [CrossRef]
- Thammasittirong, S.N.-R.; Thammasittirong, A.; Saechow, S. Biocontrol and Growth Promotion of Rice by Pseudomonas aeruginosa SNTKU16: Beneficial Properties and Genomic Potential. J. Microbiol. Biotechnol. 2025, 35, e2411067. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhuang, L.; Yu, Y.; Liu, J.; Zhang, L.; Gao, Z.; Wu, Y.; Gao, W.; Ding, G.; et al. A Bacillus subtilis and Trichoderma harzianum Consortium Derived from the Rhizosphere Suppresses Common Scab and Increases Potato Yield. Comput. Struct. Biotechnol. J. 2019, 17, 645–653. [Google Scholar] [CrossRef]
- de Oliveira-Paiva, C.A.; Bini, D.; de Sousa, S.M.; Ribeiro, V.P.; dos Santos, F.C.; de Paula Lana, U.G.; de Souza, F.F.; Gomes, E.A.; Marriel, I.E. Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 Improve P-Acquisition and Maize Yield in Brazil. Front. Microbiol. 2024, 15, 1426166. [Google Scholar] [CrossRef]
- Sandini, I.E.; Pacentchuk, F.; Franco, D.A.D.S.; Sandini, A.H. Bacterial Consortium of Azospirillum brasilense and Pseudomonas fluorescens on the Stimulation of Growth of Corn Culture. Ciênc. Rural 2024, 54, e20230123. [Google Scholar] [CrossRef]
- de Lima, J.D.; Monteiro, P.H.R.; Rivadavea, W.R.; Barbosa, M.; Cordeiro, R.D.; Garboggini, F.F.; Auer, C.G.; da Silva, G.J. Potential of Endophytic Bacteria from Acacia mearnsii: Phosphate Solubilization, Indole Acetic Acid Production, and Application in Wheat. Appl. Soil Ecol. 2024, 196, 105315. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 20 June 2024).
- Food and Agriculture Organization of the United Nations. Brief The State of Food and Agriculture 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
Code | Identification | Score | Code | Identification | Score |
---|---|---|---|---|---|
SS11 | Enterobacter sp. | 1.83 | SS101 | Bacillus cereus | 2.44 |
SS15 | Enterobacter hormaechei | 2.00 | SS107 | Bacillus cereus | 2.30 |
SS17 | Bacillus cereus | 1.82 | SS120 | Staphylococcus sciuri | 2.09 |
SS18 | Bacillus cereus | 1.66 | SS137 | Bacillus cereus | 2.27 |
SS26 | Bacillus cereus | 2.20 | SS138 | Bacillus cereus | 2.05 |
SS28 | Bacillus cereus | 2.15 | SS145 | Enterobacter hormaechei | 1.99 |
SS29 | Bacillus cereus | 2.19 | SS150 | Pantoea sp. | 2.32 |
SS31 | Bacillus cereus | 2.27 | SS183 | Pseudomonas aeruginosa | 2.37 |
SS33 | Bacillus cereus | 2.41 | SS186 | Enterobacter hormaechei | 2.44 |
SS35 | Bacillus cereus | 2.13 | SS246 | Bacillus cereus | 2.41 |
SS36 | Bacillus cereus | 2.31 | SS249 | Bacillus cereus | 2.45 |
SS68 | Bacillus cereus | 2.29 | Bp2 | Bacillus pumillus | 2.38 |
SS80 | Bacillus cereus | 2.31 | Bti | Bacillus thunrigiensis | 2.14 |
SS88 | Bacillus cereus | 2.49 | K22 | Pseudomonas azotoformans | 2.36 |
SS89 | Bacillus cereus | 2.13 |
Code | Identification | Siderophore | Code | Identification | Siderophore |
---|---|---|---|---|---|
SS11 | Enterobacter sp. | - | SS101 | Bacillus cereus | - |
SS15 | Enterobacter hormaechei | Carboxylate | SS107 | Bacillus cereus | Carboxylate |
SS17 | Bacillus cereus | Carboxylate | SS120 | Staphylococcus sciuri | - |
SS18 | Bacillus cereus | Carboxylate | SS137 | Bacillus cereus | Carboxylate |
SS26 | Bacillus cereus | - | SS138 | Bacillus cereus | Carboxylate |
SS28 | Bacillus cereus | Carboxylate | SS145 | Enterobacter hormaechei | Carboxylate |
SS29 | Bacillus cereus | Carboxylate | SS150 | Pantoea sp. | - |
SS31 | Bacillus cereus | - | SS183 | Pseudomonas aeruginosa | Carboxylate |
SS33 | Bacillus cereus | - | SS186 | Enterobacter hormaechei | Carboxylate |
SS35 | Bacillus cereus | - | SS246 | Bacillus cereus | - |
SS36 | Bacillus cereus | Carboxylate | SS249 | Bacillus cereus | Carboxylate |
SS68 | Bacillus cereus | - | CCT 3116 | Bacillus altitudinis | Carboxylate |
SS80 | Bacillus cereus | - | Bp2 | Bacillus pumillus | Carboxylate |
SS88 | Bacillus cereus | - | Bti | Bacillus thunrigiensis | Carboxylate |
SS89 | Bacillus cereus | - | K22 | Pseudomonas azotoformans | Carboxylate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, J.F.; da Silva, M.S.R.A.; de Oliveira, N.F.R.; de Souza, C.R.; Arcenio, F.S.; de Lima, B.A.T.; Coelho, I.S.; Zonta, E. Plant Growth-Promoting Bacteria from Tropical Soils: In Vitro Assessment of Functional Traits. Microorganisms 2025, 13, 2321. https://doi.org/10.3390/microorganisms13102321
Nunes JF, da Silva MSRA, de Oliveira NFR, de Souza CR, Arcenio FS, de Lima BAT, Coelho IS, Zonta E. Plant Growth-Promoting Bacteria from Tropical Soils: In Vitro Assessment of Functional Traits. Microorganisms. 2025; 13(10):2321. https://doi.org/10.3390/microorganisms13102321
Chicago/Turabian StyleNunes, Juliana F., Maura S. R. A. da Silva, Natally F. R. de Oliveira, Carolina R. de Souza, Fernanda S. Arcenio, Bruno A. T. de Lima, Irene S. Coelho, and Everaldo Zonta. 2025. "Plant Growth-Promoting Bacteria from Tropical Soils: In Vitro Assessment of Functional Traits" Microorganisms 13, no. 10: 2321. https://doi.org/10.3390/microorganisms13102321
APA StyleNunes, J. F., da Silva, M. S. R. A., de Oliveira, N. F. R., de Souza, C. R., Arcenio, F. S., de Lima, B. A. T., Coelho, I. S., & Zonta, E. (2025). Plant Growth-Promoting Bacteria from Tropical Soils: In Vitro Assessment of Functional Traits. Microorganisms, 13(10), 2321. https://doi.org/10.3390/microorganisms13102321