Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,093)

Search Parameters:
Keywords = alloyed copper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4006 KiB  
Article
Ionic Liquid-Based Centrifuge-Less Cloud Point Extraction of a Copper(II)–4-Nitrocatechol Complex and Its Analytical Application
by Denitsa Kiradzhiyska, Nikolina Milcheva, Miglena Ruzmanova, Fatma Genç, Petya Racheva and Kiril Gavazov
Molecules 2025, 30(15), 3287; https://doi.org/10.3390/molecules30153287 - 6 Aug 2025
Abstract
A novel centrifuge-less cloud point extraction (CL-CPE) method was developed for the spectrophotometric determination of copper(II) using 4-nitrocatechol (4NC) as the chelating agent. The extraction system utilizes a mixed micellar phase composed of the nonionic surfactant Triton X-114 and the ionic liquid (IL) [...] Read more.
A novel centrifuge-less cloud point extraction (CL-CPE) method was developed for the spectrophotometric determination of copper(II) using 4-nitrocatechol (4NC) as the chelating agent. The extraction system utilizes a mixed micellar phase composed of the nonionic surfactant Triton X-114 and the ionic liquid (IL) Aliquat® 336 (A336). The extracted ternary ion-association complex, identified as (A336+)2[Cu(4NC)2], exhibits a maximum absorbance at 451 nm, with a molar absorption coefficient of 8.9 × 104 M−1 cm−1 and a Sandell’s sensitivity of 0.71 ng cm−2. The method demonstrates a linear response in the copper(II) concentration range of 32–763 ng mL−1 and a limit of detection of 9.7 ng mL−1. The logarithmic extraction constant (log Kex) was determined to be 7.9, indicating efficient extraction. Method performance, evaluated by the Blue Applicability Grade Index (BAGI) and the Click Analytical Chemistry Index (CACI), confirmed its feasibility, practicality, simplicity, convenience, cost-effectiveness, environmental friendliness, and analytical competitiveness. The proposed IL-CL-CPE method was successfully applied to the analysis of a dietary supplement, a solution for infusion, and synthetic mixtures simulating various copper alloys. Full article
(This article belongs to the Special Issue Recent Advances in Extraction Techniques for Elemental Analysis)
Show Figures

Figure 1

19 pages, 4972 KiB  
Article
Dispersion of TiB2 Particles in Al–Ni–Sc–Zr System Under Rapid Solidification
by Xin Fang, Lei Hu, Peng Rong and Yang Li
Metals 2025, 15(8), 872; https://doi.org/10.3390/met15080872 (registering DOI) - 4 Aug 2025
Abstract
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, [...] Read more.
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, fabricated via wedge-shaped copper mold casting and laser surface remelting. Thermodynamic calculations were employed to optimize alloy composition, ensuring sufficient nucleation driving force under rapid solidification conditions. The results show that the formation of Al3(Sc,Zr)/TiB2 composite interfaces is highly dependent on cooling rate and plays a pivotal role in promoting uniform TiB2 dispersion. At an optimal cooling rate (~1200 °C/s), Al3(Sc,Zr) nucleates heterogeneously on TiB2, forming core–shell structures and enhancing particle engulfment into the α-Al matrix. Orientation relationship analysis reveals a preferred (111)α-Al//(0001)TiB2 alignment in Sc/Zr-containing samples. A classical nucleation model quantitatively explains the observed trends and reveals the critical cooling-rate window for composite interface formation. This work provides a mechanistic foundation for designing high-performance aluminum-based composites with uniformly dispersed reinforcements for additive manufacturing applications. Full article
Show Figures

Figure 1

19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 - 31 Jul 2025
Viewed by 188
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

16 pages, 4613 KiB  
Article
Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach
by Ibrahim M. Gadala, Shabnam Pournazari, Davood Nakhaie, Akram Alfantazi, Daan M. Maijer and Edouard Asselin
Metals 2025, 15(8), 846; https://doi.org/10.3390/met15080846 - 29 Jul 2025
Viewed by 264
Abstract
Aluminum–copper casting alloys are potential candidate materials for use in marine applications where high mechanical strength and superior fatigue resistance are desired. The corrosion and protection of aluminum alloy B206 in seawater through surface passivation continues to pose challenges, hampering its widespread use [...] Read more.
Aluminum–copper casting alloys are potential candidate materials for use in marine applications where high mechanical strength and superior fatigue resistance are desired. The corrosion and protection of aluminum alloy B206 in seawater through surface passivation continues to pose challenges, hampering its widespread use in marine structures. In this study, the electrochemical behavior of B206 is investigated in artificial seawater at temperatures and dissolved oxygen (DO) concentrations anticipated during service in marine environments. In particular, the influence of anodizing B206 in deaerated seawater on the subsequent corrosion behavior of the alloy is studied using potentiodynamic and potentiostatic polarization, electrochemical impedance spectroscopy (EIS), and Mott–Schottky analysis. The results showed that the effect of DO on the corrosion of B206 is more significant than the effect of temperature. In the absence of DO, results of potentiostatic polarization, EIS, and Mott–Schottky analysis at anodic potentials all indicated the development of a thicker, more protective passive layer in colder seawater. Moreover, passive layer thickness modeled using Power-Law was found to range between 3 and 9 nm, whilst decreasing in thickness with temperature. Donor densities of the n-type passive layer are on the order of 1021 cm−3 and increase with temperature. The findings presented in this study support the feasibility of implementing anodizing for B206 in marine service environments. Full article
Show Figures

Figure 1

15 pages, 5275 KiB  
Article
Effect of Copper in Gas-Shielded Solid Wire on Microstructural Evolution and Cryogenic Toughness of X80 Pipeline Steel Welds
by Leng Peng, Rui Hong, Qi-Lin Ma, Neng-Sheng Liu, Shu-Biao Yin and Shu-Jun Jia
Materials 2025, 18(15), 3519; https://doi.org/10.3390/ma18153519 - 27 Jul 2025
Viewed by 310
Abstract
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding [...] Read more.
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding (GMAW) parameters. The mechanical capacities were assessed via tensile testing, Charpy V-notch impact tests at −20 °C and Vickers hardness measurements. Microstructural evolution was characterized through optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Key findings reveal that increasing the Cu content from 0.13 wt.% to 0.34 wt.% reduces the volume percentage of acicular ferrite (AF) in the weld metal by approximately 20%, accompanied by a significant decline in cryogenic toughness, with the average impact energy decreasing from 221.08 J to 151.59 J. Mechanistic analysis demonstrates that the trace increase in the Cu element. The phase transition temperature and inclusions is not significant but can refine the prior austenite grain size of the weld, so that the total surface area of the grain boundary increases, and the surface area of the inclusions within the grain is relatively small, resulting in the nucleation of acicular ferrite within the grain being weak. This microstructural transition lowers the critical crack size and diminishes the density for high-angle grain boundaries (HAGBs > 45°), which weakens crack deflection capability. Consequently, the crack propagation angle decreases from 54.73° to 45°, substantially reducing the energy required for stable crack growth and deteriorating low-temperature toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 340
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

21 pages, 6239 KiB  
Article
Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater
by Hannanatullgharah Hayeedah, Aparporn Sakulkalavek, Bhanupol Klongratog, Nuttakrit Somdock, Pisan Srirach, Pichet Limsuwan and Kittisakchai Naemchanthara
Processes 2025, 13(7), 2232; https://doi.org/10.3390/pr13072232 - 12 Jul 2025
Viewed by 304
Abstract
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), [...] Read more.
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), and it was found that the optimum milling time was 30 h. The homogeneity of the Fe and Cu elements in the Fe–Cu alloys was analyzed using the scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) mapping technique. Additionally, the crystal orientation of the Fe–Cu alloys was investigated using transmission electron microscopy (TEM). To fabricate the cathode for nitrate removal via electrolysis, an Fe–Cu alloy milled for 30 h was deposited onto a copper substrate using mechanical milling, then annealed at 800 °C. A pulsed DC electrolysis method was developed to test the nitrate removal efficiency of the Fe–Cu-coated cathode. The anode used was an Al sheet. The synthesized wastewater was prepared from KNO3. Nitrate removal experiments from the synthesized wastewater were performed for durations of 0–4 h. The results show that the nitrate removal efficiency at 4 h was 96.90% compared to 74.40% with the Cu cathode. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

24 pages, 6554 KiB  
Article
Modeling Mechanical Properties of Industrial C-Mn Cast Steels Using Artificial Neural Networks
by Saurabh Tiwari, Seongjun Heo, Nokeun Park and Nagireddy Gari S. Reddy
Metals 2025, 15(7), 790; https://doi.org/10.3390/met15070790 - 12 Jul 2025
Viewed by 290
Abstract
This study develops a comprehensive artificial neural network (ANN) model for predicting the mechanical properties of carbon–manganese cast steel, specifically, the yield strength (YS), tensile strength (TS), elongation (El), and reduction of area (RA), based on the chemical composition (16 alloying elements) and [...] Read more.
This study develops a comprehensive artificial neural network (ANN) model for predicting the mechanical properties of carbon–manganese cast steel, specifically, the yield strength (YS), tensile strength (TS), elongation (El), and reduction of area (RA), based on the chemical composition (16 alloying elements) and heat treatment parameters. The neural network model, employing a 20-44-44-4 architecture and trained on 400 samples from an industrial dataset of 500 samples, achieved 90% of test predictions within a 5% deviation from actual values, with mean prediction errors of 3.45% for YS and 4.9% for %EL. A user-friendly graphical interface was developed to make these predictive capabilities accessible, without requiring programming expertise. Sensitivity analyses revealed that increasing the copper content from 0.05% to 0.2% enhanced the yield strength from 320 to 360 MPa while reducing the ductility, whereas niobium functioned as an effective grain refiner, improving both the strength and ductility. The combined effects of carbon and manganese demonstrated complex synergistic behavior, with the yield strength varying between 280 and 460 MPa and the tensile strength ranging from 460 to 740 MPa across the composition space. Optimal strength–ductility balance was achieved at moderate compositions of 1.0–1.2 wt% Mn and 0.20–0.24 wt% C. The model provides an efficient alternative to costly experimental trials for optimizing C-Mn steels, with prediction errors consistently below 6% compared with 8–20% for traditional empirical methods. This approach establishes quantitative guidelines for designing complex multi-element alloys with targeted mechanical properties, representing a significant advancement in computational material engineering for industrial applications. Full article
(This article belongs to the Special Issue Advances in Constitutive Modeling for Metals and Alloys)
Show Figures

Graphical abstract

15 pages, 10188 KiB  
Article
The Effect of Aging Treatment on the Properties of Cold-Rolled Cu-Ni-Si-Co Alloys with Different Mg Contents
by Dan Wu, Jinming Hu, Qiang Hu, Lingkang Wu, Bo Guan, Siqi Zeng, Zhen Xing, Jiahao Wang, Jing Xu, Guojie Huang and Jin Liu
Materials 2025, 18(14), 3263; https://doi.org/10.3390/ma18143263 - 10 Jul 2025
Viewed by 358
Abstract
Cu-Ni-Si is a prominent example of a high-end lead frame copper alloy. The enhancement of strength without compromising electrical conductivity has emerged as a prominent research focus. The evolution of the precipitates exerts a significant influence on the strength and electrical conductivity of [...] Read more.
Cu-Ni-Si is a prominent example of a high-end lead frame copper alloy. The enhancement of strength without compromising electrical conductivity has emerged as a prominent research focus. The evolution of the precipitates exerts a significant influence on the strength and electrical conductivity of Cu-Ni-Si-Co-Mg alloys. In this paper, the effects of aging treatment and Mg addition on the properties and precipitates of cold-rolled Cu-Ni-Si-Co alloys were studied. The precipitate was (Ni, Co)2Si and was in a strip shape. During aging, precipitation and coarsening of the (Ni, Co)2Si precipitates were observed. In the early stage of aging, a significant number of fine (Ni, Co)2Si precipitates were formed. These fine precipitates could not only have a better effect of precipitation strengthening, but also impeded the dislocation movement, thus increasing the dislocation density and improving the dislocation strengthening effect. However, the coarsening of the precipitates became dominant with increasing aging times. Therefore, the strengthening effect was weakened. The addition of 0.12% Mg promoted finer and more diffuse precipitates, which not only improving the tensile strength by 100–200 MPa, but also exhibiting a smaller effect on the electrical conductivity. However, further increases in Mg contents resulted in a significant decrease in electrical conductivity, with little change in the tensile strength. The optimum amount of added Mg was 0.12%, and the aging parameters were 300 °C and 20 min. Full article
Show Figures

Figure 1

18 pages, 9477 KiB  
Article
Effect of 3 wt% Cu on the Microstructure and Hardness of a Ti-10Ta-1.6Zr Alloy
by Nobom G. Hashe, Lee Fowler, Susanne Norgren, Lesley A. Cornish, Lesley H. Chown, William E. Goosen, Johan E. Westraadt, Nomsombuluko D. E. Hadebe and Caroline Öhman-Mägi
Materials 2025, 18(13), 3163; https://doi.org/10.3390/ma18133163 - 3 Jul 2025
Viewed by 312
Abstract
Alloys of Ti-10Ta-1.6Zr (wt%) with and without 3 wt% Cu made by arc-melting, heat-treated in two stages and quenched to have α + β microstructures were studied. These alloys were studied for potential replacement of Ti-6Al-4V alloys because Ta and Zr are more [...] Read more.
Alloys of Ti-10Ta-1.6Zr (wt%) with and without 3 wt% Cu made by arc-melting, heat-treated in two stages and quenched to have α + β microstructures were studied. These alloys were studied for potential replacement of Ti-6Al-4V alloys because Ta and Zr are more biocompatible than Al and V, and copper was added for potential antimicrobial properties. The heat-treated samples were investigated by SEM-EDX, transmission Kikuchi diffraction (TKD) and XRD. When studied at a higher magnification, the heat-treated alloys revealed a bi-lamellar microstructure, consisting of broad α lamellae and β transformed to fine α′ lamellae with various orientations. The fraction β transformed to fine α′ lamellae was higher in the alloy with Cu than that without Cu. Furthermore, copper was found to lower the solubility of tantalum in the β. The hardest alloy was the heat-treated alloy containing Cu, albeit with a wide standard deviation, probably due to the high fraction of martensitically transformed β. Full article
Show Figures

Figure 1

24 pages, 5858 KiB  
Article
A YOLO11-Based Method for Segmenting Secondary Phases in Cu-Fe Alloy Microstructures
by Qingxiu Jing, Ruiyang Wu, Zhicong Zhang, Yong Li, Qiqi Chang, Weihui Liu and Xiaodong Huang
Information 2025, 16(7), 570; https://doi.org/10.3390/info16070570 - 3 Jul 2025
Cited by 1 | Viewed by 230
Abstract
With the development of industrialization, the demand for high-performance metal materials has increased, and copper and its alloys have been widely used. The microstructure of these materials significantly affects their performance. To address the issues of subjectivity, low efficiency, and limited quantitative capability [...] Read more.
With the development of industrialization, the demand for high-performance metal materials has increased, and copper and its alloys have been widely used. The microstructure of these materials significantly affects their performance. To address the issues of subjectivity, low efficiency, and limited quantitative capability in traditional metallographic analysis methods, this paper proposes a deep learning-based approach for segmenting the second phase in Cu-Fe alloys. The method is built upon the YOLO11 framework and incorporates a series of structural enhancements tailored to the characteristics of the secondary-phase microstructure, aiming to improve the model’s detection accuracy and segmentation performance. Specifically, the EIEM module enhances the C3K2 structure to improve edge perception; the CSPSA module is optimized into C2CGA to strengthen multi-scale feature representation; and the RepGFPN and DySample techniques are integrated to construct the GDFPN neck network. Experimental results on the Cu-Fe alloy metallographic image dataset demonstrate that YOLO11 outperforms mainstream semantic segmentation models such as U-Net and DeepLabV3+ in terms of mAP (85.5%), inference speed (208 FPS), and model complexity (10.2 GFLOPs). The improved YOLO11 model achieves an mAP of 89.0%, a precision of 84.6%, and a recall of 81.0% on this dataset, showing significant performance improvements while effectively balancing inference speed and model complexity. Additionally, a quantitative analysis software system for secondary phase uniformity based on this model provides strong technical support for automated metallographic image analysis and demonstrates broad application prospects in materials science research and industrial quality control. Full article
(This article belongs to the Topic Intelligent Image Processing Technology)
Show Figures

Graphical abstract

8 pages, 1653 KiB  
Proceeding Paper
The Mechanical Properties of Brass Alloys: A Review
by S. Jasper, R. Subash, K. Muthuneelakandan, D. Vijayakumar and S. Jhansi Ida
Eng. Proc. 2025, 93(1), 11; https://doi.org/10.3390/engproc2025093011 - 1 Jul 2025
Viewed by 536
Abstract
Brass is a proportionate copper and zinc alloy that may be mixed to achieve a variety of mechanical, electrical, and chemical characteristics. Compared to bronze, it is more pliable. Brass has a comparatively low melting point (900–940 °C; 1650–1720 °F), depending on its [...] Read more.
Brass is a proportionate copper and zinc alloy that may be mixed to achieve a variety of mechanical, electrical, and chemical characteristics. Compared to bronze, it is more pliable. Brass has a comparatively low melting point (900–940 °C; 1650–1720 °F), depending on its composition. This review explores the most recent advancements in brass alloy technology, including the addition of silicon, tin, and aluminium to improve its strength, machinability, and resistance to corrosion. Furthermore, the development of lead-free, recyclable, and low-carbon brass alloys has been fuelled by the growing demand for environmentally friendly materials. With a renewed emphasis on antibacterial qualities and wear-resistant formulations, brass alloys are also seeing increasing use in sectors like electronics, architecture, and healthcare. Additionally, new opportunities for producing custom-designed brass components have been made possible by the development of additive manufacturing. This paper provides an overview of the current and future potential of brass alloys, highlighting their originality in addressing the changing demands of modern industry and technology. Full article
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Pulsed Current Electrodeposition of Gold–Copper Alloys Using a Low-Cyanide Electrolyte
by Mohamed Amazian, Teresa Andreu and Maria Sarret
Coatings 2025, 15(7), 778; https://doi.org/10.3390/coatings15070778 - 30 Jun 2025
Viewed by 593
Abstract
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling [...] Read more.
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling and environmental compatibility without compromising performance. Electrolyte compositions were optimized via cyclic voltammetry, and coatings were deposited using direct current, pulse current, and reverse pulse current methods. The novel low-cyanide electrolyte system achieved a 99.1% reduction in cyanide use compared with the commercial formulation. Coatings produced with pulse current and reverse pulse current deposition exhibited structural, morphological, and mechanical properties comparable to those obtained from cyanide-based electrolytes. Overall, the low-cyanide electrolyte represents a safer, high-performance alternative to traditional cyanide-based systems. Full article
Show Figures

Figure 1

10 pages, 1600 KiB  
Article
The Mechanism of High Electrical Conductivity in Copper–Chromium Alloy
by Jiaoyan Dai and Guoqiang Liu
Metals 2025, 15(7), 735; https://doi.org/10.3390/met15070735 - 30 Jun 2025
Viewed by 169
Abstract
Cr alloyed Cu exhibits puzzlingly high electrical conductivity compared with other 3d elements alloying. Here, we present a theoretical understanding based on standard electronic band structure calculations. The influence of local spin-polarization on electrical conductivity was first investigated. It is found that the [...] Read more.
Cr alloyed Cu exhibits puzzlingly high electrical conductivity compared with other 3d elements alloying. Here, we present a theoretical understanding based on standard electronic band structure calculations. The influence of local spin-polarization on electrical conductivity was first investigated. It is found that the non-magnetic calculation produces a high density of states peak at the Fermi level, and then it fails to explain the high electrical conductivity of Cu-Cr alloy. When spin polarization is taken into account, the density of states is significantly reduced, and the results are in good agreement with experimental measurements. Meanwhile, the calculation results can explain the increase in strength and also lead to some interesting deductions. Finally, a computational program is proposed to select a high electrical conductivity Cu alloy based on a simple calculation model. Full article
Show Figures

Figure 1

12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 400
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

Back to TopTop