Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = allyl methyl sulfide (AMS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3577 KiB  
Article
Deodorizing Activity of Hop Bitter Acids and Their Oxidation Products Against Allyl Methyl Sulfide, a Major Contributor to Unpleasant Garlic-Associated Breath and Body Odor
by Atsushi Henmi, Tsutomu Sugino, Akira Sasaki, Kenichi Nakamura and Masakuni Okuhara
Cosmetics 2025, 12(3), 126; https://doi.org/10.3390/cosmetics12030126 - 17 Jun 2025
Viewed by 738
Abstract
Garlic is a spice widely used worldwide, but ingestion of garlic can cause unpleasant breath odor that can be offensive in interpersonal interactions. Among several sulfur-containing components of garlic, allyl methyl sulfide is considered the primary causative agent of unpleasant garlic breath and [...] Read more.
Garlic is a spice widely used worldwide, but ingestion of garlic can cause unpleasant breath odor that can be offensive in interpersonal interactions. Among several sulfur-containing components of garlic, allyl methyl sulfide is considered the primary causative agent of unpleasant garlic breath and body odor. We discovered that hop cone powder exhibits potent deodorizing activity against allyl methyl sulfide. Oxidation products of the hop bitter acids humulinone and hulupone were detected in a partially purified sample of hop cone powder. Oxidation products of the α-acids cohumulinone and n-humulinone showed approximately 10- and 15-fold stronger deodorizing activity than the parent α-acids, respectively. The deodorizing activity of oxidation products of β-acids was comparable to that of n-humulinone. It is presumed that the oxidation products of hop powder play an important role in the strong deodorizing activity of hop cone powder against allyl methyl sulfide. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

11 pages, 1756 KiB  
Article
Deodorising Garlic Body Odour by Ingesting Natural Food Additives Containing Phenolic Compounds and Polyphenol Oxidase
by Tadahiro Hiramoto, Yuya Kakumu, Shodai Sato and Yoshika Sekine
Appl. Sci. 2024, 14(21), 9631; https://doi.org/10.3390/app14219631 - 22 Oct 2024
Cited by 1 | Viewed by 3318
Abstract
Garlic consumption is a well-known cause of unpleasant breath and body odour, with volatile organosulfur compounds, such as diallyl disulfide (DADS) and allyl methyl sulfide (AMS) responsible for the characteristic odour. Certain foods that are rich in polyphenols (PPs) and polyphenol oxidase (PPO) [...] Read more.
Garlic consumption is a well-known cause of unpleasant breath and body odour, with volatile organosulfur compounds, such as diallyl disulfide (DADS) and allyl methyl sulfide (AMS) responsible for the characteristic odour. Certain foods that are rich in polyphenols (PPs) and polyphenol oxidase (PPO) are known to deodorise garlic breath. However, no study into garlic body odour has been reported owing to the very low amounts of emitted volatile organosulfur compounds. Herein, we aimed to demonstrate the effects of ingesting natural food additives rich in both PPs and PPO on the emissions of skin-derived DADS and AMS using a passive flux sampler in conjunction with gas chromatography–mass spectrometry. Three healthy male subjects were subjected to garlic-consumption testing, with all subjects commonly observed to exhibit remarkably higher dermal DADS- and AMS-emission fluxes after consuming 45 g of cooked garlic, which then gradually decreased toward their initial baseline levels. In comparison, remarkably lower emission fluxes of both organosulfur compounds were observed after consuming a natural food additive following garlic consumption in a dose-dependent manner. The optimal amount of ingested natural food additive required to reduce garlic body odour was found to be 1–2 g. Considering the metabolic pathway associated with garlic-derived sulfur compounds and elimination reactions involving PPs and PPO, allyl mercaptan is likely to be a key substance involved in reducing garlic body odour through the ingestion of natural food additives. Full article
Show Figures

Figure 1

10 pages, 1178 KiB  
Article
The Effect of Black Garlic on the Volatile Compounds in Heat-Treated Sucuk
by Zeynep Feyza Yılmaz Oral and Güzin Kaban
Foods 2023, 12(20), 3876; https://doi.org/10.3390/foods12203876 - 23 Oct 2023
Cited by 5 | Viewed by 2326
Abstract
This study aimed to determine the influence of using black garlic (BG) at different levels on organic volatile compounds in heat-treated sucuk (HTS), a semi dry fermented sausage. Three independent batches of sausages were prepared: control: 1% white garlic (WG): WG-1%; BG-1%: 1% [...] Read more.
This study aimed to determine the influence of using black garlic (BG) at different levels on organic volatile compounds in heat-treated sucuk (HTS), a semi dry fermented sausage. Three independent batches of sausages were prepared: control: 1% white garlic (WG): WG-1%; BG-1%: 1% BG; BG-2%: 2% BG; and BG-3%: 3% BG. After stuffing, the sausages were subjected to fermentation, heat treatment (internal temperature of 64 °C), and drying, respectively. After production, the final products were analyzed for volatile compounds. A solid-phase microextraction technique was used for the extraction of volatile compounds, and identification was carried out by a gas chromatograph/mass spectrometer. A total of 47 volatile compounds, including sulfur compounds, alcohols, esters, ketones, aliphatic hydrocarbons, acids, aromatic hydrocarbons, aldehydes, and terpenes, were identified from the sausages. The use of BG in HTS had no significant effect on aliphatic hydrocarbons, acids, ketones, aromatic hydrocarbons, and esters. BG increased the abundances of 2-propen-1-ol, allyl methyl sulfide, methyl 2-propenyl-disulfide, sabinene, β-pinene, and β-phellandrene regardless of the increase in the addition rate. BG-3% increased the level of hexanal. According to the PCA results, BG-containing groups showed positive correlation with esters, sulfur compounds, aldehydes, aromatic hydrocarbons, and alcohols, but these chemical groups were more closely correlated with BG-3%. In addition, diallyl disulfide, which is one of the main factors that causes the pungent and spicy smell of garlic, showed a close correlation with WG-1%. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

13 pages, 1868 KiB  
Article
Rapid Detection of Volatile Organic Metabolites in Urine by High-Pressure Photoionization Mass Spectrometry for Breast Cancer Screening: A Pilot Study
by Ming Yang, Jichun Jiang, Lei Hua, Dandan Jiang, Yadong Wang, Depeng Li, Ruoyu Wang, Xiaohui Zhang and Haiyang Li
Metabolites 2023, 13(7), 870; https://doi.org/10.3390/metabo13070870 - 21 Jul 2023
Cited by 5 | Viewed by 2134
Abstract
Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively and [...] Read more.
Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively and contains numerous volatile organic metabolites (VOMs) that offer valuable metabolic information concerning the onset and progression of diseases. In this work, a rapid method for analysis of VOMs in urine by using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) coupled with dynamic purge injection. A simple pretreatment process of urine samples by adding acid and salt was employed for efficient VOM sampling, and the numbers of metabolites increased and the detection sensitivity was improved after the acid (HCl) and salt (NaCl) addition. The established mass spectrometry detection method was applied to analyze a set of training samples collected from a local hospital, including 24 breast cancer patients and 27 healthy controls. Statistical analysis techniques such as principal component analysis, partial least squares discriminant analysis, and the Mann–Whitney U test were used, and nine VOMs were identified as differential metabolites. Finally, acrolein, 2-pentanone, and methyl allyl sulfide were selected to build a metabolite combination model for distinguishing breast cancer patients from the healthy group, and the achieved sensitivity and specificity were 92.6% and 91.7%, respectively, according to the receiver operating characteristic curve analysis. The results demonstrate that this technology has potential to become a rapid screening tool for breast cancer, with significant room for further development. Full article
Show Figures

Figure 1

8 pages, 2266 KiB  
Proceeding Paper
Signature Garlic Phytochemical as a Potential Anti-Candidal Candidate Targeting Virulence Factors in Candida albicans 
by Ziaul Hasan, Asimul Islam and Luqman Ahmad Khan
Med. Sci. Forum 2023, 21(1), 50; https://doi.org/10.3390/ECB2023-14080 - 1 Mar 2023
Viewed by 2224
Abstract
Resistance to presently available antifungals and their toxicities is a serious concern throughout the world. It is necessary to investigate innovative, more effective molecules especially derived from medicinally active plants with lesser side effects. Allyl methyl sulfide (AMS), an organosulfur derived from garlic [...] Read more.
Resistance to presently available antifungals and their toxicities is a serious concern throughout the world. It is necessary to investigate innovative, more effective molecules especially derived from medicinally active plants with lesser side effects. Allyl methyl sulfide (AMS), an organosulfur derived from garlic oil, was explored for its activity against Candida albicans strains. The minimum Inhibitory Concentration (MIC) values of AMS were found to be 200 µg/mL and 250 µg/mL, and the Minimum Fungicidal Concentration (MFC) values of AMS were 400 µg/mL and 500 µg/mL for the selected strains, respectively. Fungal growth in C. albicans was 90% inhibited at their respective MIC values, as demonstrated by micro broth dilution experiments. After treatment with AMS, C. albicans’ release of extracellular proteinases, phospholipases, and biofilm formation was significantly inhibited. In C. albicans, AMS treatment also reduces attachment to buccal epithelial tissues as measured microscopically. In addition, AMS exhibited significant control over yeast to hypha transitions in C. albicans cells, which constitutes one of the major virulent features of the Candida species. All the findings of this study indicate that AMS may be a potential alternative to commonly used antifungals. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Biomedicines)
Show Figures

Figure 1

23 pages, 3077 KiB  
Article
Molecular Screening of Bioactive Compounds of Garlic for Therapeutic Effects against COVID-19
by Huma Ashraf, Erum Dilshad, Tayyaba Afsar, Ali Almajwal, Huma Shafique and Suhail Razak
Biomedicines 2023, 11(2), 643; https://doi.org/10.3390/biomedicines11020643 - 20 Feb 2023
Cited by 8 | Viewed by 3056
Abstract
An outbreak of pneumonia occurred on December 2019 in Wuhan, China, which caused a serious public health emergency by spreading around the globe. Globally, natural products are being focused on more than synthetic ones. So, keeping that in view, the current study was [...] Read more.
An outbreak of pneumonia occurred on December 2019 in Wuhan, China, which caused a serious public health emergency by spreading around the globe. Globally, natural products are being focused on more than synthetic ones. So, keeping that in view, the current study was conducted to discover potential antiviral compounds from Allium sativum. Twenty-five phytocompounds of this plant were selected from the literature and databases including 3-(Allylsulphinyl)-L-alanine, Allicin, Diallyl sulfide, Diallyl disulfide, Diallyl trisulfide, Glutathione, L-Cysteine, S-allyl-mercapto-glutathione, Quercetin, Myricetin, Thiocysteine, Gamma-glutamyl-Lcysteine, Gamma-glutamylallyl-cysteine, Fructan, Lauricacid, Linoleicacid, Allixin, Ajoene, Diazinon Kaempferol, Levamisole, Caffeicacid, Ethyl linoleate, Scutellarein, and S-allylcysteine methyl-ester. Virtual screening of these selected ligands was carried out against drug target 3CL protease by CB-dock. Pharmacokinetic and pharmacodynamic properties defined the final destiny of compounds as drug or non-drug molecules. The best five compounds screened were Allicin, Diallyl Sulfide, Diallyl Disulfide, Diallyl Trisulfide, Ajoene, and Levamisole, which showed themselves as hit compounds. Further refining by screening filters represented Levamisole as a lead compound. All the interaction visualization analysis studies were performed using the PyMol molecular visualization tool and LigPlot+. Conclusively, Levamisole was screened as a likely antiviral compound which might be a drug candidate to treat SARS-CoV-2 in the future. Nevertheless, further research needs to be carried out to study their potential medicinal use. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

17 pages, 2223 KiB  
Review
A Whiff of Sulfur: One Wind a Day Keeps the Doctor Away
by Eduard Tiganescu, Markus Alexander Lämmermann, Yannick Ney, Ahmad Yaman Abdin, Muhammad Jawad Nasim and Claus Jacob
Antioxidants 2022, 11(6), 1036; https://doi.org/10.3390/antiox11061036 - 24 May 2022
Cited by 2 | Viewed by 4330
Abstract
Reactive Sulfur Species (RSS), such as allicin from garlic or sulforaphane from broccoli, are fre-quently associated with biological activities and possible health benefits in animals and humans. Among these Organic Sulfur Compounds (OSCs) found in many plants and fungi, the Volatile Sulfur Compounds [...] Read more.
Reactive Sulfur Species (RSS), such as allicin from garlic or sulforaphane from broccoli, are fre-quently associated with biological activities and possible health benefits in animals and humans. Among these Organic Sulfur Compounds (OSCs) found in many plants and fungi, the Volatile Sulfur Compounds (VSCs) feature prominently, not only because of their often-pungent smell, but also because they are able to access places which solids and solutions cannot reach that easily. Indeed, inorganic RSS such as hydrogen sulfide (H2S) and sulfur dioxide (SO2) can be used to lit-erally fumigate entire rooms and areas. Similarly, metabolites of garlic, such as allyl methyl sulfide (AMS), are formed metabolically in humans in lower concentrations and reach the airways from inside the body as part of one’s breath. Curiously, H2S is also formed in the gastrointestinal tract by gut bacteria, and the question of if and for which purpose this gas then crosses the barriers and enters the body is indeed a delicate matter for equally delicate studies. In any case, nature is surprisingly rich in such VSCs, as fruits (for instance, the infamous durian) demonstrate, and therefore these VSCs represent a promising group of compounds for further studies. Full article
Show Figures

Figure 1

34 pages, 2106 KiB  
Review
Garlic (Allium sativum L.) Bioactives and Its Role in Alleviating Oral Pathologies
by Minnu Sasi, Sandeep Kumar, Manoj Kumar, Sandhya Thapa, Uma Prajapati, Yamini Tak, Sushil Changan, Vivek Saurabh, Shweta Kumari, Ashok Kumar, Muzaffar Hasan, Deepak Chandran, Radha, Sneh Punia Bangar, Sangram Dhumal, Marisennayya Senapathy, Anitha Thiyagarajan, Ahmad Alhariri, Abhijit Dey, Surinder Singh, Suraj Prakash, Ravi Pandiselvam and Mohamed Mekhemaradd Show full author list remove Hide full author list
Antioxidants 2021, 10(11), 1847; https://doi.org/10.3390/antiox10111847 - 21 Nov 2021
Cited by 76 | Viewed by 15958
Abstract
Garlic (Allium sativa L.) is a bulbous flowering plant belongs to the family of Amaryllidaceae and is a predominant horticultural crop originating from central Asia. Garlic and its products are chiefly used for culinary and therapeutic purposes in many countries. Bulbs of [...] Read more.
Garlic (Allium sativa L.) is a bulbous flowering plant belongs to the family of Amaryllidaceae and is a predominant horticultural crop originating from central Asia. Garlic and its products are chiefly used for culinary and therapeutic purposes in many countries. Bulbs of raw garlic have been investigated for their role in oral health, which are ascribed to a myriad of biologically active compounds such as alliin, allicin, methiin, S-allylcysteine (SAC), diallyl sulfide (DAS), S-ally-mercapto cysteine (SAMC), diallyl disulphide (DADS), diallyl trisulfide (DATS) and methyl allyl disulphide. A systematic review was conducted following the PRISMA statement. Scopus, PubMed, Clinicaltrials.gov, and Science direct databases were searched between 12 April 2021 to 4 September 2021. A total of 148 studies were included and the qualitative synthesis phytochemical profile of GE, biological activities, therapeutic applications of garlic extract (GE) in oral health care system, and its mechanism of action in curing various oral pathologies have been discussed. Furthermore, the safety of incorporation of GE as food supplements is also critically discussed. To conclude, GE could conceivably make a treatment recourse for patients suffering from diverse oral diseases. Full article
(This article belongs to the Special Issue Natural Antioxidants and Oral Health)
Show Figures

Figure 1

15 pages, 2083 KiB  
Article
A Regioselective Synthesis of Novel Functionalized Organochalcogen Compounds by Chalcogenocyclofunctionalization Reactions Based on Chalcogen Halides and Natural Products
by Maxim V. Musalov, Vladimir A. Potapov, Vladimir A. Yakimov, Maria V. Musalova, Arkady A. Maylyan, Sergey V. Zinchenko and Svetlana V. Amosova
Molecules 2021, 26(12), 3729; https://doi.org/10.3390/molecules26123729 - 18 Jun 2021
Cited by 6 | Viewed by 2783
Abstract
The regioselective synthesis of novel functionalized condensed organochalcogen compounds by chalcogenocyclofunctionalization reactions based on chalcogen halides and the natural products thymol and carvacrol has been developed. The reactions of selenium dibromide with allyl thymol and allyl carvacrol proceeded in methylene chloride at room [...] Read more.
The regioselective synthesis of novel functionalized condensed organochalcogen compounds by chalcogenocyclofunctionalization reactions based on chalcogen halides and the natural products thymol and carvacrol has been developed. The reactions of selenium dibromide with allyl thymol and allyl carvacrol proceeded in methylene chloride at room temperature in the presence of NaHCO3 affording bis[(7-isopropyl-4-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] and bis[(4-isopropyl-7-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] selenides in 90–92% yield. Similar sulfides were obtained in 70–72% yields by the reaction of sulfur dichloride in chloroform under reflux. Trihalotellanes containing the same organic moieties were synthesized from allyl thymol, allyl carvacrol and tellurium tetrachloride or tetrabromide in quantitative yields. Corresponding functionalized ditellurides were prepared in 91–92% yields by the reduction of the trichlorotellanes with sodium metabisulfite in two-phase solvent system. The comparison of reactivity of sulfur, selenium and tellurium halides in chalcogenocyclofunctionalization and distinguishing features of each reaction were discussed. Full article
(This article belongs to the Special Issue Recent Advances in Organoselenium Chemistry)
Show Figures

Figure 1

9 pages, 957 KiB  
Article
In-Vitro Evaluation of the Antioxidant and Anti-Inflammatory Activity of Volatile Compounds and Minerals in Five Different Onion Varieties
by Rokayya Sami, Abeer Elhakem, Mona Alharbi, Manal Almatrafi, Nada Benajiba, Taha Ahmed Mohamed, Mohammad Fikry and Mahmoud Helal
Separations 2021, 8(5), 57; https://doi.org/10.3390/separations8050057 - 1 May 2021
Cited by 20 | Viewed by 4628
Abstract
Onions contain high antioxidants compounds that fight inflammation against many diseases. The purpose was to investigate some selected bioactive activities of onion varieties (Yellow, Red, Green, Leek, and Baby). Antioxidant assays and anti-inflammatory activities such as NO production with the addition of some [...] Read more.
Onions contain high antioxidants compounds that fight inflammation against many diseases. The purpose was to investigate some selected bioactive activities of onion varieties (Yellow, Red, Green, Leek, and Baby). Antioxidant assays and anti-inflammatory activities such as NO production with the addition of some bioactive components were determined and analyzed by using a spectrophotometer. Gas chromatography and mass spectrometry (GC–MS) was used for the volatile compounds, while an Atomic absorption spectrometer was used for mineral determinations. Red variety achieved the highest antioxidant activities. The total flavonoids were between (12.56 and 353.53 mg Quercetin/gin dry weight) (dw) and the total phenol was (8.75–25.73 mg/g dw). Leek, Yellow and Green extracts achieved highly anti-inflammatory values (3.71–4.01 μg/mL) followed by Red and Baby extracts, respectively. The highest contents of sodium, potassium, zinc, and calcium were established for Red onions. Furfuraldehyde, 5-Methyl-2-furfuraldehyde, 2-Methyl-2-pentenal, and 1-Propanethiol were the most predominant, followed by a minor abundance of the other compounds such as Dimethyl sulfide, Methyl allyl disulfide, Methyl-trans-propenyl-disulfide, and Methyl propyl disulfide. The results recommend that these varieties could act as sources of essential antioxidants and anti-inflammatories to decrease inflammation and oxidative stresses, especially red onions that recorded high activities. Full article
Show Figures

Figure 1

15 pages, 1294 KiB  
Article
Volatile Organic Compounds (VOCs) of Endophytic Fungi Growing on Extracts of the Host, Horseradish (Armoracia rusticana)
by Tamás Plaszkó, Zsolt Szűcs, Zoltán Kállai, Hajnalka Csoma, Gábor Vasas and Sándor Gonda
Metabolites 2020, 10(11), 451; https://doi.org/10.3390/metabo10110451 - 8 Nov 2020
Cited by 26 | Viewed by 3662
Abstract
The interaction between plant defensive metabolites and different plant-associated fungal species is of high interest to many disciplines. Volatile organic compounds (VOCs) are natural products that are easily evaporated under ambient conditions. They play a very important role in inter-species communication of microbes [...] Read more.
The interaction between plant defensive metabolites and different plant-associated fungal species is of high interest to many disciplines. Volatile organic compounds (VOCs) are natural products that are easily evaporated under ambient conditions. They play a very important role in inter-species communication of microbes and their hosts. In this study, the VOCs produced by 43 different fungal isolates of endophytic and soil fungi during growth on horseradish root (Armoracia rusticana) extract or malt extract agar were examined, by using headspace-gas chromatography-mass spectrometry (headspace-GC-MS) and a high relative surface agar film as a medium. The proposed technique enabled sensitive detection of several typical VOCs (acetone, methyl acetate, methyl formate, ethyl acetate, methyl butanol isomers, styrene, beta-phellandrene), along with glucosinolate decomposition products, including allyl cyanide and allyl isothiocyanate and other sulfur-containing compounds—carbon disulfide, dimethyl sulfide. The VOC patterns of fungi belonging to Setophoma, Paraphoma, Plectosphaerella, Pyrenochaeta, Volutella, Cadophora, Notophoma, and Curvularia genera were described for the first time. The VOC pattern was significantly different among the isolates. The pattern was indicative of putative myrosinase activity for many tested isolates. On the other hand, endophytes and soil fungi as groups could not be separated by VOC pattern or intensity. Full article
(This article belongs to the Special Issue Plant Metabolomics)
Show Figures

Figure 1

18 pages, 4020 KiB  
Article
Oxidation-Triggerable Liposome Incorporating Poly(Hydroxyethyl Acrylate-co-Allyl methyl sulfide) as an Anticancer Carrier of Doxorubicin
by Jin Ah Kim, Dong Youl Yoon and Jin-Chul Kim
Cancers 2020, 12(1), 180; https://doi.org/10.3390/cancers12010180 - 10 Jan 2020
Cited by 13 | Viewed by 3771
Abstract
Since cancer cells are oxidative in nature, anti-cancer agents can be delivered to cancer cells specifically without causing severe normal cell toxicity if the drug carriers are designed to be sensitive to the intrinsic characteristic. Oxidation-sensitive liposomes were developed by stabilizing dioleoylphosphatidyl ethanolamine [...] Read more.
Since cancer cells are oxidative in nature, anti-cancer agents can be delivered to cancer cells specifically without causing severe normal cell toxicity if the drug carriers are designed to be sensitive to the intrinsic characteristic. Oxidation-sensitive liposomes were developed by stabilizing dioleoylphosphatidyl ethanolamine (DOPE) bilayers with folate-conjugated poly(hydroxyethyl acrylate-co-allyl methyl sulfide) (F-P(HEA-AMS)). The copolymer, synthesized by a free radical polymerization, was surface-active but lost its surface activity after AMS unit was oxidized by H2O2 treatment. The liposomes with F-P(HEA-AMS) were sensitive to H2O2 concentration (0%, 0.5%, 1.0%, and 2.0%) in terms of release, possibly because the copolymer lost its surface activity and its bilayer-stabilizing ability upon oxidation. Fluorescence-activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM) revealed that doxorubicin (DOX)-loaded liposomes stabilized with folate-conjugated copolymers markedly promoted the transport of the anti-cancer drug to cancer cells. This was possible because the liposomes were readily translocated into the cancer cells via receptor-mediated endocytosis. This liposome would be applicable to the delivery carrier of anticancer drugs. Full article
(This article belongs to the Special Issue Cancer Nanomedicine)
Show Figures

Figure 1

13 pages, 6302 KiB  
Article
A Miniature Gas Sampling Interface with Open Microfluidic Channels: Characterization of Gas-to-Liquid Extraction Efficiency of Volatile Organic Compounds
by Andrew C. Warden, Stephen C. Trowell and Murat Gel
Micromachines 2019, 10(7), 486; https://doi.org/10.3390/mi10070486 - 19 Jul 2019
Cited by 12 | Viewed by 4285
Abstract
Chemosensory protein based olfactory biosensors are expected to play a significant role in next-generation volatile organic compound (VOC) detection systems due to their ultra-high sensitivity and selectivity. As these biosensors can perform most efficiently in aqueous environments, the detection systems need to incorporate [...] Read more.
Chemosensory protein based olfactory biosensors are expected to play a significant role in next-generation volatile organic compound (VOC) detection systems due to their ultra-high sensitivity and selectivity. As these biosensors can perform most efficiently in aqueous environments, the detection systems need to incorporate a gas sampling interface for gas-to-liquid extraction. This interface should extract the VOCs from the gas phase with high efficiency and transfer them into the liquid containing biosensors to enable subsequent detection. To design such a transfer interface, an understanding of the key parameters influencing the gas-to-liquid extraction efficiency of target VOCs is crucial. This paper reports a gas sampling interface system based on a microfluidic open-channel device for gas-to-liquid extraction. By using this device as a model platform, the key parameters dictating the VOC extraction efficiency were identified. When loaded with 30 μL of capture liquid, the microfluidic device generates a gas-liquid interface area of 3 cm2 without using an interfacial membrane. The pumpless operation based on capillary flow was demonstrated for capture liquid loading and collection. Gas samples spiked with lipophilic model volatiles (hexanal and allyl methyl sulfide) were used for characterization of the VOC extraction efficiency. Decreasing the sampling temperature to 15 °C had a significant impact on increasing capture efficiency, while variation in the gas sampling flow rate had no significant impact in the range between 40–120 mL min−1. This study found more than a 10-fold increase in capture efficiency by chemical modification of the capture liquid with alpha-cyclodextrin. The highest capture efficiency of 30% was demonstrated with gas samples spiked with hexanal to a concentration of 16 ppm (molar proportion). The approach in this study should be useful for further optimisation of miniaturised gas-to-liquid extraction systems and contribute to the design of chemosensory protein-based VOC detection systems. Full article
Show Figures

Figure 1

49 pages, 3167 KiB  
Article
Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods
by Larry D. Lawson and Scott M. Hunsaker
Nutrients 2018, 10(7), 812; https://doi.org/10.3390/nu10070812 - 24 Jun 2018
Cited by 169 | Viewed by 24748
Abstract
Allicin is considered responsible for most of the pharmacological activity of crushed raw garlic cloves. However, when garlic supplements and garlic foods are consumed, allicin bioavailability or bioequivalence (ABB) has been unknown and in question because allicin formation from alliin and garlic alliinase [...] Read more.
Allicin is considered responsible for most of the pharmacological activity of crushed raw garlic cloves. However, when garlic supplements and garlic foods are consumed, allicin bioavailability or bioequivalence (ABB) has been unknown and in question because allicin formation from alliin and garlic alliinase usually occurs after consumption, under enzyme-inhibiting gastrointestinal conditions. The ABB from 13 garlic supplements and 9 garlic foods was determined by bioassay for 13 subjects by comparing the area under the 32-h concentration curve of breath allyl methyl sulfide (AMS), the main breath metabolite of allicin, to the area found after consuming a control (100% ABB) of known allicin content: homogenized raw garlic. For enteric tablets, ABB varied from 36–104%, but it was reduced to 22–57% when consumed with a high-protein meal, due to slower gastric emptying. Independent of meal type, non-enteric tablets gave high ABB (80–111%), while garlic powder capsules gave 26–109%. Kwai garlic powder tablets, which have been used in a large number of clinical trials, gave 80% ABB, validating it as representing raw garlic in those trials. ABB did not vary with alliinase activity, indicating that only a minimum level of activity is required. Enteric tablets (high-protein meal) disintegrated slower in women than men. The ABB of supplements was compared to that predicted in vitro by the dissolution test in the United States Pharmacopeia (USP); only partial agreement was found. Cooked or acidified garlic foods, which have no alliinase activity, gave higher ABB than expected: boiled (16%), roasted (30%), pickled (19%), and acid-minced (66%). Black garlic gave 5%. The mechanism for the higher than expected ABB for alliinase-inhibited garlic was explored; the results for an alliin-free/allicin-free extract indicate a partial role for the enhanced metabolism of γ-glutamyl S-allylcysteine and S-allylcysteine to AMS. In conclusion, these largely unexpected results (lower ABB for enteric tablets and higher ABB for all other products) provide guidelines for the qualities of garlic products to be used in future clinical trials and new standards for manufacturers of garlic powder supplements. They also give the consumer an awareness of how garlic foods might compare to the garlic powder supplements used to establish any allicin-related health benefit of garlic. Full article
Show Figures

Figure 1

23 pages, 5143 KiB  
Article
Detection of Volatile Metabolites Derived from Garlic (Allium sativum) in Human Urine
by Laura Scheffler, Yvonne Sauermann, Anja Heinlein, Constanze Sharapa and Andrea Buettner
Metabolites 2016, 6(4), 43; https://doi.org/10.3390/metabo6040043 - 1 Dec 2016
Cited by 30 | Viewed by 6630
Abstract
The metabolism and excretion of flavor constituents of garlic, a common plant used in flavoring foods and attributed with several health benefits, in humans is not fully understood. Likewise, the physiologically active principles of garlic have not been fully clarified to date. It [...] Read more.
The metabolism and excretion of flavor constituents of garlic, a common plant used in flavoring foods and attributed with several health benefits, in humans is not fully understood. Likewise, the physiologically active principles of garlic have not been fully clarified to date. It is possible that not only the parent compounds present in garlic but also its metabolites are responsible for the specific physiological properties of garlic, including its influence on the characteristic body odor signature of humans after garlic consumption. Accordingly, the aim of this study was to investigate potential garlic-derived metabolites in human urine. To this aim, 14 sets of urine samples were obtained from 12 volunteers, whereby each set comprised one sample that was collected prior to consumption of food-relevant concentrations of garlic, followed by five to eight subsequent samples after garlic consumption that covered a time interval of up to 26 h. The samples were analyzed chemo-analytically using gas chromatography-mass spectrometry/olfactometry (GC-MS/O), as well as sensorially by a trained human panel. The analyses revealed three different garlic-derived metabolites in urine, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2), confirming our previous findings on human milk metabolite composition. The excretion rates of these metabolites into urine were strongly time-dependent with distinct inter-individual differences. These findings indicate that the volatile odorant fraction of garlic is heavily biotransformed in humans, opening up a window into substance circulation within the human body with potential wider ramifications in view of physiological effects of this aromatic plant that is appreciated by humans in their daily diet. Full article
Show Figures

Figure 1

Back to TopTop