The Influence of Planting Density and Climatic Variables on the Wood Structure of Siberian Spruce and Scots Pine
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Plant Material, and Climatic Data
2.2. Sampling, Measurement, and Processing of Tree-Ring Data
2.3. Processing of Series of Tree-Ring Traits
2.4. Statistical Methods
3. Results
3.1. Relationships Between Chronologies of Tree-Ring Traits
3.2. Dependence of Tree-Ring Traits on Planting Density
3.3. Dendroclimatic Analysis and Comparison of Pointer Years
4. Discussion
4.1. Relationships of Tree-Ring Traits Among Themselves and with Planting Density
4.2. Response of Tree-Ring Traits to Climate Variables
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| P | Precipitation |
| T | Temperature |
| PS | Pinus sylvestris |
| PO | Picea obovata |
| TRW | Tree-ring width |
| N | Cell number per radial row in the ring |
| D | Cell radial diameter |
| CWT | Cell wall thickness |
| Dmean | Mean cell radial diameter in tree ring |
| Dmax | Maximum cell radial diameter in tree ring |
| CWTmean | Mean cell wall thickness in tree ring |
| CWTmax | Maximum cell wall thickness in tree ring |
| DENS | Stand density (current) |
| DENS0 | Planting density (initial) |
| TD | Cell tangential diameter |
| ρ | Wood density |
| ρ0 | Wood matter density |
| ρmax | Maximum wood density in tree ring |
| IADF | Intra-annual density fluctuation |
Appendix A
| Species | Plots | ||||||
|---|---|---|---|---|---|---|---|
| 2 | 5 | 7 or 8 # | 11 | 14 | 17 | All | |
| Picea obovata | 69,465 | 44,520 | 31,370 | 19,620 | 17,490 | 18,445 | 200,910 |
| Pinus sylvestris | 52,090 | 36,590 | 21,885 | 22,290 | 23,390 | 18,400 | 174,645 |
| Species | Tree-Ring Trait | Plots | ||||||
|---|---|---|---|---|---|---|---|---|
| 2 | 5 | 7 or 8 # | 11 | 14 | 17 | All | ||
| Picea obovata | TRW | −0.18 | 0.00 | −0.03 | −0.39 | −0.39 | −0.03 | −0.21 |
| Dmax | −0.54 * | −0.20 | −0.56 * | −0.54 * | −0.40 | −0.40 | −0.50 * | |
| Dmean | −0.07 | −0.08 | −0.17 | −0.34 | −0.26 | −0.06 | −0.15 | |
| CWTmax | −0.19 | −0.24 | −0.33 | −0.38 | −0.49 * | 0.01 | −0.36 | |
| CWTmean | −0.13 | −0.38 | −0.18 | −0.43 | −0.42 | −0.06 | −0.39 | |
| Pinus sylvestris | TRW | −0.14 | −0.09 | −0.19 | −0.10 | −0.09 | −0.35 | −0.10 |
| Dmax | −0.23 | −0.21 | −0.40 | −0.47 * | −0.09 | −0.59 * | −0.40 | |
| Dmean | −0.03 | −0.12 | −0.32 | −0.12 | −0.18 | −0.70 * | −0.26 | |
| CWTmax | −0.29 | −0.26 | −0.26 | −0.56 * | −0.05 | −0.14 | −0.38 | |
| CWTmean | −0.57 * | −0.10 | −0.33 | −0.13 | −0.14 | 0.04 | −0.28 | |
| Normalized Cell | Species and Plots | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Picea obovata | Pinus sylvestris | |||||||||||
| 2 | 5 | 8 | 11 | 14 | 17 | 2 | 5 | 7 | 11 | 14 | 17 | |
| Cell radial diameter, D | ||||||||||||
| 1 | 0.1461 | 0.5658 | 0.0059 * | 0.0067 * | 0.0955 | 0.0231 * | 0.0195 * | 0.0818 | 0.0115 * | 0.0088 * | 0.1088 | 0.0058 * |
| 2 | 0.0069 * | 0.5939 | 0.0024 * | 0.0009 * | 0.0272 * | 0.0120 * | 0.0043 * | 0.0161 * | 0.1162 | 0.0810 | 0.0143 * | 0.0047 * |
| 3 | 0.1093 | 0.0488 * | 0.0075 * | 0.0001 * | 0.0491 * | 0.0029 * | 0.0368 * | 0.0104 * | 0.1941 | 0.4301 | 0.0001 * | 0.0053 * |
| 4 | 0.0061 * | 0.7779 | 0.0347 * | 0.0001 * | 0.0758 | 0.0360 * | 0.0622 | 0.0147 * | 0.1626 | 0.0019 * | 0.0057 * | 0.0113 * |
| 5 | 0.1001 | 0.5239 | 0.0848 | 0.0000 * | 0.0188 * | 0.0050 * | 0.0065 * | 0.0090 * | 0.1518 | 0.0910 | 0.0027 * | 0.0260 * |
| 6 | 0.6294 | 0.9963 | 0.0198 * | 0.0000 * | 0.0003 * | 0.0002 * | 0.0026 * | 0.0022 * | 0.0771 | 0.0063 * | 0.0009 * | 0.0216 * |
| 7 | 0.7371 | 0.7338 | 0.0063 * | 0.0000 * | 0.0006 * | 0.0002 * | 0.0313 * | 0.0064 * | 0.1844 | 0.0000 * | 0.0013 * | 0.0075 * |
| 8 | 0.9842 | 0.2136 | 0.0064 * | 0.0004 * | 0.0059 * | 0.0003 * | 0.0363 * | 0.0943 | 0.1561 | 0.0153 * | 0.0029 * | 0.0009 * |
| 9 | 0.9831 | 0.1590 | 0.0837 | 0.0001 * | 0.0099 * | 0.0001 * | 0.0084 * | 0.2980 | 0.0371 * | 0.0116 * | 0.0019 * | 0.0115 * |
| 10 | 0.9397 | 0.2637 | 0.0999 | 0.0002 * | 0.1101 | 0.0007 * | 0.2863 | 0.0345 * | 0.0074 * | 0.0006 * | 0.0006 * | 0.0280 * |
| 11 | 0.6222 | 0.1887 | 0.3118 | 0.0032 * | 0.3463 | 0.0084 * | 0.2223 | 0.0556 | 0.0178 * | 0.0003 * | 0.0000 * | 0.0265 * |
| 12 | 0.6702 | 0.0542 | 0.4293 | 0.0032 * | 0.3215 | 0.0215 * | 0.0973 | 0.1240 | 0.0542 | 0.0092 * | 0.0000 * | 0.0021 * |
| 13 | 0.6319 | 0.0292 * | 0.2295 | 0.0020 * | 0.2386 | 0.0159 * | 0.0703 | 0.0362 * | 0.0218 * | 0.0867 | 0.0000 * | 0.0194 * |
| 14 | 0.4096 | 0.0439 * | 0.0691 | 0.0022 * | 0.4995 | 0.0381 * | 0.0612 | 0.1243 | 0.0036 * | 0.0267 * | 0.0000 * | 0.0152 * |
| 15 | 0.6419 | 0.0449 * | 0.0241 * | 0.0012 * | 0.8950 | 0.0894 | 0.1032 | 0.0016 * | 0.0012 * | 0.0081 * | 0.0000 * | 0.0038 * |
| 16 | 0.2768 | 0.0747 | 0.0015 * | 0.0005 * | 0.4760 | 0.0244 * | 0.7894 | 0.0010 * | 0.0006 * | 0.0042 * | 0.0000 * | 0.0014 * |
| 17 | 0.8728 | 0.1725 | 0.0013 * | 0.0007 * | 0.2597 | 0.0117 * | 0.5677 | 0.0030 * | 0.0001 * | 0.0055 * | 0.0000 * | 0.0028 * |
| 18 | 0.5624 | 0.1999 | 0.0005 * | 0.0001 * | 0.2599 | 0.0072 * | 0.3346 | 0.0010 * | 0.0002 * | 0.0024 * | 0.0000 * | 0.0031 * |
| 19 | 0.3803 | 0.4107 | 0.0103 * | 0.0000 * | 0.2389 | 0.0055 * | 0.5730 | 0.0102 * | 0.0006 * | 0.0032 * | 0.0000 * | 0.0054 * |
| 20 | 0.3338 | 0.3995 | 0.0088 * | 0.0000 * | 0.0962 | 0.0086 * | 0.4373 | 0.0060 * | 0.0011 * | 0.0007 * | 0.0000 * | 0.0383 * |
| 21 | 0.9246 | 0.1029 | 0.0100 * | 0.0001 * | 0.0321 * | 0.0050 * | 0.0140 * | 0.0032 * | 0.0053 * | 0.0148 * | 0.0011 * | 0.0426 * |
| 22 | 0.7770 | 0.0015 * | 0.0109 * | 0.0000 * | 0.0015 * | 0.0012 * | 0.0003 * | 0.0039 * | 0.0235 * | 0.0502 | 0.0006 * | 0.0086 * |
| 23 | 0.2390 | 0.0010 * | 0.0034 * | 0.0001 * | 0.0000 * | 0.0003 * | 0.0004 * | 0.0002 * | 0.0180 * | 0.2641 | 0.0013 * | 0.0017 * |
| 24 | 0.0979 | 0.0000 * | 0.0006 * | 0.0005 * | 0.0002 * | 0.0013 * | 0.0302 * | 0.0027 * | 0.0036 * | 0.2508 | 0.0018 * | 0.0007 * |
| 25 | 0.0108 * | 0.0000 * | 0.0002 * | 0.0000 * | 0.0039 * | 0.0023 * | 0.0926 | 0.0026 * | 0.0012 * | 0.8299 | 0.0059 * | 0.0026 * |
| 26 | 0.0033 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0006 * | 0.0022 * | 0.2223 | 0.0074 * | 0.0002 * | 0.8129 | 0.0100 * | 0.0070 * |
| 27 | 0.0038 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0019 * | 0.0023 * | 0.0125 * | 0.0648 | 0.0003 * | 0.4568 | 0.0094 * | 0.0071 * |
| 28 | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0003 * | 0.0001 * | 0.0000 * | 0.0004 * | 0.0032 * | 0.1485 | 0.0020 * | 0.0004 * |
| 29 | 0.0001 * | 0.0000 * | 0.0000 * | 0.0001 * | 0.0002 * | 0.0007 * | 0.0000 * | 0.0010 * | 0.0033 * | 0.0032 * | 0.0002 * | 0.0011 * |
| 30 | 0.0038 * | 0.0000 * | 0.0000 * | 0.3437 | 0.4712 | 0.8277 | 0.2268 | 0.0910 | 0.1687 | 0.0145 * | 0.0712 | 0.5710 |
| Cell wall thickness, CWT | ||||||||||||
| 1 | 0.0125 * | 0.6969 | 0.2429 | 0.8409 | 0.2493 | 0.3158 | 0.1070 | 0.7174 | 0.9392 | 0.0196 * | 0.3137 | 0.1728 |
| 2 | 0.0514 | 0.9475 | 0.1220 | 0.5500 | 0.7414 | 0.2522 | 0.5441 | 0.5691 | 0.4508 | 0.0017 * | 0.3675 | 0.3886 |
| 3 | 0.1096 | 0.2975 | 0.1950 | 0.6128 | 0.7274 | 0.1475 | 0.9822 | 0.2255 | 0.1759 | 0.0412 * | 0.3310 | 0.3868 |
| 4 | 0.0888 | 0.4719 | 0.3171 | 0.5277 | 0.5034 | 0.2545 | 0.5750 | 0.0110 * | 0.1450 | 0.0984 | 0.4840 | 0.3349 |
| 5 | 0.1614 | 0.8794 | 0.7841 | 0.3574 | 0.4626 | 0.5239 | 0.5198 | 0.0065 * | 0.0539 | 0.5772 | 0.9675 | 0.1192 |
| 6 | 0.7087 | 0.6215 | 0.9699 | 0.8555 | 0.6026 | 0.6804 | 0.6860 | 0.0185 * | 0.0382 * | 0.2208 | 0.8468 | 0.0305 * |
| 7 | 0.8587 | 0.6959 | 0.5762 | 0.6722 | 0.8904 | 0.8913 | 0.4203 | 0.0306 * | 0.0285 * | 0.4242 | 0.6156 | 0.2712 |
| 8 | 0.6599 | 0.8101 | 0.5268 | 0.5521 | 0.7105 | 0.8297 | 0.5210 | 0.2175 | 0.0331 * | 0.8762 | 0.5103 | 0.4026 |
| 9 | 0.8247 | 0.7117 | 0.8942 | 0.5059 | 0.6245 | 0.7334 | 0.7158 | 0.0982 | 0.0516 | 0.8231 | 0.7315 | 0.5002 |
| 10 | 0.7166 | 0.8613 | 0.9095 | 0.7943 | 0.5887 | 0.7147 | 0.7123 | 0.0396 * | 0.0311 * | 0.6066 | 0.5841 | 0.4092 |
| 11 | 0.9886 | 0.5148 | 0.5426 | 0.8726 | 0.9333 | 0.7677 | 0.7629 | 0.1042 | 0.0085 * | 0.5719 | 0.8852 | 0.5502 |
| 12 | 0.9263 | 0.1407 | 0.3422 | 0.8725 | 0.8319 | 0.6390 | 0.9349 | 0.6755 | 0.0069 * | 0.6035 | 0.8717 | 0.6541 |
| 13 | 0.8386 | 0.0503 | 0.7923 | 0.6181 | 0.9547 | 0.5011 | 0.8253 | 0.5538 | 0.0160 * | 0.6802 | 0.6206 | 0.5637 |
| 14 | 0.6253 | 0.1442 | 0.9477 | 0.3344 | 0.7364 | 0.3428 | 0.9691 | 0.1994 | 0.0547 | 0.6753 | 0.6404 | 0.3305 |
| 15 | 0.6868 | 0.0943 | 0.8844 | 0.1155 | 0.5994 | 0.5767 | 0.6651 | 0.5311 | 0.1956 | 0.4473 | 0.2846 | 0.3128 |
| 16 | 0.3054 | 0.0515 | 0.8707 | 0.0808 | 0.4065 | 0.4142 | 0.9859 | 0.3009 | 0.3317 | 0.1590 | 0.2623 | 0.2257 |
| 17 | 0.0422 * | 0.0414 * | 0.8324 | 0.0226 * | 0.3126 | 0.4150 | 0.8233 | 0.7913 | 0.3634 | 0.4485 | 0.5149 | 0.4556 |
| 18 | 0.0363 * | 0.0894 | 0.3152 | 0.0221 * | 0.2907 | 0.4164 | 0.5149 | 0.6244 | 0.5613 | 0.6918 | 0.3618 | 0.9735 |
| 19 | 0.0357 * | 0.0862 | 0.5695 | 0.0366 * | 0.3482 | 0.5603 | 0.2062 | 0.6043 | 0.9503 | 0.9599 | 0.1086 | 0.8877 |
| 20 | 0.0241 * | 0.2952 | 0.2871 | 0.0774 | 0.7083 | 0.9057 | 0.0119 * | 0.8199 | 0.6534 | 0.8941 | 0.1477 | 0.6469 |
| 21 | 0.0565 | 0.5423 | 0.3763 | 0.1351 | 0.4236 | 0.6404 | 0.0051 * | 0.3722 | 0.2323 | 0.5963 | 0.2319 | 0.8680 |
| 22 | 0.0403 | 0.6100 | 0.9240 | 0.2153 | 0.2691 | 0.3426 | 0.0037 * | 0.2637 | 0.1671 | 0.2439 | 0.1758 | 0.9243 |
| 23 | 0.0582 | 0.8985 | 0.3645 | 0.4313 | 0.2191 | 0.0773 | 0.0137 * | 0.2796 | 0.0734 | 0.1512 | 0.1077 | 0.5288 |
| 24 | 0.0338 | 0.5849 | 0.1816 | 0.7541 | 0.3438 | 0.0621 | 0.0064 * | 0.9268 | 0.0170 * | 0.1902 | 0.0721 | 0.3809 |
| 25 | 0.0277 | 0.3598 | 0.1583 | 0.3253 | 0.5328 | 0.0993 | 0.0163 * | 0.7740 | 0.0142 * | 0.4930 | 0.1654 | 0.6665 |
| 26 | 0.0734 | 0.0617 | 0.3441 | 0.1607 | 0.8538 | 0.0797 | 0.0039 * | 0.3547 | 0.0065 * | 0.5046 | 0.2023 | 0.9339 |
| 27 | 0.1213 | 0.0411 * | 0.8880 | 0.0680 | 0.3869 | 0.3191 | 0.0290 * | 0.5355 | 0.0049 * | 0.1474 | 0.0804 | 0.8128 |
| 28 | 0.3660 | 0.2307 | 0.0711 | 0.0170 * | 0.0767 | 0.6063 | 0.2355 | 0.1157 | 0.0103 * | 0.0887 | 0.0191 * | 0.3322 |
| 29 | 0.9324 | 0.3163 | 0.0001 * | 0.0030 * | 0.0065 * | 0.7592 | 0.1420 | 0.0780 | 0.0034 * | 0.0105 * | 0.0070 * | 0.4279 |
| 30 | 0.3243 | 0.1187 | 0.0002 * | 0.3368 | 0.7510 | 0.1542 | 0.2673 | 0.7725 | 0.3567 | 0.0715 | 0.9949 | 0.2224 |





References
- Butterfield, B.G. Wood anatomy in relation to wood quality. In Wood Quality and Its Biological Basis; Barnett, J.R., Jeronimidis, G., Eds.; Blackwell Publishing: Oxford, UK, 2003; pp. 30–52. [Google Scholar]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; 688p. [Google Scholar]
- Vaganov, E.A.; Hughes, M.K.; Shashkin, A.V. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments; Springer: Berlin, Germany, 2006; 354p. [Google Scholar] [CrossRef]
- Schweingruber, F.H. Wood Structure and Environment; Springer: Berlin, Germany, 2007; 279p. [Google Scholar] [CrossRef]
- Pimenta, E.M.; Ramalho, F.M.G.; Dambroz, G.B.V.; Couto, A.M.; Campoe, O.C.; Hein, P.R.G. Planting spacing and genotype affected the tree growth and variation of wood density and lignin content along Eucalyptus trunks. Ind. Crops Prod. 2024, 222, 119595. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Scott, C.T.; Scallon, K.L.; Myers, G.C. Effects of plantation density on wood density and anatomical properties of red pine (Pinus resinosa Ait.). Wood Fiber Sci. 2007, 39, 502–512. [Google Scholar]
- Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. Scots pine and Norway spruce wood properties at sites with different stand densities. Forests 2020, 11, 587. [Google Scholar] [CrossRef]
- Zhang, S.; Belien, E.; Ren, H.; Rossi, S.; Huang, J.G. Wood anatomy of boreal species in a warming world: A review. iForest–Biogeosci. For. 2020, 13, 130. [Google Scholar] [CrossRef]
- Cao, J.; Liu, H.; Zhao, B.; Li, Z.; Liang, B.; Shi, L.; Wu, L.; Cressey, E.L.; Quine, T.A. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia. Sci. Total Environ. 2021, 795, 148875. [Google Scholar] [CrossRef]
- Zobel, B.J.; Buijtenen, J.P. Wood Variation: Its Cause and Control; Springer: Berlin/Heidelberg, Germany, 1989; 363p. [Google Scholar] [CrossRef]
- Barnett, J.R.; Jeronimidis, G. Wood Quality and Its Biological Basis; CRC Press: Boca Raton, FL, USA, 2003; 226p. [Google Scholar]
- Watt, M.S.; Moore, J.R.; Facon, J.; Downes, G.M.; Clinton, P.M.; Coker, G.; Davis, M.R.; Simcock, R.; Parfitt, R.L.; Dando, J.; et al. Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata dynamic modulus of elasticity. For. Ecol. Manag. 2006, 229, 136–144. [Google Scholar] [CrossRef]
- Fernandez, M.E.; Gyenge, J.E.; de Urquiza, M.M.; Varela, S. Adaptability to climate change in forestry species: Drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels. For. Syst. 2012, 21, 162–174. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, J.; Zhou, J.; Guan, C.; Lei, S.; Meng, P.; Yin, C. Long-term effects of climate and competition on radial growth, recovery, and resistance in Mongolian pines. Front. Plant Sci. 2021, 12, 729935. [Google Scholar] [CrossRef] [PubMed]
- Maynard, D.S.; Bialic-Murphy, L.; Zohner, C.M.; Averill, C.; van den Hoogen, J.; Ma, H.; Mo, L.; Reuben Smith, G.; Acosta, A.T.R.; Aubin, I.; et al. Global relationships in tree functional traits. Nat. Commun. 2022, 13, 3185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Chauret, G. Impact of Initial Spacing on Tree and Wood Characteristics, Product Quality and Value Recovery in Black Spruce (Picea mariana); Canadian Forest Service, Forintek Canada Corp.: Fredericton, NB, Canada, 2001; 42p. [Google Scholar]
- Sharapov, E.; Demakov, Y.; Korolev, A. Effect of plantation density on some physical and technological parameters of Scots pine (Pinus sylvestris L.). Forests 2024, 15, 233. [Google Scholar] [CrossRef]
- Andrews, C.M.; D’Amato, A.W.; Fraver, S.; Palik, B.; Battaglia, M.A.; Bradford, J.B. Low stand density moderates growth declines during hot droughts in semi-arid forests. J. Appl. Ecol. 2020, 57, 1089–1102. [Google Scholar] [CrossRef]
- Astigarraga, J.; Andivia, E.; Zavala, M.A.; Gazol, A.; Cruz-Alonso, V.; Vicente-Serrano, S.M.; Ruiz-Benito, P. Evidence of non-stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests. Glob. Change Biol. 2020, 26, 5063–5076. [Google Scholar] [CrossRef]
- Barbour, R.J. A Preliminary Study of the Wood Properties of Fast-Grown Black Spruce, Picea mariana, from Quebec; Canadian Forest Service, Forintek Canada Corp.: Ottawa, ON, Canada, 1987; 133p. [Google Scholar]
- Ackermann, F. The relationship between forest site and intra-ring wood density factors for Quercus robur in SW France. Ann. Sci. For. 1995, 52, 635–652. [Google Scholar] [CrossRef]
- Alteyrac, J.; Zhang, S.Y.; Cloutier, A.; Ruel, J.C. Influence of stand density on ring width and wood density at different sampling heights in black spruce (Picea mariana (Mill.) BSP). Wood Fiber Sci. 2005, 37, 83–94. [Google Scholar]
- Brand, D.G.; Magnussen, S. Asymetric, two-sided competition in even-aged monocultures of red pine. Can. J. For. Res. 1988, 18, 901–910. [Google Scholar] [CrossRef]
- Mäkinen, H.; Hynynen, J.; Penttilä, T. Effect of thinning on wood density and tracheid properties of Scots pine on drained peatland stands. For. Int. J. For. Res. 2015, 88, 359–367. [Google Scholar] [CrossRef]
- Ishiguri, F.; Takeuchi, M.; Makino, K.; Wahyudi, I.; Takashima, Y.; Iizuka, K.; Yokota, S.; Yoshizawa, N. Cell morphology and wood properties of Shorea acuminatissima planted in Indonesia. IAWA J. 2012, 33, 25–38. [Google Scholar] [CrossRef]
- Kuzmin, S.R.; Vaganov, E.A. The anatomic characteristics of Scots pine tree rings in provenances in the Angara River basin. Lesoved. Russ. J. For. Sci. 2007, 4, 3–12. (In Russian) [Google Scholar]
- Downes, G.M.; Drew, D.; Battaglia, M.; Schulze, D. Measuring and modelling stem growth and wood formation: An overview. Dendrochronologia 2009, 27, 147–157. [Google Scholar] [CrossRef]
- Buechling, A.; Martin, P.H.; Canham, C.D. Climate and competition effects on tree growth in Rocky Mountain forests. J. Ecol. 2017, 105, 1636–1647. [Google Scholar] [CrossRef]
- Girardin, M.P.; Isabel, N.; Guo, X.J.; Lamothe, M.; Duchesne, I.; Lenz, P. Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting. Nat. Commun. 2021, 12, 1169. [Google Scholar] [CrossRef]
- Pisarenko, A.I.; Redko, G.I.; Merzlenko, M.D. Iskusstvennye Lesa [Forest Plantations]; Vserossiiskii Nauchno-Issledovatelskii Informatsionnyi Tsentr «Lesresurs»: Moscow, Russia, 1992; 308p. (In Russian) [Google Scholar]
- Yang, K.C.; Hazenberg, G. Impact of spacings on sapwood and heartwood thickness in Picea mariana (Mill.) B.S.P. and Picea glauca (Moench.) Voss. Wood Fiber Sci. 1992, 24, 330–336. [Google Scholar]
- Pape, R. Effects of thinning regime on the wood properties and stem quality of Picea abies. Scand. J. For. Res. 1999, 14, 38–50. [Google Scholar] [CrossRef]
- Larson, P.R.; Kretschmann, D.E.; Clark, A., III; Isebrands, J.G. Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis; General Technical Report, FPL-GTR-129; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2001; 42p. [Google Scholar]
- Hébert, F.; Krause, C.; Plourde, P.Y.; Achim, A.; Prégent, G.; Ménétrier, J. Effect of tree spacing on tree level volume growth, morphology, and wood properties in a 25-year-old Pinus banksiana plantation in the boreal forest of Quebec. Forests 2016, 7, 276. [Google Scholar] [CrossRef]
- Danilov, D.A.; Zhigunov, A.V.; Zaytsev, D.A.; Butenko, O.Y. The influence of stem density on the productivity and quality of spruce (Picea abies [L.] Karst.) wood in a short rotation plantation in the boreal zone of North-West Russia. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2023, 16, 1. [Google Scholar] [CrossRef]
- Lasserre, J.P.; Mason, E.G.; Watt, M.S.; Moore, J.R. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. For. Ecol. Manag. 2009, 258, 1924–1931. [Google Scholar] [CrossRef]
- Anfodillo, T.; Petit, G.; Crivellaro, A. Axial conduit widening in woody species: A still neglected anatomical pattern. IAWA J. 2013, 34, 352–364. [Google Scholar] [CrossRef]
- Mvolo, C.S.; Goudiaby, V.; Koubaa, A.; Stewart, J.D. Influence of four spacings between trees and four samplings heights on selected wood quality attributes of white spruce (Picea glauca (Moench) Voss). Forests 2022, 13, 1807. [Google Scholar] [CrossRef]
- Guedes, T.O.; Lima, L.C.; Hein, P.R.G.; Silva, J.R.M.D.; Santos, L.D.T. Effect of planting density on wood anatomy in Eucalyptus and Acacia from Brazil. Madera Bosques 2018, 24, 2. (In Spanish) [Google Scholar] [CrossRef]
- Mvolo, C.S.; Koubaa, A.; Beaulieu, J.; Cloutier, A.; Mazerolle, M.J. Variation in wood quality in white spruce (Picea glauca (Moench) Voss). Part I. Defining the juvenile—Mature wood transition based on tracheid length. Forests 2015, 6, 183–202. [Google Scholar] [CrossRef]
- Rathgeber, C.B. Conifer tree-ring density interannual variability–anatomical, physiological and environmental determinants. New Phytol. 2017, 216, 621–625. [Google Scholar] [CrossRef]
- Yang, K.C. Impact of spacing on juvenile wood and mature wood properties of white spruce (Picea glauca). Taiwan J. For. Sci. 2002, 17, 13–29. [Google Scholar] [CrossRef]
- Alisov, B.P. Climate of the USSR.; Moscow State University: Moscow, Russia, 1956; 128p. (In Russian) [Google Scholar]
- Rivas-Martínez, S.; Rivas-Saenz, S.; Penas, A. Worldwide bioclimatic classification system + 4 Maps. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- Buzykin, A.I.; Pshenichnikova, L.S.; Sobachkin, D.S.; Sobachkin, R.S. Analysis of self-thinning in young Scots pine stands of different planting densities. Hvojnye Borealnoj Zony Conifers Boreal Area 2008, 25, 244–249. (In Russian) [Google Scholar]
- Buzykin, A.I.; Pshenichnikova, L.S. Influence of experimental planting density on the radial growth of Scots pine. Hvojnye Borealnoj Zony Conifers Boreal Area 2011, 28, 188–192. (In Russian) [Google Scholar]
- Sobachkin, R.S.; Sobachkin, D.S.; Buzykin, A.I.; Pshenichnikova, L.S. Influence of cenosis density on biometric indicators of Siberian spruce trees. Hvojnye Borealnoj Zony Conifers Boreal Area 2012, 29, 253–258. (In Russian) [Google Scholar]
- Kholdaenko, Y.A.; Belokopytova, L.V.; Zhirnova, D.F.; Upadhyay, K.K.; Tripathi, S.K.; Koshurnikova, N.N.; Sobachkin, R.S.; Babushkina, E.A.; Vaganov, E.A. Stand density effects on tree growth and climatic response in Picea obovata Ledeb. plantations. For. Ecol. Manag. 2022, 519, 120349. [Google Scholar] [CrossRef]
- Kholdaenko, Y.A.; Babushkina, E.A.; Belokopytova, L.V.; Zhirnova, D.F.; Koshurnikova, N.N.; Yang, B.; Vaganov, E.A. The more the merrier or the fewer the better fare? Effects of stand density on tree growth and climatic response in a Scots pine plantation. Forests 2023, 14, 915. [Google Scholar] [CrossRef]
- Cook, E.R.; Kairiukstis, L.A. (Eds.) Methods of Dendrochronology. Application in Environmental Sciences; Kluwer Academic Publishers: Dordrecht, Germany, 1990; 394p. [Google Scholar] [CrossRef]
- Rinn, F. TSAP-Win. Time Series Analysis and Presentation for Dendrochronology and Related Applications. User Reference. Version 4.64 for Microsoft Windows; RINNTECH: Heidelberg, Germany, 2011; 92p. [Google Scholar]
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Vaganov, E.A.; Shashkin, A.V.; Sviderskaya, I.V.; Vysotskaya, L.G. Histometric Analysis of Woody Plant Growth; Publishing House SB RAS Nauka: Novosibirsk, Russia, 1985; 100p. (In Russian) [Google Scholar]
- Larson, P.R. The Vascular Cambium: Development and Structure; Springer: Berlin, Germany, 1994; 725p. [Google Scholar] [CrossRef]
- Silkin, P.P. Methods of Multiparameter Analysis of Conifers Tree-Rings Structure; Siberian Federal University: Krasnoyarsk, Russia, 2010; 335p. (In Russian) [Google Scholar]
- Seo, J.W.; Eckstein, D.; Jalkanen, R. Screening various variables of cellular anatomy in Scots pines in subarctic Finland for climatic signals. IAWA J. 2012, 4, 417–429. [Google Scholar] [CrossRef]
- Vaganov, E.A. The tracheidogram method in tree-ring analysis and its application. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E., Kairiukstis, L., Eds.; Kluwer Academic Publishers: Dordrecht, Germany, 1990; pp. 63–75. [Google Scholar] [CrossRef]
- Gryc, V.; Vavrčík, H.; Horn, K. Density of juvenile and mature wood of selected coniferous species. J. For. Sci. 2011, 57, 123–130. [Google Scholar] [CrossRef]
- Lu, C.; Wu, J.; Jiang, Q.; Liu, Y.; Zhou, L.; You, Y.; Cheng, Y.; Liu, S. Influence of juvenile and mature wood on anatomical and chemical properties of early and late wood from Chinese fir plantation. J. Wood Sci. 2021, 67, 72. [Google Scholar] [CrossRef]
- Tyree, M.T.; Ewers, F.W. The hydraulic architecture of trees and other woody plants. New Phytol. 1991, 119, 345–360. [Google Scholar] [CrossRef]
- Zauer, M.; Pfriem, A.; Wagenführ, A. Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Sci. Technol. 2013, 47, 1197–1211. [Google Scholar] [CrossRef]
- Cook, E.R.; Krusic, P.J. Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics; Lamont-Doherty Earth Observatory, Columbia University: Palisades, NY, USA, 2005; 14p. [Google Scholar]
- Reineke, L.H. Perfecting a stand-density index for even-aged forest. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). J. Biol. Osaka City Univ. D 1963, 14, 107–129. [Google Scholar]
- Usoltsev, V.A.; Lin, H.; Shobairi, S.O.R.; Tsepordey, I.S.; Ye, Z. Are there differences in the reaction of the light-tolerant subgenus Pinus spp. biomass to climate change as compared to light-intolerant genus Picea spp.? Plants 2020, 9, 1255. [Google Scholar] [CrossRef] [PubMed]
- Voltas, J.; Aguilera, M.; Gutiérrez, E.; Shestakova, T.A. Shared drought responses among conifer species in the middle Siberian taiga are uncoupled from their contrasting water-use efficiency trajectories. Sci. Total Environ. 2020, 720, 137590. [Google Scholar] [CrossRef] [PubMed]
- Kharuk, V.I.; Petrov, I.Y.A.; Shushpanov, A.S.; Im, S.T.; Ondar, S.O. Scots pine at its southern range in Siberia: A combined drought and fire influence on tree vigor, growth, and regeneration. Forests 2025, 16, 819. [Google Scholar] [CrossRef]
- Kishchenko, I.T. The effect of climatic factors on the seasonal development of coniferous forest-forming species in the taiga zone (Karelia). Izv. Vyssh. Uchebn. Zaved. Lesn. Zh. News Higher Educ. Inst. Russ. J. For. 2020, 3, 375. (In Russian) [Google Scholar] [CrossRef]
- Ryabov, N.S.; Zanuzdaeva, N.V.; Isaeva, L.G. analysis of seasonal events changes of Lapland State Nature Reserve coniferous species and their relations to climate factors. Trans. Kola Sci. Cent. RAS. Ser. Nat. Sci. Humanit. 2024, 3, 51–62. (In Russian) [Google Scholar] [CrossRef]
- Schulte, P.J. Vertical and radial profiles in tracheid characteristics along the trunk of Douglas-fir trees with implications for water transport. Trees 2012, 26, 421–433. [Google Scholar] [CrossRef]
- Dahlen, J.; Nabavi, M.; Auty, D.; Schimleck, L.; Eberhardt, T.L. Models for predicting the within-tree and regional variation of tracheid length and width for plantation loblolly pine. For. Int. J. For. Res. 2021, 94, 127–140. [Google Scholar] [CrossRef]
- Held, M.; Ganthaler, A.; Lintunen, A.; Oberhuber, W.; Mayr, S. Tracheid and pit dimensions hardly vary in the xylem of Pinus sylvestris under contrasting growing conditions. Front. Plant Sci. 2021, 12, 786593. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Dergunov, D.R.; Belokopytova, L.V.; Zhirnova, D.F.; Upadhyay, K.K.; Tripathi, S.K.; Zharkov, M.S.; Vaganov, E.A. Non-linear response to cell number revealed and eliminated from long-term tracheid measurements of Scots pine in Southern Siberia. Front. Plant Sci. 2021, 12, 719796. [Google Scholar] [CrossRef]
- Belokopytova, L.V.; Zhirnova, D.F.; Mehrotra, N.; Shah, S.K.; Babushkina, E.A.; Vaganov, E.A. Improving the equation of nonlinear relationships between cell anatomical parameters of conifer wood. Trees 2024, 38, 1593–1599. [Google Scholar] [CrossRef]
- Olson, M.E.; Anfodillo, T.; Gleason, S.M.; McCulloh, K.A. Tip-to-base xylem conduit widening as an adaptation: Causes, consequences, and empirical priorities. New Phytol. 2021, 229, 1877–1893. [Google Scholar] [CrossRef] [PubMed]
- Funada, R.; Kubo, T.; Fushitani, M. Early-and latewood formation in Pinus densiflora trees with different amounts of crown. IAWA J. 1990, 11, 281–288. [Google Scholar] [CrossRef]
- Kijidani, Y.; Ohshiro, N.; Matsumura, J.; Koga, S. Effects of crown length on indole acetic acid (IAA) amounts in cambial region tissues in lower and upper trunks of sugi cultivars (Cryptomeria japonica) in September. J. Wood Sci. 2014, 60, 235–242. [Google Scholar] [CrossRef]
- Skomarkova, M.V.; Vaganov, E.A.; Wirth, C.; Kirdyanov, A.V. Climatic conditionality of radial increment of conifers and hardwoods in the middle taiga subzone of Central Siberia. Geogr. Nat. Resour. 2009, 30, 167–172. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Bunn, A.G.; Berner, L. A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. Glob. Change Biol. 2011, 17, 1935–1945. [Google Scholar] [CrossRef]
- Tabakova, M.A.; Arzac, A.; Martínez, E.; Kirdyanov, A.V. Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia. Dendrochronologia 2020, 62, 125709. [Google Scholar] [CrossRef]
- Mayr, S.; Hacke, U.; Schmid, P.; Schwienbacher, F.; Gruber, A. Frost drought in conifers at the alpine timberline: Xylem dysfunction and adaptations. Ecology 2006, 87, 3175–3185. [Google Scholar] [CrossRef]
- Mayr, S. Limits in water relations. In Trees at Their Upper Limit. Treelife Limitation at the Alpine Timberline; Wieser, G., Tausz, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 145–162. [Google Scholar] [CrossRef]
- Pittermann, J.; Sperry, J.S.; Hacke, U.G.; Wheeler, J.K.; Sikkema, E.H. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: The role of tracheid allometry and cavitation protection. Am. J. Bot. 2006, 93, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Fang, J.; Song, H.; Silvestro, R.; Li, X.; Li, Z.; Wang, Y.; Rossi, S. Cell enlargement drives xylem hydraulic efficiency and safety in Pinus tabulaeformis on the Loess Plateau. Agric. For. Meteorol. 2025, 372, 110724. [Google Scholar] [CrossRef]
- Cabon, A.; Fernández-de-Uña, L.; Gea-Izquierdo, G.; Meinzer, F.C.; Woodruff, D.R.; Martínez-Vilalta, J.; De Cáceres, M. Water potential control of turgor-driven tracheid enlargement in Scots pine at its xeric distribution edge. New Phytol. 2020, 225, 209–221. [Google Scholar] [CrossRef]
- Peters, R.L.; Steppe, K.; Cuny, H.E.; De Pauw, D.J.; Frank, D.C.; Schaub, M.; Rathgeber, C.B.K.; Cabon, A.; Fonti, P. Turgor—A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 2021, 229, 213–229. [Google Scholar] [CrossRef]
- Nokhsorov, V.V.; Dudareva, L.V.; Petrov, K.A. Content and composition of lipids and their fatty acids in needles of Pinus sylvestris L. and Picea obovata Ledeb. upon cold hardening in the cryolithozone of Yakutia. Russ. J. Plant Physiol. 2019, 66, 548–555. [Google Scholar] [CrossRef]
- Kosiba, A.M.; Schaberg, P.G.; Hawley, G.J.; Hansen, C.F. Quantifying the legacy of foliar winter injury on woody aboveground carbon sequestration of red spruce trees. For. Ecol. Manag. 2013, 302, 363–371. [Google Scholar] [CrossRef]
- Deslauriers, A.; Caron, L.; Rossi, S. Carbon allocation during defoliation: Testing a defense-growth trade-off in balsam fir. Front. Plant Sci. 2015, 6, 338. [Google Scholar] [CrossRef]
- Hamilton, J.A.; El Kayal, W.; Hart, A.T.; Runcie, D.E.; Arango-Velez, A.; Cooke, J.E. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physiol. 2016, 36, 1432–1448. [Google Scholar] [CrossRef]
- Mu, W.; Wu, X.; Camarero, J.J.; Fu, Y.H.; Huang, J.; Li, X.; Chen, D. Photoperiod drives cessation of wood formation in northern conifers. Glob. Ecol. Biogeog. 2023, 32, 603–617. [Google Scholar] [CrossRef]
- Lim, C.C.; Krebs, S.L.; Arora, R. Cold hardiness increases with age in juvenile Rhododendron populations. Front. Plant Sci. 2014, 5, 542. [Google Scholar] [CrossRef]
- Charrier, G.; Ngao, J.; Saudreau, M.; Améglio, T. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Front. Plant Sci. 2015, 6, 259. [Google Scholar] [CrossRef] [PubMed]
- Gurskaya, M.A.; Shiyatov, S.G. Distribution of frost injuries in the wood of conifers. Russ. J. Ecol. 2006, 37, 7–12. [Google Scholar] [CrossRef]
- Neuner, G. Frost resistance in alpine woody plants. Front. Plant Sci. 2014, 5, 654. [Google Scholar] [CrossRef] [PubMed]
- Korotaeva, N.E.; Oskorbina, M.V.; Gritsai, E.N.; Borovskii, G.B. Changes in the content of water-soluble sugars in needles of Scots pine and Siberian spruce growing in the south of eastern Siberia. Sib. J. Life Sci. Agric. 2022, 14, 122–141. [Google Scholar] [CrossRef]
- Campelo, F.; Vieira, J.; Battipaglia, G.; de Luis, M.; Nabais, C.; Freitas, H.; Cherubini, P. Which matters most for the formation of intra-annual density fluctuations in Pinus pinaster: Age or size? Trees 2015, 29, 237–245. [Google Scholar] [CrossRef]
- Battipaglia, G.; Campelo, F.; Vieira, J.; Grabner, M.; De Micco, V.; Nabais, C.; Cherubin, P.; Carrer, M.; Bräuning, A.; Cufar, K.; et al. Structure and function of intra–annual density fluctuations: Mind the gaps. Front. Plant Sci. 2016, 7, 595. [Google Scholar] [CrossRef] [PubMed]







| Correlated Traits | Picea obovata | Pinus sylvestris | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PO2 | PO5 | PO8 | PO11 | PO14 | PO17 | All | PS2 | PS5 | PS7 | PS11 | PS14 | PS17 | All | ||
| Raw measurements | |||||||||||||||
| TRW | Dmax | −0.18 | 0.17 | 0.66 * | 0.70 * | 0.59 * | 0.81 * | 0.74 * | 0.69 * | 0.37 | 0.38 | 0.57 * | 0.70 * | 0.75 * | 0.64 * |
| Dmean | 0.08 | 0.29 | 0.60 * | 0.76 * | 0.69 * | 0.82 * | 0.74 * | 0.62 * | 0.60 * | 0.75 | 0.67 * | 0.87 * | 0.79 * | 0.75 * | |
| CWTmax | −0.60 * | −0.32 | 0.39 | 0.59 * | 0.20 | −0.19 | −0.12 | −0.31 | −0.11 | 0.54 | 0.31 | 0.26 | 0.35 | 0.28 | |
| CWTmean | −0.58 * | −0.59 * | −0.05 | 0.18 | −0.05 | −0.24 | −0.22 | −0.59 * | −0.32 | −0.19 | 0.32 | 0.30 | −0.32 | 0.15 | |
| Dmax | Dmean | 0.74 * | 0.76 * | 0.85 * | 0.87 * | 0.90 * | 0.90 * | 0.95 * | 0.93 * | 0.76 * | 0.82 * | 0.75 * | 0.85 * | 0.87 * | 0.90 * |
| CWTmax | 0.47 * | 0.00 | 0.52 * | 0.58 * | 0.28 | −0.15 | 0.04 | −0.44 * | −0.10 | 0.12 | 0.17 | 0.33 | 0.49 * | 0.15 | |
| CWTmean | 0.51 * | −0.09 | 0.42 | 0.42 | 0.09 | −0.21 | −0.04 | −0.37 | −0.23 | −0.29 | 0.07 | 0.49 * | −0.21 | −0.12 | |
| Dmean | CWTmax | 0.12 | −0.37 | 0.41 | 0.58 * | 0.10 | −0.39 | −0.08 | −0.56 * | −0.27 | 0.24 | 0.02 | 0.17 | 0.47 * | 0.19 |
| CWTmean | 0.41 | −0.07 | 0.40 | 0.31 | −0.12 | −0.44 * | −0.12 | −0.52 * | −0.41 | −0.38 | −0.02 | 0.24 | −0.12 | −0.03 | |
| CWTmax | CWTmean | 0.67 * | 0.48 * | 0.72 * | 0.79 * | 0.64 * | 0.82 * | 0.72 * | 0.78 * | 0.82 * | 0.54 * | 0.83 * | 0.74 * | 0.50 * | 0.77 * |
| Indexed chronologies | |||||||||||||||
| TRW | Dmax | 0.22 | 0.24 | 0.46 * | 0.65 * | 0.72 * | 0.59 * | 0.50 * | 0.49 * | 0.31 | 0.27 | 0.49 * | 0.77 * | 0.49 * | 0.51 * |
| Dmean | 0.76 * | 0.56 * | 0.73 * | 0.77 * | 0.66 * | 0.62 * | 0.68 * | 0.16 | 0.34 | 0.53 * | 0.51 * | 0.70 * | 0.57 * | 0.52 * | |
| CWTmax | −0.31 | −0.01 | 0.18 | 0.61 * | 0.19 | −0.20 | 0.13 | 0.22 | 0.38 | 0.61 * | 0.35 | 0.48 * | 0.14 | 0.37 | |
| CWTmean | 0.17 | 0.43 * | 0.48 * | 0.68 * | 0.34 | 0.07 | 0.40 | 0.50 * | 0.69 * | 0.73 * | 0.66 * | 0.68 * | 0.13 | 0.57 * | |
| Dmax | Dmean | 0.30 | 0.55 * | 0.68 * | 0.86 * | 0.91 * | 0.76 * | 0.72 * | 0.83 * | 0.78 * | 0.83 * | 0.72 * | 0.89 * | 0.81 * | 0.81 * |
| CWTmax | 0.25 | 0.13 | 0.28 | 0.39 | 0.29 | 0.00 | 0.24 | −0.09 | −0.06 | 0.20 | 0.20 | 0.39 | 0.42 | 0.20 | |
| CWTmean | −0.10 | 0.00 | 0.44 * | 0.46 | 0.15 | 0.04 | 0.23 | 0.24 | −0.10 | 0.02 | 0.20 | 0.54 * | 0.10 | 0.19 | |
| Dmean | CWTmax | −0.47 * | −0.38 | 0.15 | 0.28 | 0.12 | −0.51 * | −0.07 | −0.29 | −0.19 | 0.25 | 0.05 | 0.16 | 0.30 | 0.08 |
| CWTmean | −0.14 | 0.17 | 0.39 | 0.36 | −0.05 | −0.44 * | 0.09 | −0.10 | −0.14 | 0.23 | 0.19 | 0.36 | 0.18 | 0.16 | |
| CWTmax | CWTmean | 0.33 | 0.43 * | 0.82 * | 0.90 * | 0.70 * | 0.78 * | 0.72 * | 0.85 * | 0.69 * | 0.86 * | 0.84 * | 0.87 * | 0.41 | 0.84 * |
| Species | Plots | N | Dmean, μm | Dmax, μm | CWTmean, μm | CWTmax, μm | Dmax2, μm2 | ρmax, kg/m3 |
|---|---|---|---|---|---|---|---|---|
| Picea obovata | PO2 | 132 ± 46 a | 34.7 ± 2.0 a | 51.2 ± 3.0 a | 3.6 ± 0.2 b | 5.4 ± 0.4 a | 2625 ± 300 a | 1191 ± 42 bc |
| PO5 | 85 ± 49 b | 32.3 ± 2.1 b | 45.6 ± 3.1 b | 3.4 ± 0.2 c | 5.2 ± 0.4 b | 2091 ± 287 b | 1162 ± 47 d | |
| PO8 | 60 ± 33 b | 31.3 ± 2.1 b | 43.7 ± 3.3 b | 3.6 ± 0.2 b | 5.4 ± 0.5 ab | 1922 ± 285 b | 1206 ± 44 bc | |
| PO11 | 37 ± 19 c | 28.1 ± 2.1 c | 39.6 ± 3.2 c | 3.5 ± 0.2 bc | 5.4 ± 0.6 ab | 1580 ± 249 c | 1186 ± 49 cd | |
| PO14 | 33 ± 12 c | 25.6 ± 1.4 d | 36.7 ± 2.5 d | 3.8 ± 0.2 a | 5.6 ± 0.5 a | 1352 ± 183 d | 1232 ± 38 a | |
| PO17 | 35 ± 14 c | 27.3 ± 1.9 c | 37.7 ± 2.6 d | 3.6 ± 0.2 b | 5.4 ± 0.4 a | 1430 ± 198 d | 1222 ± 57 ab | |
| Pinus sylvestris | PS2 | 99 ± 38 a | 35.6 ± 1.4 a | 48.0 ± 2.3 a | 4.7 ± 0.2 a | 7.0 ± 0.5 a | 2311 ± 227 a | 1099 ± 38 b |
| PS5 | 70 ± 21 b | 33.7 ± 1.6 b | 46.1 ± 1.8 b | 4.2 ± 0.2 b | 6.2 ± 0.4 b | 2128 ± 165 b | 1037 ± 48 c | |
| PS7 | 42 ± 10 c | 32.9 ± 1.8 b | 46.3 ± 2.2 b | 4.1 ± 0.2 c | 6.3 ± 0.6 bc | 2152 ± 196 b | 1082 ± 52 b | |
| PS11 | 42 ± 6 c | 31.2 ± 1.6 c | 44.7 ± 2.0 c | 3.9 ± 0.2 d | 6.2 ± 0.5 bc | 2003 ± 179 c | 1080 ± 57 b | |
| PS14 | 45 ± 11 c | 31.0 ± 2.1 c | 44.2 ± 2.6 c | 3.8 ± 0.2 e | 5.7 ± 0.4 d | 1957 ± 219 c | 1027 ± 40 c | |
| PS17 | 35 ± 11 d | 28.8 ± 1.8 d | 41.3 ± 2.8 d | 4.8 ± 0.2 f | 6.7 ± 0.4 e | 1711 ± 229 d | 1160 ± 41 a |
| Month | Mean 2000–2020 | Deviation from Mean in Pointer Years | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Positive | Negative | Positive | Negative | |||||||
| 2002 | 2007 | 2012 | 2019 | 2002 | 2007 | 2002 | 2007 | |||
| T | P | Temperature, °C | Precipitation, mm | |||||||
| Sep * | 9.7 | 56 | 0.2 | 1.1 | −0.1 | 0.6 | 28 | −24 | −28 | 12 |
| Oct * | 1.2 | 43 | −0.5 | −2.2 | 3.7 | 3.7 | −14 | 18 | −6 | −13 |
| Nov * | −8.7 | 42 | 5.0 | −0.8 | 0.0 | −1.1 | −8 | −13 | −10 | 6 |
| Dec * | −16.3 | 37 | −2.0 | 5.6 | 2.1 | −4.3 | −1 | 12 | −8 | −9 |
| Jan | −18.4 | 18 | 9.4 | 8.9 | −2.4 | 3.9 | 10 | 2 | −1 | −3 |
| Feb | −15.8 | 16 | 7.4 | −0.1 | −1.2 | −0.1 | 0 | 8 | −2 | −10 |
| Mar | −5.8 | 21 | 2.1 | −1.8 | −1.7 | 4.9 | 14 | 6 | 0 | −11 |
| Apr | 2.8 | 29 | −3.2 | 3.5 | 0.3 | −0.2 | −13 | −7 | 6 | 6 |
| May | 9.8 | 46 | 2.4 | −0.3 | 0.2 | −0.3 | −21 | 20 | −14 | −22 |
| Jun | 18.2 | 58 | −0.5 | −3.0 | 1.5 | 0.0 | 3 | 2 | −45 | 6 |
| Jul | 18.8 | 70 | 0.8 | 1.6 | 1.2 | 0.8 | 3 | −3 | −32 | −15 |
| Aug | 16.0 | 64 | 0.2 | −0.3 | −1.3 | 1.4 | 12 | 11 | 9 | −6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babushkina, E.A.; Kholdaenko, Y.A.; Belokopytova, L.V.; Zhirnova, D.F.; Mapitov, N.B.; Kostyakova, T.V.; Krutovsky, K.V.; Vaganov, E.A. The Influence of Planting Density and Climatic Variables on the Wood Structure of Siberian Spruce and Scots Pine. Forests 2025, 16, 1622. https://doi.org/10.3390/f16111622
Babushkina EA, Kholdaenko YA, Belokopytova LV, Zhirnova DF, Mapitov NB, Kostyakova TV, Krutovsky KV, Vaganov EA. The Influence of Planting Density and Climatic Variables on the Wood Structure of Siberian Spruce and Scots Pine. Forests. 2025; 16(11):1622. https://doi.org/10.3390/f16111622
Chicago/Turabian StyleBabushkina, Elena A., Yulia A. Kholdaenko, Liliana V. Belokopytova, Dina F. Zhirnova, Nariman B. Mapitov, Tatiana V. Kostyakova, Konstantin V. Krutovsky, and Eugene A. Vaganov. 2025. "The Influence of Planting Density and Climatic Variables on the Wood Structure of Siberian Spruce and Scots Pine" Forests 16, no. 11: 1622. https://doi.org/10.3390/f16111622
APA StyleBabushkina, E. A., Kholdaenko, Y. A., Belokopytova, L. V., Zhirnova, D. F., Mapitov, N. B., Kostyakova, T. V., Krutovsky, K. V., & Vaganov, E. A. (2025). The Influence of Planting Density and Climatic Variables on the Wood Structure of Siberian Spruce and Scots Pine. Forests, 16(11), 1622. https://doi.org/10.3390/f16111622

