Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (120)

Search Parameters:
Keywords = allometric correlations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 215 KB  
Article
Isometric Force–Time Characteristics of Different Positions in the Clean in Competitive Weightlifters
by Kyle Rochau, Kristen Dieffenbach, Mike Ryan, Sean Bulger, Michael H. Stone and W. Guy Hornsby
Appl. Sci. 2025, 15(23), 12696; https://doi.org/10.3390/app152312696 - 30 Nov 2025
Viewed by 246
Abstract
This study examined isometric force–time characteristics of weightlifters at three key positions of the clean and their ability to predict competition performances. The three key positions were the isometric mid-thigh pull (IMTP), the isometric pull at the start of the transition (IPST), and [...] Read more.
This study examined isometric force–time characteristics of weightlifters at three key positions of the clean and their ability to predict competition performances. The three key positions were the isometric mid-thigh pull (IMTP), the isometric pull at the start of the transition (IPST), and the isometric pull at the start position (IPSP). Seventeen collegiate-level competitive weightlifters (10 males and 7 females) with varying weightlifting achievements (10 of the 17 have medaled at sanctioned USAW national meets) performed isometric strength tests that measured peak force (IPF), rate of force development (RFD), Impulse (IMP), and allometrically scaled variables. The reliability for all measures was high (ICC ≥ 0.86). The IMTP produced the largest absolute forces; however, the IPSP and IPST showed the largest correlations with snatch, clean and jerk, and total, with multiple near-perfect correlations (r ≥ 0.90). RFD and Impulse demonstrated more significant correlations at later time bands (≥200 ms). These findings suggest that measuring multiple isometric positions may provide valuable insight into a weightlifter’s positional strength. Including IPSP and IPST testing protocols with RFD and IMP measurements can augment athlete monitoring and inform training strategies. Full article
(This article belongs to the Special Issue Physical Therapy Treatments for Musculoskeletal Pain)
30 pages, 9607 KB  
Article
The Influence of Planting Density and Climatic Variables on the Wood Structure of Siberian Spruce and Scots Pine
by Elena A. Babushkina, Yulia A. Kholdaenko, Liliana V. Belokopytova, Dina F. Zhirnova, Nariman B. Mapitov, Tatiana V. Kostyakova, Konstantin V. Krutovsky and Eugene A. Vaganov
Forests 2025, 16(11), 1622; https://doi.org/10.3390/f16111622 - 23 Oct 2025
Viewed by 506
Abstract
Stand density is one among a multitude of factors impacting the growth of trees and their responses to climatic variables, but its effect on wood quality at the scale of anatomical structure is hardly investigated. Therefore, we analyzed the radial growth and wood [...] Read more.
Stand density is one among a multitude of factors impacting the growth of trees and their responses to climatic variables, but its effect on wood quality at the scale of anatomical structure is hardly investigated. Therefore, we analyzed the radial growth and wood structure of Siberian spruce (Picea obovata Ledeb.) and Scots pine (Pinus sylvestris L.) in an experimental conifer plantation with a wide gradient of stand density in the Siberian southern taiga. The measured and indexed chronologies of the tree-ring width (TRW), number of tracheid cells per radial row in the ring produced in the cambial zone (N), cell radial diameter (D), and cell wall thickness (CWT) demonstrated the influence of the planting density. The TRW and N have a negative allometric dependence on the stand density (R2 = 0.75–0.88), likely due to competition for resources. The consistent negative dependence of the D on the stand density (R2 = 0.85–0.97) is log-linear and also seems to be related to tree size, while the CWT is not significantly dependent on the stand density. These findings can be used as insights in regulating cellular structure and procuring desired wood quality by silvicultural means. Both conifer species have similar climatic reactions. We observed significant suppression of TRW and D related to water deficit in May–July (both species), as well as frosty (more for pine) and low-snow (for spruce) conditions in winters, as shown by both dendroclimatic correlation and pointer year analysis. Temporal shifts in the climatic responses indicate later transition to latewood and growth cessation in sparse stands, especially in spruce. Better performance was observed in sparce and medium-density stands for both species. Full article
(This article belongs to the Special Issue Effects of Climate Change on Tree-Ring Growth—2nd Edition)
Show Figures

Figure 1

13 pages, 1999 KB  
Article
Morphological and Meristic Feature Studies and Marketing Status of Peregrine Crab Varuna litterata from a Coastal Estuary in Sundarbans Mangrove Forest, Bangladesh
by Joyanta Bir, Prianka Paul, Wasim Sabbir, Khirujjaman Sumon and Rimu Das
Hydrobiology 2025, 4(4), 27; https://doi.org/10.3390/hydrobiology4040027 - 12 Oct 2025
Viewed by 981
Abstract
Varuna litterata is an estuarine crab species widely distributed across the Indo-Pacific region, commonly dwelling in brackish waters, mangrove forests, and tidal estuaries. In Bangladesh, while four Scylla species dominate the commercial crab market, the locally consumed V. litterata remains a biologically overlooked [...] Read more.
Varuna litterata is an estuarine crab species widely distributed across the Indo-Pacific region, commonly dwelling in brackish waters, mangrove forests, and tidal estuaries. In Bangladesh, while four Scylla species dominate the commercial crab market, the locally consumed V. litterata remains a biologically overlooked gem of the coastal waters. These crabs are frequently captured as a byproduct during shrimp fry collection from coastal estuaries. In this context, the current study investigates the reproductive biology, morphometric dynamics, and market potential of V. litterata collected from the Pasur River, a coastal mangrove forest-adjacent estuary of southern Bangladesh. A total of 75 individuals were collected from March to April 2023, comprising 35 males and 40 females, resulting in a sex ratio of 1:1.14 (♂:♀), with a predominance of females. A visual observation of ovary development revealed four distinct maturation stages, with Stage IV (fully mature) being the most prevalent (43%), indicating peak reproductive activity during the sampling period. Morphometric analysis revealed that the average carapace width (CW) was 31.2 ± 5.7 mm and 31.9 ± 5.8 mm and the mean carapace length (CL) was 29.3 ± 4.7 mm and 30.1 ± 4.9 mm in males and females, respectively. However, the mean body weight (BW) was 13.1 ± 4.3 g in males and 12.7 ± 3.8 g in female crabs. The dominant CW class ranges from 33 to 33.99 mm (males) and 28.99–29.99 mm (females), appear to be the most vulnerable to fishing pressure. BW-CW and CL-CW relationships demonstrated negative allometric growth, with high correlations in both sexes. Significant sexual dimorphism was observed, with males having larger cheliped dimensions, while females had broader abdomens, likely supporting reproductive functions that are essential to their conservation. The marketing of this crab remains largely informal, yet rising local demand and prices highlight its emerging commercial potential. Therefore, incorporation into aquaculture and coastal fishery development of this crab species could enhance food security, support livelihoods, and contribute to sustainable blue economy initiatives in Bangladesh. Full article
Show Figures

Figure 1

15 pages, 1255 KB  
Article
Concurrent Validity of the Optojump Infrared Photocell System in Lower Limb Peak Power Assessment: Comparative Analysis with the Wingate Anaerobic Test and Sprint Performance
by Aymen Khemiri, Yassine Negra, Halil İbrahim Ceylan, Manel Hajri, Abdelmonom Njah, Younes Hachana, Mevlüt Yıldız, Serdar Bayrakdaroğlu, Raul Ioan Muntean and Ahmed Attia
Appl. Sci. 2025, 15(19), 10741; https://doi.org/10.3390/app151910741 - 6 Oct 2025
Cited by 1 | Viewed by 964
Abstract
Aim: This study analyzed the concurrent validity of the Optojump infrared photocell system for estimating lower limb peak power by comparing it with the 15 s Wingate anaerobic test (WAnT) and examining relationships with sprint performance indicators. Methods: Twelve physically active university students [...] Read more.
Aim: This study analyzed the concurrent validity of the Optojump infrared photocell system for estimating lower limb peak power by comparing it with the 15 s Wingate anaerobic test (WAnT) and examining relationships with sprint performance indicators. Methods: Twelve physically active university students (ten males, two females; age: 23.39 ± 1.47 years; body mass: 73.08 ± 9.19 kg; height: 173.67 ± 6.97 cm; BMI: 24.17 ± 1.48 kg·m−2) completed a cross-sectional validation protocol. Participants performed WAnT on a calibrated Monark ergometer (7.5% body weight for males, 5.5% for females), 30 s continuous jump tests using the Optojump system (Microgate, Italy), and 30 m sprint assessments with 10 m and 20 m split times. Peak power was expressed in absolute (W), relative (W·kg−1), and allometric (W·kg−0.67) terms. Results: Thirty-second continuous jump testing produced systematically higher peak power values across all metrics (p < 0.001). Mean differences indicated large effect sizes: relative power (Cohen’s d = 0.99; 18.263 ± 4.243 vs. 10.99 ± 1.58 W·kg−1), absolute power (d = 0.86; 1381.71 ± 393.44 vs. 807.28 ± 175.45 W), and allometric power (d = 0.79). Strong correlations emerged between protocols, with absolute power showing the strongest association (r = 0.842, p < 0.001). Linear regression analysis revealed that 30 s continuous jump-derived measurements explained 71% of the variance in Wingate outcomes (R2 = 0.710, p < 0.001). Sprint performance showed equivalent predictive capacity for both tests (Wingate: R2 = 0.66; 30 s continuous jump: R2 = 0.67). Conclusions: The Optojump infrared photocell system provides a valid and practical alternative to laboratory-based ergometry for assessing lower limb anaerobic power. While it systematically overestimates absolute values compared with the Wingate anaerobic test, its strong concurrent validity (r > 0.80), large effect sizes, and equivalent predictive ability for sprint performance (R2 = 0.66–0.71) confirm its reliability as a field-based assessment tool. These findings underscore the importance of sport-specific, weight-bearing assessment technologies in modern sports biomechanics, providing coaches, practitioners, and clinicians with a feasible method for monitoring performance, talent identification, and training optimization. The results further suggest that Optojump-based protocols can bridge the gap between laboratory precision and ecological validity, supporting both athletic performance enhancement and injury prevention strategies. Full article
(This article belongs to the Special Issue Advances in Sports Science and Biomechanics)
Show Figures

Figure 1

18 pages, 2445 KB  
Article
Aboveground Biomass Productivity Relates to Stand Age in Early-Stage European Beech Plantations, Western Carpathians
by Bohdan Konôpka, Jozef Pajtík, Peter Marčiš and Vladimír Šebeň
Plants 2025, 14(19), 2992; https://doi.org/10.3390/plants14192992 - 27 Sep 2025
Cited by 1 | Viewed by 610
Abstract
Our study focused on the quantification of aboveground biomass stock and aboveground net primary productivity (ANPP) in young, planted beech (Fagus sylvatica L.). We selected 15 young even-aged stands targeting moderately fertile sites. Three rectangular plots were established within each stand, and [...] Read more.
Our study focused on the quantification of aboveground biomass stock and aboveground net primary productivity (ANPP) in young, planted beech (Fagus sylvatica L.). We selected 15 young even-aged stands targeting moderately fertile sites. Three rectangular plots were established within each stand, and all trees were annually measured for height and stem basal diameter from 2020 to 2024. For biomass modeling, we conducted destructive sampling of 111 beech trees. Each tree was separated into foliage and woody components, oven-dried, and weighed to determine dry mass. Allometric models were developed using these predictors: tree height, stem basal diameter, and their combination. Biomass accumulation was closely correlated with stand age, allowing us to scale tree-level models to stand-level predictions using age as a common predictor. Biomass stocks of both woody parts and foliage increased with stand age, reaching 48 Mg ha−1 and 6 Mg ha−1, respectively, at the age of 15 years. A comparative analysis indicated generally higher biomass in naturally regenerated stands, except for foliage at age 16, where planted stands caught up with the naturally regenerated ones. Our findings contribute to a better understanding of forest productivity dynamics and offer practical models for estimating carbon sequestration potential in managed forest ecosystems. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 2960 KB  
Article
Quantifying and Optimizing Vegetation Carbon Storage in Building-Attached Green Spaces for Sustainable Urban Development
by Wenjun Peng, Xinqiang Zou, Yanyan Huang and Hui Li
Sustainability 2025, 17(17), 8088; https://doi.org/10.3390/su17178088 - 8 Sep 2025
Cited by 1 | Viewed by 1878
Abstract
Public building-attached green spaces are increasingly important urban carbon sinks, yet their carbon sequestration potential remains poorly understood and underutilized. This study quantified vegetation carbon storage across three attached green space typologies (green square, roof garden, and sunken courtyard) at a representative public [...] Read more.
Public building-attached green spaces are increasingly important urban carbon sinks, yet their carbon sequestration potential remains poorly understood and underutilized. This study quantified vegetation carbon storage across three attached green space typologies (green square, roof garden, and sunken courtyard) at a representative public building in Wuhan, China, using field surveys and species-specific allometric equations. Total carbon storage reached 19,873.43 kg C, dominated by the green square (84.98%), followed by a roof garden (12.29%) and sunken courtyard (2.72%). Regression analysis revealed strong correlations between carbon storage and morphological traits, with diameter at breast height (DBH) showing the highest predictive power for trees (r = 0.976 for evergreen, 0.821 for deciduous), while crown diameter (CD) best predicted shrub carbon storage (r = 0.833). Plant configuration optimization strategies were developed through correlation analysis and ecological principles, including replacing low carbon sequestering species with high carbon native species, enhancing vertical stratification, and implementing multi-layered planting. These strategies increased total carbon storage by 131.5% to 45,964.00 kg C, with carbon density rising from 2.00 kg C∙m−2 to 4.63 kg C∙m−2. The findings provide a quantitative framework and practical strategies for integrating carbon management into the design of building-attached green spaces, supporting climate-responsive urban planning and advancing sustainable development goals. Full article
Show Figures

Figure 1

13 pages, 355 KB  
Article
Novel Anthropometric Indices: An Allometric Perspective
by Nir Y. Krakauer and Jesse C. Krakauer
Endocrines 2025, 6(3), 44; https://doi.org/10.3390/endocrines6030044 - 4 Sep 2025
Cited by 3 | Viewed by 2087
Abstract
Background/Objectives: Anthropometric indices based on height (H), weight (W), waist circumference (WC) and hip circumference (HC) can identify incident and future health risks. While BMI provides a standard for relative W (adjusted for H), there is no standard for indices using WC [...] Read more.
Background/Objectives: Anthropometric indices based on height (H), weight (W), waist circumference (WC) and hip circumference (HC) can identify incident and future health risks. While BMI provides a standard for relative W (adjusted for H), there is no standard for indices using WC and HC. A body shape index (ABSI) and hip index (HI) have been proposed to extend to respectively WC and HC the same allometric power-law approach used to derive BMI to be independent of H. Here, we compared the mutually independent allometric set H, BMI, ABSI, HI with other proposed indices. Methods: We examined the formulas and rationales of published indices, and used Third National Health and Nutrition Examination Survey (NHANES III) cohort data to investigate their inter-correlations and association with mortality. Results: Many of the proposed indices are based on geometric (isometric) similarity, which does not match human body variability patterns. Unlike ABSI and HI, most proposed indices showed large correlations with BMI, complicating interpretation when considered together with BMI. Indices’ association with mortality risk were generally consistent with their correlations with BMI and ABSI. Combining the separable mortality risks associated with BMI and ABSI, even in a simplified way, outperformed any single index. Conclusions: With calls for incorporating additional indices incorporating WC and HC to supplement BMI in defining obesity, only ABSI and HI are independent of BMI. Additionally, separate risk estimates from these allometric indices can be readily combined to optimize overall risk assessment. Full article
(This article belongs to the Special Issue Feature Papers in Endocrines 2025)
Show Figures

Figure 1

12 pages, 1209 KB  
Article
Contribution to Morphometrics and Ecology of Snow Trout (Schizothorax eurycephalus) and Stone Loach (Triplophysa ferganaensis)
by Erkin Karimov, Otabek Omonov, Pieterjan Verhelst, Bakhtiyor K. Karimov, Martin Schletterer and Daniel S. Hayes
Fishes 2025, 10(8), 377; https://doi.org/10.3390/fishes10080377 - 4 Aug 2025
Cited by 2 | Viewed by 958
Abstract
The mountainous rivers of Central Asia host diverse ichthyofauna threatened by increasing anthropogenic pressures, particularly water pollution, abstraction, and hydropower development. This study provides valuable morphometric and ecological data for Schizothorax eurycephalus (snow trout) and Triplophysa ferganaensis (stone loach) in the Shakhimardan River [...] Read more.
The mountainous rivers of Central Asia host diverse ichthyofauna threatened by increasing anthropogenic pressures, particularly water pollution, abstraction, and hydropower development. This study provides valuable morphometric and ecological data for Schizothorax eurycephalus (snow trout) and Triplophysa ferganaensis (stone loach) in the Shakhimardan River basin, Uzbekistan. S. eurycephalus exhibited positive allometric growth, while T. ferganaensis showed negative near-isometric growth. The mean Fulton’s Condition Factor was 1.0 for S. eurycephalus and 0.7 for T. ferganaensis, with site-specific variations. Strong correlations among morphometric parameters, particularly length–height relationships, support non-invasive monitoring techniques. Dietary analysis revealed S. eurycephalus was predominantly herbivorous, with around 70% algae consumption. Early sexual maturity was observed in S. eurycephalus males, whereas T. ferganaensis showed no clear maturity signs, but swollen bellies suggested ongoing or recent reproductive activity. These baseline morphometric and ecological data establish a solid foundation for future ecological assessments, conservation strategies, and the design and monitoring of mitigation measures to address anthropogenic impacts in this vulnerable region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

17 pages, 2163 KB  
Article
Allometric Growth of Annual Pinus yunnanensis After Decapitation Under Different Shading Levels
by Pengrui Wang, Chiyu Zhou, Boning Yang, Jiangfei Li, Yulan Xu and Nianhui Cai
Plants 2025, 14(15), 2251; https://doi.org/10.3390/plants14152251 - 22 Jul 2025
Viewed by 641
Abstract
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, [...] Read more.
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, and related fields. Under control (full daylight exposure, 0% shading), L1 (partial shading, 25% shading), L2 (medium shading, 50% shading), and L3 (serious shading, 75% shading) levels, this study used the decapitation method. The results confirmed the effectiveness of decapitation in annual P. yunnanensis and showed that the main stem maintained isometric growth in all shading treatments, accounting for 26.8% of the individual plant biomass, and exhibited dominance in biomass allocation and high shading sensitivity. These results also showed that lateral roots exhibited a substantial biomass proportion of 12.8% and maintained more than 0.5 of higher plasticity indices across most treatments. Moreover, the lateral root exhibited both the lowest slope in 0.5817 and the highest significance (p = 0.023), transitioning from isometric to allometric growth under L1 shading treatment. Importantly, there was a positive correlation between the biomass allocation of an individual plant and that of all components of annual P. yunnanensis. In addition, the synchronized allocation between main roots and lateral branches, as well as between main stems and lateral roots, suggested functional integration between corresponding belowground and aboveground structures to maintain balanced resource acquisition and architectural stability. At the same time, it has been proved that the growth of lateral roots can be accelerated through decapitation. Important scientific implications for annual P. yunnanensis management were derived from these shading experiments on allometric growth. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

23 pages, 2625 KB  
Article
Effects of Andrographolide-Loaded Nanostructured Lipid Carriers on Growth, Feed Efficiency, and Resistance to Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus)
by Warut Kengkittipat, Manoj Tukaram Kamble, Sirikorn Kitiyodom, Jakarwan Yostawonkul, Gotchagorn Sawatphakdee, Kim D. Thompson, Seema Vijay Medhe and Nopadon Pirarat
Animals 2025, 15(14), 2117; https://doi.org/10.3390/ani15142117 - 17 Jul 2025
Cited by 2 | Viewed by 1418
Abstract
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared [...] Read more.
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared by the phase-inversion technique and characterized by dynamic light scattering, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and in vitro release profiling. Antibacterial activity was assessed by measuring inhibition zone diameters, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Growth performance, feed utilization, hepatosomatic index (HSI), and disease resistance were evaluated over a 60-day feeding trial. The AND-NLCs exhibited an optimal particle size (189.6 nm), high encapsulation efficiency (90.58%), sustained release, and structural stability. Compared to the free AND and control group, AND-NLC supplementation significantly improved growth, feed efficiency, HSI, and positive allometric growth. It also enhanced survival (73.3%) and relative percent survival (RPS = 65.6%) following S. agalactiae ENC06 infection. Antibacterial efficacy and physiological responses showed positive correlations with nanoparticle characteristics. These findings suggest that AND-NLCs enhance bioavailability and therapeutic efficacy, supporting their potential as a functional dietary additive to promote growth and improve disease resistance in tilapia aquaculture. Full article
(This article belongs to the Special Issue Lipid-Based Nanoparticles for Sustainable Aquaculture)
Show Figures

Figure 1

20 pages, 9502 KB  
Article
Spatiotemporal Coupling Characteristics Between Urban Land Development Intensity and Population Density from a Building-Space Perspective: A Case Study of the Yangtze River Delta Urban Agglomeration
by Xiaozhou Wang, Lie You and Lin Wang
Land 2025, 14(7), 1459; https://doi.org/10.3390/land14071459 - 13 Jul 2025
Cited by 1 | Viewed by 1021
Abstract
As China shifts from rapid to high-quality development, urban growth has exhibited allometric patterns. This study evaluated land use efficiency from the perspective of architectural space, focusing on 41 cities in the Yangtze River Delta urban agglomeration from 2010 to 2020. A land [...] Read more.
As China shifts from rapid to high-quality development, urban growth has exhibited allometric patterns. This study evaluated land use efficiency from the perspective of architectural space, focusing on 41 cities in the Yangtze River Delta urban agglomeration from 2010 to 2020. A land development intensity index was constructed at both the provincial and municipal levels using the entropy weight method, integrating floor area ratio, building density, and functional mix. The spatiotemporal characteristics of land development intensity and population density were analyzed, and a coordination coupling model was applied to identify mismatches between land and population. The results reveal: (1) Temporally, the imbalance of “more people, less land” in the Yangtze River Delta diminished. Spatially, leading regions exhibit a diffusion effect. Shanghai showed a decline in both population density and development intensity; Zhejiang maintained balanced development; Jiangsu experienced accelerated growth; and Anhui showed signs of catching up. (2) Although the two indicators showed a high coupling degree and strong correlation, the coordination degree remained low, indicating poor quality of correlation. The land-population relationship demonstrated a fluctuating pattern of “strengthening–weakening” over time. Shanghai exhibited the highest coordination, while more than half of the cities in Jiangsu, Zhejiang, and Anhui still needed optimization. (3) Unlike previous findings that linked such patterns to shrinking cities, in this transformation stage, the number of cities where land development intensity exceeded population density continued to grow in advanced regions. This study first applied 3D building data at the macro scale to support differentiated spatial policies. Full article
Show Figures

Figure 1

19 pages, 3570 KB  
Article
Modeling the Effects of Climate and Site on Soil and Forest Floor Carbon Stocks in Radiata Pine Stands at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Óscar Jara, Marianne V. Asmussen, Rosa M. Alzamora, Juan Pedro Elissetche, Otávio C. Campoe and Matías Pincheira
Forests 2025, 16(7), 1137; https://doi.org/10.3390/f16071137 - 10 Jul 2025
Viewed by 798
Abstract
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors [...] Read more.
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors influence these carbon pools. Our objective was to evaluate the effects of climate and site variables on carbon stocks in adult radiata pine plantations across contrasting water and nutrient conditions. Three 1000 m2 plots were installed at 20 sites with sandy, granitic, recent ash, and metamorphic soils, which were selected along a productivity gradient. Biomass carbon stocks were estimated using allometric equations, and carbon stocks in the forest floor and mineral soil (up to 1 m deep) were assessed. SOC varied significantly, from 139.9 Mg ha−1 in sandy soils to 382.4 Mg ha−1 in metamorphic soils. Total carbon stocks (TCS) per site ranged from 331.0 Mg ha−1 in sandy soils to 552.9 Mg ha−1 in metamorphic soils. Across all soil types, the forest floor held the lowest carbon stock. Correlation analyses and linear models revealed that variables related to soil water availability, nitrogen content, precipitation, and stand productivity positively increased SOC and TCS stocks. In contrast, temperature, evapotranspiration, and sand content had a negative effect. The developed models will allow more accurate estimation estimates of C stocks at SOC and in the total stand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 4381 KB  
Article
Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities
by Vladimir Kornienko, Valeriya Reuckaya, Alyona Shkirenko, Besarion Meskhi, Anastasiya Olshevskaya, Mary Odabashyan, Victoria Shevchenko and Svetlana Teplyakova
Plants 2025, 14(13), 2052; https://doi.org/10.3390/plants14132052 - 4 Jul 2025
Cited by 4 | Viewed by 740
Abstract
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study [...] Read more.
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study included determining the level of anthropogenic load of the territory; conducting dendrological studies to assess morphometric and allometric parameters, age structure, and condition of P. bolleana stands under the influence of environmental factors; as well as completing biomechanical studies to assess and predict the mechanical stability of stands. A total of 1109 plants growing in areas with increased anthropogenic load and in the control areas were studied. The model territories of the study were located in the city of Donetsk on Fallen Communards Avenue (length of field routes: 2.6 km) and Ilyicha Avenue (length of field routes: 9.7 km). Control plantings grew on the territory of the Donetsk botanical garden and residential (dormitory) districts of the city. The age structure of P. bolleana plantations remained uniform throughout the city for 50–55 years due to the fact that the landscaping was under a single state program. In the steppe zone in the south of the East European Plain, with a high level of anthropogenic load and severe natural climatic factors, the critical age of P. bolleana (55 years) was determined. The condition of plantations and their morphometric indices correlate with the level of anthropogenic load of the city (H, Dbase, DBH). Under control conditions, the plants are in good condition with signs of weakening (2 points). Under conditions of increased anthropogenic load, the plants are in a severely weakened condition (3 points). A total of 25% of the plants in the sample are in critical condition (4–5 points). The main damages to the crowns and trunks of plants include core rot, mechanical damage to bark and tissues, the development of core rot through the affected skeletal branch, crown thinning, and drying. P. bolleana trees are valued for their crown area and ability to retain dust particles from the air. The analysis of experimentally obtained data on the crown area showed that in the initial phases of ontogenesis, the average deviation in the crown area of plants does not depend on the place of growth. Due to artificial narrowing and sanitary pruning of the crown, as well as skeletal branches dying along the busiest highways, the values do not exceed 22–23 m2 on average, with an allometric coefficient of 0.35–0.37. When comparing this coefficient in the control areas, the crown area in areas with a high level of anthropogenic load is 36 ± 11% lower. For trees growing under the conditions of the anthropogenic load of an industrial city and having reached the critical age, mechanical resistance varied depending on the study area and load level. At sites with a high level of pollution of the territory, a significant decrease in indicators was revealed in comparison with the control (mcr—71%, EI—75%, RRB—43%). Having analyzed all the obtained data, we can conclude that, until the age of 50–55 years, P. bolleana retains good viability, mechanical resistance, and general allometric ratios, upon which the stability of the whole plant depends. Even with modern approaches and tendencies toward landscaping with exotic introductions, it is necessary to keep P. bolleana as the main species in dendrobanocenoses. Full article
(This article belongs to the Special Issue Plants for Biodiversity and Sustainable Cities)
Show Figures

Figure 1

22 pages, 3027 KB  
Article
Trade-Offs and Partitioning Strategy of Carbon Source-Sink During Fruit Development of Camellia oleifera
by Yueling Li, Yiqing Xie, Yue Zhang, Xuan Fang and Jian Wang
Plants 2025, 14(13), 1920; https://doi.org/10.3390/plants14131920 - 23 Jun 2025
Viewed by 1043
Abstract
Non-structural carbohydrates (NSCs), the main substrates and energy carriers of plants, play an important role in mediating the source-sink balance of carbon (C). However, the trade-offs in the allocation of NSCs remain unclear at critical stages of fruit development. In this study, we [...] Read more.
Non-structural carbohydrates (NSCs), the main substrates and energy carriers of plants, play an important role in mediating the source-sink balance of carbon (C). However, the trade-offs in the allocation of NSCs remain unclear at critical stages of fruit development. In this study, we evaluated the dynamic and allometric partitioning characteristics of NSCs at the key stage of fruit development in Camellia oleifera. The seed NSCs pool was the highest in the middle stage of rapid fruit expansion, and an inverted “V” shape appeared from July to September and peaked in August. Notably, although the NSC pool of twigs was the smallest and did not change significantly at each stage, the starch pool was the largest. Significant correlations existed between the NSC content of different organs in C. oleifera in the early stage of slow development and the middle stage of rapid fruit expansion. In particular, NSC components, both of the twigs in the early stage and of the twigs and seeds in the middle stage, showed significant allometric partitioning relationships. In summary, seeds are the main carbon sink for fruit development trade-offs of C. oleifera, and twigs may play an important role in transferring C to seeds at the early and middle stages of fruit development. In the future, attention should be paid to controlling the factors affecting the balance of plant C during the rapid fruit expansion period to ensure high yield. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

13 pages, 549 KB  
Article
Impact of Recovery from Febrile Neutropenia on Intra-Individual Variability in Vancomycin Pharmacokinetics in Pediatric Patients
by Yukie Takumi, Ryota Tanaka, Motoshi Iwao, Ryosuke Tatsuta and Hiroki Itoh
Antibiotics 2025, 14(6), 570; https://doi.org/10.3390/antibiotics14060570 - 2 Jun 2025
Viewed by 955
Abstract
Background/Objectives: The pharmacokinetics of vancomycin (VCM) in patients with febrile neutropenia (FN) are highly variable due to coexisting conditions such as systemic inflammatory response syndrome and augmented renal clearance. Upon hematopoietic recovery, VCM clearance (CLvcm) is expected to normalize, which contributes to intra-individual [...] Read more.
Background/Objectives: The pharmacokinetics of vancomycin (VCM) in patients with febrile neutropenia (FN) are highly variable due to coexisting conditions such as systemic inflammatory response syndrome and augmented renal clearance. Upon hematopoietic recovery, VCM clearance (CLvcm) is expected to normalize, which contributes to intra-individual variability. This study aimed to investigate the factors contributing to intra-individual variability in CLvcm among pediatric patients with FN. Methods: This retrospective, single-center study analyzed 33 pediatric patients (48 FN episodes) who met the inclusion criteria. CLvcm was estimated using Bayesian estimation based on the pediatric population pharmacokinetic model developed by Le et al., and standardized with allometrically scaled body weight. The change (Δ) in each clinical laboratory parameter or CLvcm was calculated as the difference between the values at the current and previous TDM within the same episode. Results: A total of 155 VCM TDM data points were analyzed. Intra-individual comparisons revealed that CLvcm decreased significantly in patients recovering from FN to a non-FN state (n = 18, p = 0.0285). Further analysis of intra-individual variability revealed that Δ CLvcm correlated significantly with Δ hemoglobin, Δ C-reactive protein, and Δ maximum daily body temperature, with the strongest correlation observed for Δ maximum daily body temperature (rs = 0.325, p = 0.001). Multivariate analysis confirmed Δ maximum daily body temperature as a significant factor influencing Δ CLvcm (B = 0.376, 95% CI: 0.074 to 0.678, p = 0.015). Conclusions: Maximum daily body temperature was identified as a factor influencing intra-individual variability in CLvcm in pediatric FN patients, particularly during the recovery process from FN to a non-FN state. The finding suggests that dose adjustment based on maximum daily body temperature may allow safe and effective VCM therapy in FN patients. Full article
Show Figures

Figure 1

Back to TopTop