Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,201)

Search Parameters:
Keywords = allelic variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 220 KiB  
Communication
Characterisation of the Ovine KRTAP36-1 Gene in Chinese Tan Lambs and Its Impact on Selected Wool Traits
by Lingrong Bai, Huitong Zhou, Jinzhong Tao, Guo Yang and Jon G. H. Hickford
Animals 2025, 15(15), 2265; https://doi.org/10.3390/ani15152265 - 1 Aug 2025
Viewed by 140
Abstract
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that [...] Read more.
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that underpin key wool traits, this study examined the keratin-associated protein 36-1 gene (KRTAP36-1) in Chinese Tan lambs. We identified three previously reported alleles of the gene (named A, B and C) that were present in the lambs studied, with genotype frequencies as follows: 2.0% (n = 5; AA), 6.9% (n = 17; AB), 13.8% (n = 34; AC), 8.9% (n = 22; BB), 33.4% (n = 82; BC) and 35.0% (n = 86; CC). The frequencies of the individual alleles in the Chinese Tan lambs were 12.4%, 29.1% and 58.5% for alleles A, B and C, respectively. The three alleles were in Hardy–Weinberg Equilibrium. In an association analysis, it was revealed that allele C was associated with variation in the mean fibre curvature of the fine wool of the Chinese Tan lambs, but this association was not observed in their heterotypic hair fibres. This finding suggests that KRTAP36-1 might be differentially expressed in the wool follicles that produce the two fibre types, and that along with other KRTAP genes, it may be involved in determining fibre curvature and the distinctive curly coat of the lambs. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
11 pages, 1707 KiB  
Article
Genetic Variant of the Canine FGF5 Gene for the Hair Length Trait in the Akita: Utility for Hair Coat Variations and Welfare in Conservation Breeding
by Shinichiro Maki, Md Shafiqul Islam, Norio Kansaku, Nanami Arakawa, Akira Yabuki, Tofazzal Md Rakib, Abdullah Al Faruq and Osamu Yamato
Genes 2025, 16(8), 927; https://doi.org/10.3390/genes16080927 (registering DOI) - 1 Aug 2025
Viewed by 200
Abstract
Background/Objectives: Variations in hair length are observed in many dog breeds, as determined by the canine FGF5 gene. Long-haired Akitas, which are disqualified under breeding standards of Akitas, are sometimes born to short-haired parents and may have been subjected to treatments compromising [...] Read more.
Background/Objectives: Variations in hair length are observed in many dog breeds, as determined by the canine FGF5 gene. Long-haired Akitas, which are disqualified under breeding standards of Akitas, are sometimes born to short-haired parents and may have been subjected to treatments compromising animal welfare. Here, we aimed to identify an FGF5 variant associated with hair coat variations in Akitas in Japan, and to assess how welfare of this breed can be improved by carefully planned breeding. Methods: DNA samples were obtained from 60 Akitas in 2021 (modern Akitas) and 73 Akitas in the 1970s and the 1980s (classic Akitas). Sanger sequencing was performed on all exons and exon–intron junctions of the FGF5 gene to determine the causative variant of long hair in Akitas. A real-time PCR assay was developed to genotype FGF5:c.578C>T in modern and classic Akitas. Using 54 dogs from modern Akitas, scores (1 to 10) of hair length were compared among the three genotypes (C/C, C/T, and T/T). Results: Sanger sequencing revealed that the canine FGF5:c.578C>T variant was associated with long hair in Akitas in Japan. Genotyping revealed that the frequency of the mutant T allele was 0.350 in modern Akitas, which was significantly higher (p < 0.001) than in classic Akitas (0.212). The three genotypes were not in Hardy–Weinberg equilibrium (HWE) in modern Akitas but were in HWE in classic Akitas. There were significant differences in hair length scores among the three genotypes (p < 0.001) and between the C/C and C/T genotypes (p < 0.005). There was no significant difference in the scores between male and female dogs. Conclusions: This study revealed that a causative variant that determines the long hair trait of Akitas in Japan was the FGF5:c.578C>T variant, which was inherited in an incompletely dominant manner. Akita dog breeders were more likely to select heterozygous C/T dogs based on the appearance of the hair coat for breeding dogs with an ideal fluffy hair coat. This might result in a high mutant T allele frequency and the production of undesired long-haired Akitas with T/T, which may create welfare problems. Genetic testing for this variant is necessary to improve welfare and conserve the Akita breed. Full article
(This article belongs to the Special Issue Genetics in Canines: From Evolution to Conservation)
Show Figures

Figure 1

19 pages, 2222 KiB  
Article
Low Metabolic Variation in Environmentally Diverse Natural Populations of Temperate Lime Trees (Tilia cordata)
by Carl Barker, Paul Ashton and Matthew P. Davey
Metabolites 2025, 15(8), 509; https://doi.org/10.3390/metabo15080509 - 31 Jul 2025
Viewed by 150
Abstract
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations [...] Read more.
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations of many tree species, there is a high likelihood of local adaption or the acclimation of functional traits in these populations across the UK. Objectives: Given the slow growth and often isolated populations of Tilia cordata (lime tree), we hypothesised that there is a high likelihood of local adaptation or the acclimation of metabolic traits in these populations across the UK. Our aim was to test if the functional metabolomic traits of Tilia cordata (lime tree), collected in situ from natural populations, varied within and between populations and to compare this to neutral allele variation in the population. Methods: We used a metabolic fingerprinting approach to obtain a snapshot of the metabolic status of leaves collected from T. cordata from six populations across the UK. Environmental metadata, longer-term functional traits (specific leaf area) and neutral allelic variation in the population were also measured to assess the plastic capacity and local adaptation of the species. Results: The metabolic fingerprints derived from leaf material collected and fixed in situ from individuals in six populations of T. cordata across its UK range were similar, despite contrasting environmental conditions during sampling. Neutral allele frequencies showed almost no significant group structure, indicating low differentiation between populations. The specific leaf area did vary between sites. Conclusions: The low metabolic variation between UK populations of T. cordata despite contrasting environmental conditions during sampling indicates high levels of phenotypic plasticity. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence, 2nd Edition)
Show Figures

Figure 1

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 321
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

28 pages, 2549 KiB  
Article
A 25K Wheat SNP Array Revealed the Genetic Diversity and Population Structure of Durum Wheat (Triticum turgidum subsp. durum) Landraces and Cultivars
by Lalise Ararsa, Behailu Mulugeta, Endashaw Bekele, Negash Geleta, Kibrom B. Abreha and Mulatu Geleta
Int. J. Mol. Sci. 2025, 26(15), 7220; https://doi.org/10.3390/ijms26157220 - 25 Jul 2025
Viewed by 1171
Abstract
Durum wheat, the world’s second most cultivated wheat species, is a staple crop, critical for global food security, including in Ethiopia where it serves as a center of diversity. However, climate change and genetic erosion threaten its genetic resources, necessitating genomic studies to [...] Read more.
Durum wheat, the world’s second most cultivated wheat species, is a staple crop, critical for global food security, including in Ethiopia where it serves as a center of diversity. However, climate change and genetic erosion threaten its genetic resources, necessitating genomic studies to support conservation and breeding efforts. This study characterized genome-wide diversity, population structure (STRUCTURE, principal coordinate analysis (PCoA), neighbor-joining trees, analysis of molecular variance (AMOVA)), and selection signatures (FST, Hardy–Weinberg deviations) in Ethiopian durum wheat by analyzing 376 genotypes (148 accessions) using an Illumina Infinium 25K single nucleotide polymorphism (SNP) array. A set of 7842 high-quality SNPs enabled the assessments, comparing landraces with cultivars and breeding populations. Results revealed moderate genetic diversity (mean polymorphism information content (PIC) = 0.17; gene diversity = 0.20) and identified 26 loci under selection, associated with key traits like grain yield, stress tolerance, and disease resistance. AMOVA revealed 80.1% variation among accessions, with no significant differentiation by altitude, region, or spike density. Landraces formed distinct clusters, harboring unique alleles, while admixture suggested gene flow via informal seed exchange. The findings highlight Ethiopia’s rich durum wheat diversity, emphasizing landraces as reservoirs of adaptive alleles for breeding. This study provides genomic insights to guide conservation and the development of climate-resilient cultivars, supporting sustainable wheat production globally. Full article
(This article belongs to the Special Issue Latest Research on Plant Genomics and Genome Editing, 2nd Edition)
Show Figures

Figure 1

17 pages, 2673 KiB  
Article
Genome-Wide Association Analysis and Molecular Marker Development for Resistance to Fusarium equiseti in Soybean
by Yuhe Wang, Xiangkun Meng, Jinfeng Han, Yuming Yang, Hongjin Zhu, Yongguang Li, Yuhang Zhan, Weili Teng, Haiyan Li and Xue Zhao
Agronomy 2025, 15(8), 1769; https://doi.org/10.3390/agronomy15081769 - 23 Jul 2025
Viewed by 312
Abstract
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide [...] Read more.
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide association study (GWAS) using 698,949 SNP markers obtained from soybean germplasm resequencing data. GWAS analysis identified 101 SNPs significantly associated with FERR resistance, distributed across nine chromosomes, with the highest number of SNPs on chromosomes 13 and 20. Further gene-based association and allele variation analyses identified candidate genes whose mutations are closely related to FERR resistance. To accelerate soybean FERR resistance breeding screening, we developed CAPS markers S13_14464319-CAPS1 and S15_9215524-CAPS2, targeting these SNP sites, and KASP markers based on the S15_9205620-G/A, providing an effective tool for marker-assisted selection (MAS). This study offers a valuable theoretical foundation and molecular marker resources for the functional validation of FERR resistance genes and soybean disease resistance breeding. Full article
Show Figures

Figure 1

16 pages, 1177 KiB  
Article
Genetic Differentiation of Ornamental and Fruit-Bearing Prunus laurocerasus Revealed by SSR and S-Locus Markers
by Attila Hegedűs, Péter Honfi, Sezai Ercisli, Gulce Ilhan, Endre György Tóth and Júlia Halász
Horticulturae 2025, 11(7), 854; https://doi.org/10.3390/horticulturae11070854 - 19 Jul 2025
Viewed by 357
Abstract
Cherry laurel (Prunus laurocerasus) is an understudied, highly polyploid (22×) species that is widely used as an ornamental shrub and as a fruit-bearing plant in Türkiye. We analyzed 43 accessions—33 ornamental cultivars and 10 fruit-bearing selections—by examining size variations in 10 [...] Read more.
Cherry laurel (Prunus laurocerasus) is an understudied, highly polyploid (22×) species that is widely used as an ornamental shrub and as a fruit-bearing plant in Türkiye. We analyzed 43 accessions—33 ornamental cultivars and 10 fruit-bearing selections—by examining size variations in 10 simple sequence repeat (SSR) markers and the first intron region of the self-incompatibility ribonuclease (S-RNase) gene. A total of 498 alleles were detected across 11 loci, with the highest number of alleles observed at the S-locus. The SSR loci amplified between 4 (ASSR63) and 17 (BPPCT039) alleles per accession, with eight of the 11 primers generating more than 12 alleles per accession. Two markers, BPPCT040 and CPSCT021, uniquely distinguished all tested accessions. Of the alleles, only 178 (36%) were shared between the ornamental and fruit-bearing groups, reflecting significant genetic differentiation. A dendrogram and principal coordinate analysis revealed three distinct groups. Group 1 included most Hungarian and some European cultivars. Groups 2 (Western European cultivars) and 3 (Turkish selections) exhibited higher average allele numbers, suggesting greater genetic diversity in these groups. Our results indicate that cultivated cherry laurels originate from a broad genetic base and show clear genetic divergence between ornamental and fruit-bearing selections, likely due to differing long-term selection pressures. The observed genetic variability is consistent with the polyploid nature of the species and supports the presumed self-incompatible phenotype. This is the first study to report SSR fingerprints for ornamental cultivars and fruit-bearing selections, providing a potential tool for use in breeding programs. Full article
Show Figures

Graphical abstract

14 pages, 846 KiB  
Article
Uncovering Allele-Specific Expression Patterns Associated with Sea Lice (Caligus rogercresseyi) Burden in Atlantic Salmon
by Pablo Cáceres, Paulina López, Carolina Araya, Daniela Cichero, Liane N. Bassini and José M. Yáñez
Genes 2025, 16(7), 841; https://doi.org/10.3390/genes16070841 - 19 Jul 2025
Viewed by 385
Abstract
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain [...] Read more.
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain unclear. Methods: two sea lice challenge trials were conducted, achieving high infestation rates (47.5% and 43.5%). A total of 85 fish, selected based on extreme phenotypes for lice burden (42 low, 43 high), were subjected to transcriptomic analysis. Differential gene expression was integrated with allele-specific expression (ASE) analysis to uncover cis-regulatory variation influencing host response. Results: Sixty genes showed significant ASE (p < 0.05), including 33 overexpressed and 27 underexpressed. Overexpressed ASE genes included Keratin 15, Collagen IV/V, TRIM16, and Angiopoietin-1-like, which are associated with epithelial integrity, immune response, and tissue remodeling. Underexpressed ASE genes such as SOCS3, CSF3R, and Neutrophil cytosolic factor suggest individual variation in cytokine signaling and oxidative stress pathways. Conclusions: several ASE genes co-localized with previously identified QTLs for sea lice resistance, indicating that cis-regulatory variants contribute to phenotypic differences in parasite susceptibility. These results highlight ASE analysis as a powerful tool to identify functional regulatory elements and provide valuable candidates for selective breeding and genomic improvement strategies in aquaculture. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 538 KiB  
Article
Polymorphisms in Base Excision Repair Genes and Association with Multiple Sclerosis in a Pilot Study on a Central European Population
by Beata Filipek, Anna Macieja, Aleksandra Binda, Elzbieta Miller, Mariola Swiderek-Matysiak, Mariusz Stasiolek, Maksymilian Stela, Ireneusz Majsterek and Tomasz Poplawski
Int. J. Mol. Sci. 2025, 26(14), 6612; https://doi.org/10.3390/ijms26146612 - 10 Jul 2025
Viewed by 296
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration. While its etiology remains unclear, both genetic and environmental factors, including oxidative stress, have been implicated in the development of the disease. The base excision [...] Read more.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration. While its etiology remains unclear, both genetic and environmental factors, including oxidative stress, have been implicated in the development of the disease. The base excision repair (BER) pathway plays a critical role in repairing oxidative DNA damage. This study investigated the association between polymorphisms in BER-related genes and MS susceptibility in a Central European population. Ten SNPs across seven BER genes were genotyped in 102 patients with MS and 118 healthy controls. Six SNPs were significantly associated with MS. Increased risk was observed for rs25478 in XRCC1 (OR = 2.37, 95% CI: 1.44–3.91, p < 0.0001), rs3087404 in SMUG1 (OR = 2.80, 95% CI: 1.49–5.26, p = 0.0012), and rs3219493 in MUTYH (OR = 2.23, 95% CI: 1.35–3.67, p = 0.0018). Conversely, reduced risk was associated with rs2307293 in MBD4 (OR = 0.42, 95% CI: 0.23–0.78, p = 0.006), rs3219489 in MUTYH (OR = 0.55, 95% CI: 0.31–0.97, p = 0.038), and rs4135054 in TDG (OR = 0.52, 95% CI: 0.29–0.94, p = 0.031). Haplotype analysis was performed for SNPs in strong linkage disequilibrium. Only rs3219489 and rs3219472 within the MUTYH gene showed strong LD (r2 = 0.90), justifying haplotype-based analysis. Among four inferred haplotypes, the rare G–C haplotype was significantly associated with reduced MS risk (Score = −2.10, p = 0.035), suggesting a protective effect of this allele combination. Other SNPs not in LD were analyzed using a multivariable logistic regression model. Significant associations with decreased MS risk were found for rs1052133 in OGG1 (OR = 0.57, p = 0.043), rs2307293 in MBD4 (OR = 0.16, p = 0.010), and rs4135054 in TDG (OR = 0.38, p < 0.001), while rs3087404 in SMUG1 increased MS risk (OR = 1.98, p = 0.013). These results suggest that genetic variation in BER genes, including both single SNP effects and haplotypes, contributes to MS susceptibility. Further studies are warranted to explore the functional consequences of these variants and validate findings in larger, independent cohorts. Full article
(This article belongs to the Special Issue Multiple Sclerosis: From Molecular Mechanisms to Pathophysiology)
Show Figures

Figure 1

16 pages, 2662 KiB  
Article
Assessment of Genetic Diversity in Walnut (Juglans regia L.) Genotypes from Southern and Southeastern Kazakhstan Using Microsatellite Markers
by Makpal Nurzhuma, Alma Kokhmetova, Madina Kumarbayeva, Zhenis Keishilov, Kanat Bakhytuly, Ardak Bolatbekova, Assiya Kokhmetova, Kanat Mukhametzhanov and Kadir Akan
Horticulturae 2025, 11(7), 810; https://doi.org/10.3390/horticulturae11070810 - 8 Jul 2025
Viewed by 391
Abstract
The walnut (Juglans regia L.) holds a significant position among Kazakhstan’s nut crops, both in terms of cultivation and consumption. Although genetic resources of walnut are accessible within the country, they remain underexplored, yet they represent a valuable foundation for breeding initiatives [...] Read more.
The walnut (Juglans regia L.) holds a significant position among Kazakhstan’s nut crops, both in terms of cultivation and consumption. Although genetic resources of walnut are accessible within the country, they remain underexplored, yet they represent a valuable foundation for breeding initiatives and the development of locally adapted varieties. Currently, a comprehensive genetic profile of these resources is lacking, which hampers their effective utilization. The aim of this research was to evaluate the genetic diversity within a collection of walnut accessions collected from the southern and southeastern regions of Kazakhstan, including Almaty and Turkestan regions. To achieve this, eight SSR molecular markers were employed, providing insights into the genetic structure and relationships among the germplasm. All markers exhibited a high degree of polymorphism, with the WGA276 locus standing out as the most informative, displaying the greatest number of alleles and a high Shannon diversity index. The average expected heterozygosity (He) was 0.704 and was significantly higher than the observed heterozygosity (Ho = 0.547), which was confirmed by t-test (t = −6.426, p < 0.05). The findings indicated substantial genetic variation and intra-population polymorphism: on average, 5.875 alleles per locus were identified, and the Shannon index was 1.444. The population from Turkestan region (population 1, Sairam-Ugam) demonstrated the highest levels of diversity. Analyses of genetic structure, conducted through STRUCTURE, PCoA, and UPGMA methods, confirmed the existence of two genetically distinct groups exhibiting considerable diversity. Future research should focus on conserving the highly diverse populations in the Turkestan region to facilitate the development of stress-tolerant varieties. These findings highlight the importance of conserving and harnessing the genetic resources of Kazakhstan’s J. regia populations for future breeding efforts. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

14 pages, 2881 KiB  
Article
Integrative Analysis of GATA3 Expression and Variants as Prognostic Biomarkers in Urothelial Cancer
by Chia-Min Chung, Han Chang, Chao-Hsiang Chang, Yi-Huei Chang, Po-Jen Hsiao, Chi-Shun Lien and Chi-Jung Chung
Int. J. Mol. Sci. 2025, 26(13), 6378; https://doi.org/10.3390/ijms26136378 - 2 Jul 2025
Viewed by 477
Abstract
GATA3 is a transcription factor involved in urothelial differentiation and is widely used as a diagnostic marker for urothelial carcinoma (UC). Although loss of GATA3 expression has been linked to more aggressive disease, its prognostic significance remains uncertain. Genetic variation within the GATA3 [...] Read more.
GATA3 is a transcription factor involved in urothelial differentiation and is widely used as a diagnostic marker for urothelial carcinoma (UC). Although loss of GATA3 expression has been linked to more aggressive disease, its prognostic significance remains uncertain. Genetic variation within the GATA3 locus, particularly rs1244159, may influence protein expression and clinical outcomes. We conducted a case control study in Taiwan including 461 UC cases and 586 controls genotyped for four GATA3 SNPs. GATA3 expression was assessed via immunohistochemistry (IHC) in 98 tumor tissues. Logistic regression and Kaplan–Meier analyses were used to evaluate SNP associations and survival outcomes. An XGBoost-based machine learning model with SHAP (SHapley Additive exPlanations) was applied to rank survival predictors. The rs1244159 G allele was associated with a significantly reduced UC risk (adjusted OR = 0.48, p = 0.0231) and higher GATA3 expression (p = 0.0173). High GATA3 expression predicted improved overall survival (p = 0.0092), particularly among G allele carriers (p = 0.0071). SHAP analysis identified age, chemotherapy, and GATA3 expression as the top predictors of survival, consistent with Cox regression results. In conclusion, our integrative analysis suggests that the rs1244159 G allele modulates GATA3 expression and influences UC prognosis. Combining genomics, pathology, and machine learning, GATA3 may serve as a clinically useful biomarker for risk stratification and outcome prediction in UC. Full article
(This article belongs to the Special Issue Machine Learning in Disease Diagnosis and Treatment)
Show Figures

Figure 1

23 pages, 1403 KiB  
Review
Cataloging Actionable Pharmacogenomic Variants for Indian Clinical Practice: A Scoping Review
by Sacheta Sudhendra Kulkarni, Venkatesh R, Anuradha Das and Gayatri Rangarajan Iyer
J. Xenobiot. 2025, 15(4), 101; https://doi.org/10.3390/jox15040101 - 1 Jul 2025
Viewed by 762
Abstract
Background: Pharmacogenomics (PGx), a pivotal branch of personalized medicine, studies how genetic variations influence drug responses. Despite its transformative potential, the adoption of PGx in Indian clinical practice faces challenges, such as the lack of population-specific data, evidence-based guidelines, and complexities in interpreting [...] Read more.
Background: Pharmacogenomics (PGx), a pivotal branch of personalized medicine, studies how genetic variations influence drug responses. Despite its transformative potential, the adoption of PGx in Indian clinical practice faces challenges, such as the lack of population-specific data, evidence-based guidelines, and complexities in interpreting genomic reports. Comprehensive datasets tailored to Indian patients are essential to facilitate the integration of PGx into clinical settings. Methodology: The study collates pharmacogenomic data from multiple sources, including essential drugs listed by the World Health Organization (WHO), drugs used in neonatal intensive care units (NICUs), minimum sets of alleles recommended by the Association for Molecular Pathology (AMP), and catalogs the allele frequencies from the IndiGenomes database to address gaps in actionable PGx for the Indian population. Curated datasets were used to identify pharmacogenomic variants relevant to clinical practice. Results: Overall, 24 prime genes are essential for the outcomes of 57 drugs. In adults, 18 genes influence the metabolism of 44 drugs whereas, in pediatric populations, genotypes of 18 genes significantly impact the metabolism of 18 drugs. Two over-the-counter drugs with actionable PGx variants were identified: ibuprofen and omeprazole. These findings emphasize the clinical relevance of PGx for commonly used drugs, underscoring the need for population-specific data. Conclusions: As the data of several Indian human genome projects become available, an overarching need exists to establish and regulate the dynamic actionable PGx in Indian clinical practice. This will facilitate the integration of pharmacogenomic data into healthcare, enabling effective and personalized drug therapies. Full article
Show Figures

Figure 1

10 pages, 2899 KiB  
Article
Genetic Characterization of Wild Soybean Collected from Zhejiang Province in China
by Xiaomin Yu, Xujun Fu, Qinghua Yang, Hangxia Jin and Longming Zhu
Genes 2025, 16(7), 776; https://doi.org/10.3390/genes16070776 - 30 Jun 2025
Viewed by 345
Abstract
Background/Objectives: Wild soybean could grow in different soil types and under diverse climate conditions, which provides rich genetic resources in the locality. It is important to understand the genetic diversity as well as phenotypic variation for soybean breeding. The objective of this [...] Read more.
Background/Objectives: Wild soybean could grow in different soil types and under diverse climate conditions, which provides rich genetic resources in the locality. It is important to understand the genetic diversity as well as phenotypic variation for soybean breeding. The objective of this study was to analyze the genetic and phenotypic characteristics of 96 wild soybean accessions collected in Zhejiang Province, and to explore the potential advantage of germplasm resources for further application. Methods: These 96 annual type soybean resources have been propagated, identified and evaluated in both 2022 and 2023. In addition, their agronomic, quality and genetic traits have been characterized. Results: Most of the accessions exhibited sooty seed coats with different stem and leaf shapes. The means of seed protein and oil contents were 45.4% and 10.0%, respectively. There were significant differences in both protein and oil contents based upon the seed size. The average number of alleles per loci was 3.96, and the average PIC value was 0.619. The 96 accessions were clustered into three different groups. Each group had a consistency with both the geographical sources and the seed quality traits. Conclusions: There were agronomic, quality and genetic variations of these wild soybean accessions by the comprehensive analyses. This study gave us a combined understanding of both phenotypic variation and genetic diversity of wild soybean accessions in Zhejiang. Therefore, both reasonable exchanging and crossing between different soybean types is highly recommended. Full article
(This article belongs to the Special Issue Genetic and Morphological Diversity in Plants)
Show Figures

Figure 1

21 pages, 2803 KiB  
Article
Pharmacogenomics and Pharmacometabolomics in Precision Tramadol Prescribing for Enhanced Pain Management: Evidence from QBB and EMR Data
by Dhoha Dhieb, Najeha Anwardeen, Dinesh Velayutham, Mohamed A. Elrayess, Puthen Veettil Jithesh and Kholoud Bastaki
Pharmaceuticals 2025, 18(7), 971; https://doi.org/10.3390/ph18070971 - 27 Jun 2025
Viewed by 354
Abstract
Background/Objectives: Tramadol is an opioid frequently prescribed for moderate to severe pain and has seen a global increase in use. This presents numerous challenges in clinical management. This study aims to elucidate metabolic signatures associated with tramadol consumption, enhancing predictive capabilities for [...] Read more.
Background/Objectives: Tramadol is an opioid frequently prescribed for moderate to severe pain and has seen a global increase in use. This presents numerous challenges in clinical management. This study aims to elucidate metabolic signatures associated with tramadol consumption, enhancing predictive capabilities for therapeutic outcomes and optimizing patient-specific treatment plans. Methods: Data were obtained from the Qatar Biobank (QBB), focusing on pharmacogenomic variants associated with tramadol use and prescription trends. A cohort of 27 individuals who were administered daily tramadol doses between 100 and 400 mg with available metabolomic profiles were selected. The pharmacokinetics of tramadol were evaluated in relation to specific CYP2D6 genetic variants. Comparative pharmacometabolomic profiles were generated for tramadol users versus a control group of 54 non-users. Additionally, prescription data encompassing tramadol formulations were collected from the electronic medical records (EMR) system of the major public hospital network in Qatar (Hamad Medical Corporation) to discern prescribing patterns. Results: From January 2019 to December 2022, tramadol prescriptions varied, with chronic pain as the primary indication, followed by acute pain. Pharmacogenomic analysis indicated that CYP2D6 allele variations significantly impacted tramadol and O-desmethyltramadol glucuronide levels, notably in ‘normal metabolizers’. Metabolomic analysis revealed distinct metabolic profiles in tramadol users, with significant variations in phosphatidylcholine, histidine, and lysine pathways compared to controls, highlighting tramadol’s unique biochemical impacts. Conclusions: This study underscores the importance of integrating genetic and omics-based approaches to enhance tramadol’s efficacy and safety. These findings support personalized pain management strategies, enhancing treatment outcomes for both chronic and acute pain. Full article
(This article belongs to the Special Issue Pharmacogenomics for Precision Medicine)
Show Figures

Figure 1

12 pages, 7191 KiB  
Article
Molecular Identification and Survey of Tetratrichomonas buttreyi and Pentatrichomonas hominis in Cattle in Shanxi Province, North China
by Yu-Xuan Wang, Tao Jia, Zi-Rui Wang, Jin-Long Wang, Ze-Dong Zhang, Ze-Xuan Wu, Wen-Wei Gao, Xing-Quan Zhu and Qing Liu
Animals 2025, 15(13), 1899; https://doi.org/10.3390/ani15131899 - 27 Jun 2025
Viewed by 287
Abstract
Several trichomonad species have already been reported from cattle, including Tetratrichomonas buttreyi and Pentatrichomonas hominis. However, there is currently a lack of information concerning the prevalence of trichomonad species in cattle in Shanxi Province, North China. In this study, 761 fecal samples [...] Read more.
Several trichomonad species have already been reported from cattle, including Tetratrichomonas buttreyi and Pentatrichomonas hominis. However, there is currently a lack of information concerning the prevalence of trichomonad species in cattle in Shanxi Province, North China. In this study, 761 fecal samples from cattle across three counties in Shanxi Province, namely Qi, Jishan, and Shanyin, were examined for the presence of T. buttreyi and P. hominis DNA through a nested PCR assay targeting a specific segment of the small subunit ribosomal RNA (SSU rRNA) gene. The results showed that the total prevalence of T. buttreyi in cattle was found to be 74.5%, with region and sex identified as risk factors for infection. P. hominis exhibited an overall prevalence of 3.0%, with strong associations observed between infection and both region and age. Sequencing analysis indicated that some T. buttreyi isolates and all P. hominis isolates were identical to those reported previously based on the analysis of SSU rRNA sequences, while certain T. buttreyi isolates exhibited minor allelic variations. These results enhance our understanding of the geographical distribution and genetic characterization of T. buttreyi and P. hominis in cattle. Full article
Show Figures

Figure 1

Back to TopTop