Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = alkylated polycyclic aromatic hydrocarbons (alkylated PAHs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 1183 KiB  
Review
Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs)
by Charlotte Landeg-Cox, Alice Middleton, Christos Halios, Tim Marczylo and Sani Dimitroulopoulou
Environments 2025, 12(2), 40; https://doi.org/10.3390/environments12020040 - 30 Jan 2025
Cited by 1 | Viewed by 1588
Abstract
This comprehensive review reports on concentrations, sources, emissions, and potential health effects from Semi-Volatile Organic Compounds (SVOCs) identified in the internal home environment in European residences. A total of 84 studies were identified, and concentrations were collated for inhalation exposure from dust, air [...] Read more.
This comprehensive review reports on concentrations, sources, emissions, and potential health effects from Semi-Volatile Organic Compounds (SVOCs) identified in the internal home environment in European residences. A total of 84 studies were identified, and concentrations were collated for inhalation exposure from dust, air and aerosol. A total of 298 individual SVOCs were identified and 67 compounds belonging to eight chemical classes: phthalates, flame retardants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), per- and polyfluorinated alkyl substances (PFAS), biocides, bisphenols and musks were prioritised. Phthalates are the most abundant SVOCs with DEHP being the most abundant in both the dust and aerosol phases (WAGMs 426.4 μg g−1 and 52.2 ng m−3, respectively) followed by DBP for dust (WAGMs are 95.9 μg g−1). In the air, the most abundant SVOCs are DiBP (284.1 ng m−3), DBP (179.5 ng m−3), DEHP (106.2 ng m−3) and DMP (27.79 ng m−3). Chemicals from all SVOC categories are emitted from building and construction materials, furnishings and consumer products, especially phthalates. Both legacy chemicals and their alternatives were detected. Complexities of reporting on SVOCs included differing sampling methodologies, multiple standards in their definition, lack of industry data, and toxicological data focused primarily on ingestion not inhalation exposures. Further research is recommended to develop the evidence base for potential health effects including via inhalation, reporting of emission rates and undertaking future monitoring studies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

13 pages, 4541 KiB  
Article
Characterization and Risk Assessment of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and their Derivatives Emitted from a Typical Pesticide Factory in China
by Diwei Wang, Shengmin Wu, Xuesong Gong, Tao Ding, Yali Lei, Jian Sun and Zhenxing Shen
Toxics 2023, 11(7), 637; https://doi.org/10.3390/toxics11070637 - 23 Jul 2023
Cited by 2 | Viewed by 2005
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their derivatives have received extensive attention due to their negative effects on the environment and on human health. However, few studies have performed comprehensive assessments of PAHs emitted from pesticide factories. This study assessed the concentration, composition, and [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) and their derivatives have received extensive attention due to their negative effects on the environment and on human health. However, few studies have performed comprehensive assessments of PAHs emitted from pesticide factories. This study assessed the concentration, composition, and health risk of 52 PM2.5-bound PAHs during the daytime and nighttime in the vicinity of a typical pesticide factory. The total concentration of 52 PAHs (Σ52PAHs) ranged from 53.04 to 663.55 ng/m3. No significant differences were observed between daytime and nighttime PAH concentrations. The average concentrations of twenty-two parent PAHs, seven alkylated PAHs, ten oxygenated PAHs, and twelve nitrated PAHs were 112.55 ± 89.69, 18.05 ± 13.76, 66.13 ± 54.79, and 3.90 ± 2.24 ng/m3, respectively. A higher proportion of high-molecular-weight (4–5 rings) PAHs than low-molecular-weight (2–3 rings) PAHs was observed. This was likely due to the high-temperature combustion of fuels. Analysis of diagnostic ratios indicated that the PAHs were likely derived from coal combustion and mixed sources. The total carcinogenic equivalent toxicity ranged from 15.93 to 181.27 ng/m3. The incremental lifetime cancer risk from inhalation, ingestion, and dermal contact with the PAHs was 2.33 × 10−3 for men and 2.53 × 10−3 for women, and the loss of life expectancy due to the PAHs was 11,915 min (about 0.023 year) for men and 12,952 min (about 0.025 year) for women. These results suggest that long-term exposure to PM2.5 emissions from a pesticide factory has significant adverse effects on health. The study results support implementing the characterization of PAH emissions from pesticide factories and provides a scientific basis for optimizing the living environment around pesticide factories. Full article
Show Figures

Figure 1

21 pages, 5725 KiB  
Article
Spatial Distribution, Sources, Air–Soil Exchange, and Health Risks of Parent PAHs and Derivative-Alkylated PAHs in Different Functional Areas of an Oilfield Area in the Yellow River Delta, North China
by Xiongfei Zhang, Anan Qi, Pengcheng Wang, Qi Huang, Tong Zhao, Caiqing Yan, Lingxiao Yang and Wenxing Wang
Toxics 2023, 11(6), 540; https://doi.org/10.3390/toxics11060540 - 17 Jun 2023
Cited by 12 | Viewed by 2435
Abstract
The knowledge of the spatial distribution, sources, and air–soil exchange of polycyclic aromatic compounds (PACs) in an oilfield area is essential to the development of effective control practices of PAC pollution. In this study, 48 passive air samples and 24 soil samples were [...] Read more.
The knowledge of the spatial distribution, sources, and air–soil exchange of polycyclic aromatic compounds (PACs) in an oilfield area is essential to the development of effective control practices of PAC pollution. In this study, 48 passive air samples and 24 soil samples were collected during 2018–2019 in seven functional areas (e.g., urban, oil field, suburban, industrial, agricultural, near pump units, and background) in the Yellow River Delta (YRD) where the Shengli Oilfield is located, and 18 parent polycyclic aromatic hydrocarbons (PAHs) and five alkylated-PAHs (APAHs) were analyzed from all the air and soil samples. The ΣPAHs in the air and soil ranged from 2.26 to 135.83 ng/m3 and 33.96 to 408.94 ng/g, while the ΣAPAHs in the atmosphere and soil ranged from 0.04 to 16.31 ng/m3 and 6.39 to 211.86 ng/g, respectively. There was a downward trend of atmospheric ΣPAH concentrations with increasing the distance from the urban area, while both ΣPAH and ΣAPAH concentrations in the soil decreased with distance from the oilfield area. PMF analyses show that for atmospheric PACs, coal/biomass combustion was the main contributor in urban, suburban, and agricultural areas, while crude production and processing source contributes more in the industrial and oilfield area. For PACs in soil, densely populated areas (industrial, urban, and suburban) are more affected by traffic sources, while oilfield and near-pump unit areas are under the impact of oil spills. The fugacity fraction (ff) results indicated that the soil generally emitted low-molecular-weight PAHs and APAHs and act as a sink for high-molecular-weight PAHs. The incremental lifetime cancer risk (ILCR) of Σ(PAH+APAH) in both the air and soil, were below the threshold (≤10−6) set by the US EPA. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Aerosol Particles)
Show Figures

Figure 1

17 pages, 5437 KiB  
Article
Sustainable Phenylalanine-Derived SAILs for Solubilization of Polycyclic Aromatic Hydrocarbons
by Illia V. Kapitanov, Surya M. Sudheer, Toshikee Yadav, Kallol K. Ghosh, Nicholas Gathergood, Vijai K. Gupta and Yevgen Karpichev
Molecules 2023, 28(10), 4185; https://doi.org/10.3390/molecules28104185 - 19 May 2023
Cited by 4 | Viewed by 2037
Abstract
The solubilization capacity of a series of sustainable phenylalanine-derived surface-active ionic liquids (SAILs) was evaluated towards polycyclic aromatic hydrocarbons—naphthalene, anthracene and pyrene. The key physico-chemical parameters of the studied systems (critical micelle concentration, spectral properties, solubilization parameters) were determined, analyzed and compared with [...] Read more.
The solubilization capacity of a series of sustainable phenylalanine-derived surface-active ionic liquids (SAILs) was evaluated towards polycyclic aromatic hydrocarbons—naphthalene, anthracene and pyrene. The key physico-chemical parameters of the studied systems (critical micelle concentration, spectral properties, solubilization parameters) were determined, analyzed and compared with conventional cationic surfactant, CTABr. For all studied PAH solubilization capacity increases with extension of alkyl chain length of PyPheOCn SAILs reaching the values comparable to CTABr for SAILs with n = 10–12. A remarkable advantage of the phenylalanine-derived SAILs PyPheOCn and PyPheNHCn is a possibility to cleave enzymatically ester and/or amide bonds under mild conditions, to separate polycyclic aromatic hydrocarbons in situ. A series of immobilized enzymes was tested to determine the most suitable candidates for tunable decomposition of SAILs. The decomposition pathway could be adjusted depending on the choice of the enzyme system, reaction conditions, and selection of SAILs type. The evaluated systems can provide selective cleavage of the ester and amide bond and help to choose the optimal decomposition method of SAILs for enzymatic recycling of SAILs transformation products or as a pretreatment towards biological mineralization. The concept of a possible practical application of studied systems for PAHs solubilization/separation was also discussed focusing on sustainability and a green chemistry approach. Full article
(This article belongs to the Special Issue Recent Advances in Ionic Liquids and Their Applications)
Show Figures

Graphical abstract

16 pages, 15003 KiB  
Article
Soil Organic Matter Molecular Composition Shifts Driven by Forest Regrowth or Pasture after Slash-and-Burn of Amazon Forest
by Otávio dos Anjos Leal, Nicasio T. Jiménez-Morillo, José A. González-Pérez, Heike Knicker, Falberni de Souza Costa, Pedro N. Jiménez-Morillo, João Andrade de Carvalho Júnior, José Carlos dos Santos and Deborah Pinheiro Dick
Int. J. Environ. Res. Public Health 2023, 20(4), 3485; https://doi.org/10.3390/ijerph20043485 - 16 Feb 2023
Cited by 3 | Viewed by 2815
Abstract
Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused [...] Read more.
Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused by AF fires and post-fire vegetation are rarely investigated at a molecular level. We employed pyrolysis–gas chromatography–mass spectrometry to reveal molecular changes in SOM (0–10, 40–50 cm depth) of a slash-burn-and-20-month-regrowth AF (BAF) and a 23-year Brachiaria pasture post-AF fire (BRA) site compared to native AF (NAF). In BAF (0–10 cm), increased abundance of unspecific aromatic compounds (UACs), polycyclic aromatic hydrocarbons (PAHs) and lipids (Lip) coupled with a depletion of polysaccharides (Pol) revealed strong lingering effects of fire on SOM. This occurs despite fresh litter deposition on soil, suggesting SOM minimal recovery and toxicity to microorganisms. Accumulation of recalcitrant compounds and slow decomposition of fresh forest material may explain the higher carbon content in BAF (0–5 cm). In BRA, SOM was dominated by Brachiaria contributions. At 40–50 cm, alkyl and hydroaromatic compounds accumulated in BRA, whereas UACs accumulated in BAF. UACs and PAH compounds were abundant in NAF, possibly air-transported from BAF. Full article
(This article belongs to the Special Issue Sustainable Strategies towards Restoring Soil Health and Fertility)
Show Figures

Figure 1

23 pages, 2504 KiB  
Article
Leveraging Multiple Data Streams for Prioritization of Mixtures for Hazard Characterization
by Brianna N. Rivera, Christine C. Ghetu, Yvonne Chang, Lisa Truong, Robyn L. Tanguay, Kim A. Anderson and Susan C. Tilton
Toxics 2022, 10(11), 651; https://doi.org/10.3390/toxics10110651 - 29 Oct 2022
Cited by 5 | Viewed by 2648
Abstract
There is a growing need to establish alternative approaches for mixture safety assessment of polycyclic aromatic hydrocarbons (PAHs). Due to limitations with current component-based approaches, and the lack of established methods for using whole mixtures, a promising alternative is to use sufficiently similar [...] Read more.
There is a growing need to establish alternative approaches for mixture safety assessment of polycyclic aromatic hydrocarbons (PAHs). Due to limitations with current component-based approaches, and the lack of established methods for using whole mixtures, a promising alternative is to use sufficiently similar mixtures; although, an established framework is lacking. In this study, several approaches are explored to form sufficiently similar mixtures. Multiple data streams including environmental concentrations and empirically and predicted toxicity data for cancer and non-cancer endpoints were used to prioritize chemical components for mixture formations. Air samplers were analyzed for unsubstituted and alkylated PAHs. A synthetic mixture of identified PAHs was created (Creosote-Fire Mix). Existing toxicity values and chemical concentrations were incorporated to identify hazardous components in the Creosote-Fire Mix. Sufficiently similar mixtures of the Creosote-Fire Mix were formed based on (1) relative abundance; (2) toxicity values; and (3) a combination approach incorporating toxicity and abundance. Hazard characterization of these mixtures was performed using high-throughput screening in primary normal human bronchial epithelium (NHBE) and zebrafish. Differences in chemical composition and potency were observed between mixture formation approaches. The toxicity-based approach (Tox Mix) was the most potent mixture in both models. The combination approach (Weighted-Tox Mix) was determined to be the ideal approach due its ability to prioritize chemicals with high exposure and hazard potential. Full article
(This article belongs to the Special Issue Toxic Mixtures Evaluation and Management)
Show Figures

Graphical abstract

16 pages, 2086 KiB  
Article
Alkylated Polycyclic Aromatic Hydrocarbons Are the Largest Contributor to Polycyclic Aromatic Compound Concentrations in the Topsoil of Huaibei Coalfield, China
by Yahui Qian, Zhenpeng Xu, Xiuping Hong, Zhonggeng Luo, Xiulong Gao, Cai Tie and Handong Liang
Int. J. Environ. Res. Public Health 2022, 19(19), 12733; https://doi.org/10.3390/ijerph191912733 - 5 Oct 2022
Cited by 14 | Viewed by 2110
Abstract
Alkyl polycyclic aromatic hydrocarbons (APAHs) are more toxic and persistent than their parent compounds. Here, the concentrations, composition profiles, and spatial distribution of polycyclic aromatic compounds (PACs) in 127 topsoil samples from Huaibei coalfield were analyzed. The PAC concentrations in different functional areas [...] Read more.
Alkyl polycyclic aromatic hydrocarbons (APAHs) are more toxic and persistent than their parent compounds. Here, the concentrations, composition profiles, and spatial distribution of polycyclic aromatic compounds (PACs) in 127 topsoil samples from Huaibei coalfield were analyzed. The PAC concentrations in different functional areas were significantly different: mining area > industrial area > residential area > agricultural area. APAHs were the major contributors to PACs, accounting for 71–83% of total PACs. Alkylnaphthalenes and alkylphenanthrenes were the primary APAH components, accounting for 83–87% of APAHs. Principal component analysis showed that petrogenic source, coal and biomass combustion, and vehicle emissions were the primary sources of PACs. By comparing the fingerprint information of soil, coal, and coal gangue, it was hypothesized that the petrogenic source of PAC pollution in typical mining areas and surrounding areas are coal particle scattering and coal gangue weathering. Some coal mining and industrial areas potentially pose risks to children, whereas others do not. There are limited evaluation criteria for alkyl PAHs; hence, the estimated risk is likely lower than the actual risk. In addition to the conventional 16 PAHs, it is critical to consider a broader range of PACs, especially APAHs. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

16 pages, 3183 KiB  
Article
Assessment and Characterization of Alkylated PAHs in Selected Sites across Canada
by Andrzej Wnorowski, David Harnish, Ying Jiang, Valbona Celo, Ewa Dabek-Zlotorzynska and Jean-Pierre Charland
Atmosphere 2022, 13(8), 1320; https://doi.org/10.3390/atmos13081320 - 19 Aug 2022
Cited by 13 | Viewed by 2972
Abstract
Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs), dibenzothiophenes (DBTs), and unsubstituted polycyclic aromatic hydrocarbons (PAHs) are naturally present in fossil fuels. Thus, they can be considered as candidates for markers of pollution from petrogenic emissions such as those from traffic. Consequently, ambient air concentrations of [...] Read more.
Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs), dibenzothiophenes (DBTs), and unsubstituted polycyclic aromatic hydrocarbons (PAHs) are naturally present in fossil fuels. Thus, they can be considered as candidates for markers of pollution from petrogenic emissions such as those from traffic. Consequently, ambient air concentrations of alkyl-PAHs, DBTs, and PAHs at selected ambient air monitoring sites of various types (residential, near-road, urban-industrial, agricultural) in Montréal, Toronto, Hamilton, Edmonton, and Simcoe, were evaluated from 2015 to 2016 to study their profiles, trends, and assess potential primary emission source types. Alkyl-PAHs were the prevailing species at all sites and were most elevated at the high-traffic impacted near-road site in Toronto which was also accompanied by the highest unsubstituted PAH concentrations. Comparison of relative abundance ratios of alkyl-PAH and PAH groupings suggests that the profile differences amongst sites were small. Source attribution with cluster grouping suggested similar emission sources of alkyl-PAH and PAH at all sites, with the exception of Hamilton which was particularly impacted by additional emission sources of PAHs. The Principal Component Analysis further indicated distinct PAC profiles at HWY401 and HMT that have the same variability of “heavy PACs” but differ in “medium mass PAHs” sources. Seasonality affected the bulk species trends (alkylated naphthalenes, fluorenes, and phenanthrenes/anthracenes), especially at sites with lower concentrations of these species. This study findings confirm a notable contribution of traffic emissions to alkyl-PAH levels in urban ambient air at the studied Canadian sites, and show that enhanced speciation of alkyl-PAHs provides more data on ambient air quality and additional health risks, and can also help distinguish petrogenic-influenced sources from other sources. Full article
Show Figures

Figure 1

16 pages, 1351 KiB  
Article
Detection of Benzo[a]pyrene Diol Epoxide Adducts to Histidine and Lysine in Serum Albumin In Vivo by High-Resolution-Tandem Mass Spectrometry
by Javier Zurita, Hitesh V. Motwani, Leopold L. Ilag, Vassilis L. Souliotis, Soterios A. Kyrtopoulos, Ulrika Nilsson and Margareta Törnqvist
Toxics 2022, 10(1), 27; https://doi.org/10.3390/toxics10010027 - 8 Jan 2022
Cited by 5 | Viewed by 3042
Abstract
Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and [...] Read more.
Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and lysine in serum albumin, from their reactive metabolites. In this respect, measurement of the adducts originating from the genotoxic (+)-anti-benzo[a]pyrene diol epoxide is of interest. However, these are difficult to measure at such low levels as are expected in humans generally exposed to benzo[a]pyrene from air pollution and the diet. The analytical methods detecting PAH-biomarkers still suffer from low selectivity and/or detectability to enable generation of data for calculation of in vivo doses of specific stereoisomers, for evaluation of risk factors and assessing risk from exposures to PAH. Here, we suggest an analytical methodology based on high-pressure liquid chromatography (HPLC) coupled to high-resolution tandem mass spectrometry (MS) to lower the detection limits as well as to increase the selectivity with improvements in both chromatographic separation and mass determination. Method development was performed using serum albumin alkylated in vitro by benzo[a]pyrene diol epoxide isomers. The (+)-anti-benzo[a]pyrene diol epoxide adducts could be chromatographically resolved by using an HPLC column with a pentafluorophenyl stationary phase. Interferences were further diminished by the high mass accuracy and resolving power of Orbitrap MS. The achieved method detection limit for the (+)-anti-benzo[a]pyrene diol epoxide adduct to histidine was approximately 4 amol/mg serum albumin. This adduct as well as the adducts to histidine from (−)-anti- and (+/−)-syn-benzo[a]pyrene diol epoxide were quantified in the samples from benzo[a]pyrene-exposed mice. Corresponding adducts to lysine were also quantified. In human serum albumin, the anti-benzo[a]pyrene diol epoxide adducts to histidine were detected in only two out of twelve samples and at a level of approximately 0.1 fmol/mg. Full article
(This article belongs to the Special Issue DNA Adducts for Characterization of Exposure)
Show Figures

Figure 1

15 pages, 6422 KiB  
Article
Chemical Characterization, Source, and SOA Production of Intermediate Volatile Organic Compounds during Haze Episodes in North China
by Xinxin Feng, Jinhu Zhao, Yanli Feng, Junjie Cai, Caiqing Yan and Yingjun Chen
Atmosphere 2021, 12(11), 1484; https://doi.org/10.3390/atmos12111484 - 9 Nov 2021
Cited by 12 | Viewed by 3377
Abstract
The growth of secondary organic aerosols (SOA) is a vital cause of the outbreaks of winter haze in North China. Intermediate volatile organic compounds (IVOCs) are important precursors of SOA. Therefore, the chemical characteristics, source, and SOA production of IVOCs during haze episodes [...] Read more.
The growth of secondary organic aerosols (SOA) is a vital cause of the outbreaks of winter haze in North China. Intermediate volatile organic compounds (IVOCs) are important precursors of SOA. Therefore, the chemical characteristics, source, and SOA production of IVOCs during haze episodes have attracted much attention. Hourly time resolution IVOC samples during two haze episodes collected in Hebei Province in North China were analyzed in this study. Results showed that: (1) the concentration of IVOCs measured was within the range of 11.3~85.1 μg·cm−3 during haze episodes, with normal alkanes (n-alkanes), polycyclic aromatic hydrocarbons (PAHs), branched alkanes (b-alkanes), and the residue unresolved complex mixture (R-UCM) accounting for 8.6 ± 2.3%, 6.8 ± 2.2%, 24.1 ± 3.8%, and 60.5 ± 6.5% of IVOCs, respectively. NC12-nC15 in n-alkanes, naphthalene and its alkyl substitutes in PAHs, b-alkanes in B12–B16 bins, and R-UCM in B12–B16 bins are the main components, accounting for 87.0 ± 0.2%, 87.6 ± 2.9%, 85.9 ± 5.4%, 74.0 ± 8.3%, respectively. (2) Based on the component characteristics of IVOCs and the ratios of n-alkanes/b-alkanes in emission sources and the hourly variation of IVOCs during haze episodes, coal combustion (CC), biomass burning (BB), gasoline vehicles (GV), and diesel vehicles (DV)were identified as important emission sources of IVOCs in Hebei Province. (3) During haze episodes, temporal variation of the estimated SOA production based on different methods (such as IVOCs concentration, OC/ECmin tracer, and the PMF model) were similar; however, the absolute values were different. This difference may be due to the transformation of IVOCs to SOA affected by various factors such as SOA production from different IVOC components, meteorological conditions, atmospheric oxidation, etc. Full article
Show Figures

Figure 1

17 pages, 4235 KiB  
Article
Polycyclic Aromatic Hydrocarbon Sorption by Functionalized Humic Acids Immobilized in Micro- and Nano-Zeolites
by Gabriela Robles-Mora, Josefina Barrera-Cortés, Lucila Valdez-Castro, Omar Solorza-Feria and César García-Díaz
Sustainability 2021, 13(18), 10391; https://doi.org/10.3390/su131810391 - 17 Sep 2021
Cited by 9 | Viewed by 2465
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous compounds originating from anthropogenic activity. Due to their carcinogenic properties for humans, several technologies have been developed for PAH removal. Sorption with natural and organic materials is currently one of the most studied due to its low [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are hazardous compounds originating from anthropogenic activity. Due to their carcinogenic properties for humans, several technologies have been developed for PAH removal. Sorption with natural and organic materials is currently one of the most studied due to its low cost and its environmentally friendly nature. In this work, a hybrid sorbent involving functionalized humic acids (HAs) and nano-zeolite is proposed to entrap PAHs. The use of functionalized HAs immobilized in a porous support is designed to address the instability of HAs in solution, which has been already reported. HA functionalization was carried out to increase the non-polarity of HAs and aliphatic group formation. The HAs were functionalized by esterification/etherification with alkyl halides, and their chemical changes were verified by FTIR and NMR. The sorption isotherms of the functionalized HAs in micro- and nano-zeolites were used to assess the performance of the nano-zeolites in adsorbing these HAs. The hybrid support allowed the removal of anthracene and pyrene at percentages higher than 90%; fluoranthene, of angular molecular structure, was adsorbed at 85%. PAHs are ubiquitous in the environment, and a stable sorption of them in solid matrices will allow their removal from the environment through effective and environmentally friendly methods. Full article
Show Figures

Figure 1

13 pages, 2627 KiB  
Article
Enhancement of Toxic Efficacy of Alkylated Polycyclic Aromatic Hydrocarbons Transformed by Sphingobium quisquiliarum
by So-Young Lee and Jung-Hwan Kwon
Int. J. Environ. Res. Public Health 2020, 17(17), 6416; https://doi.org/10.3390/ijerph17176416 - 3 Sep 2020
Cited by 9 | Viewed by 3425
Abstract
Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant in crude oils and refined petroleum products and are considered as major contributors to the toxicity of spilled oils. In this study, the microbial degradation of model (alkylated) PAHs (i.e., phenanthrene, 3-methylphenanthrene, 3,6-dimethylphenanthrene (36DMPhe), pyrene, and [...] Read more.
Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant in crude oils and refined petroleum products and are considered as major contributors to the toxicity of spilled oils. In this study, the microbial degradation of model (alkylated) PAHs (i.e., phenanthrene, 3-methylphenanthrene, 3,6-dimethylphenanthrene (36DMPhe), pyrene, and 1-methylpyrene (1MP)) by the bacterium Sphingobium quisquiliarum EPA505, a known degrader of PAHs, was studied. To evaluate the toxic potential of the metabolic products, reaction mixtures containing metabolites of 36DMPhe and 1MP were fractionated by high-performance liquid chromatography, and their effects on the luminescence inhibition of Aliivibrio fischeri were evaluated. Although the luminescence inhibition of 36DMPhe and 1MP at their solubility levels was not observed, inhibition was observed in their metabolite fractions at the solubility limit of their parent molecule. This indicates that initial biotransformation increases the toxicity of alkylated PAHs because of the increased solubility and/or inherent toxicity of metabolites. Qualitative analysis of the metabolite fractions suggested that mono-oxidation of the methyl group is the main metabolic pathway of 36DMPhe and 1MP. Full article
Show Figures

Figure 1

30 pages, 6228 KiB  
Article
Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv—Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics
by Ioannis Charisteidis, Polykarpos Lazaridis, Apostolos Fotopoulos, Eleni Pachatouridou, Leonidas Matsakas, Ulrika Rova, Paul Christakopoulos and Konstantinos Triantafyllidis
Catalysts 2019, 9(11), 935; https://doi.org/10.3390/catal9110935 - 8 Nov 2019
Cited by 38 | Viewed by 5847
Abstract
Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, [...] Read more.
Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, are available in vast amounts, other types of lignins, such as the organosolv or the hydrolysis lignin, are becoming increasingly important, as they are side-streams of new biorefinery processes aiming at the (bio)catalytic valorization of biomass sugars. Within this context, in this work, we studied the thermal (non-catalytic) and catalytic fast pyrolysis of softwood (spruce) and hardwood (birch) lignins, isolated by a hybrid organosolv–steam explosion biomass pretreatment method in order to investigate the effect of lignin origin/composition on product yields and lignin bio-oil composition. The catalysts studied were conventional microporous ZSM-5 (Zeolite Socony Mobil–5) zeolites and hierarchical ZSM-5 zeolites with intracrystal mesopores (i.e., 9 and 45 nm) or nano-sized ZSM-5 with a high external surface. All ZSM-5 zeolites were active in converting the initially produced via thermal pyrolysis alkoxy-phenols (i.e., of guaiacyl and syringyl/guaiacyl type for spruce and birch lignin, respectively) towards BTX (benzene, toluene, xylene) aromatics, alkyl-phenols and polycyclic aromatic hydrocarbons (PAHs, mainly naphthalenes), with the mesoporous ZSM-5 exhibiting higher dealkoxylation reactivity and being significantly more selective towards mono-aromatics compared to the conventional ZSM-5, for both spruce and birch lignin. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Sustainable Processes in Biorefineries)
Show Figures

Figure 1

12 pages, 1658 KiB  
Article
Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography
by Ewa Skoczyńska and Jacob de Boer
Separations 2019, 6(1), 7; https://doi.org/10.3390/separations6010007 - 29 Jan 2019
Cited by 11 | Viewed by 5365
Abstract
The gas chromatographic retention behaviour of 16 polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs on a new ionic liquid stationary phase, 1,12-di(tripropylphosphonium) dodecane bis(trifluoromethanesulfonyl)imide (SLB®-ILPAH) intended for the separation of PAH mixtures, was compared with the elution pattern on more traditional [...] Read more.
The gas chromatographic retention behaviour of 16 polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs on a new ionic liquid stationary phase, 1,12-di(tripropylphosphonium) dodecane bis(trifluoromethanesulfonyl)imide (SLB®-ILPAH) intended for the separation of PAH mixtures, was compared with the elution pattern on more traditional stationary phases: a non-polar phenyl arylene (DB-5ms) and a semi-polar 50% phenyl dimethyl siloxane (SLB PAHms) column. All columns were tested by injections of working solutions containing 20 parental PAHs from molecular weight of 128 to 278 g/mol and 48 alkylated PAHs from molecular weight of 142 to 280 g/mol on a one dimensional gas chromatography-mass spectrometry (GC-MS) system. The SLB PAHms column allowed separation of most isomers. The SLB®-ILPAH column showed a rather different retention pattern compared to the other two columns and, therefore, provided a potential for use in comprehensive two-dimensional GC (GC×GC). The ionic liquid column and the 50% phenyl column showed good thermal stability with a low bleed profile, even lower than that of the phenyl arylene “low bleed” column. Full article
(This article belongs to the Special Issue Five Years of Separations: Feature Paper 2018)
Show Figures

Figure 1

15 pages, 1508 KiB  
Communication
Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol
by Daniel Torres, Pedro Arcelus-Arrillaga, Marcos Millan, José Luis Pinilla and Isabel Suelves
Nanomaterials 2017, 7(12), 447; https://doi.org/10.3390/nano7120447 - 14 Dec 2017
Cited by 13 | Viewed by 5125
Abstract
A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol [...] Read more.
A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol enhanced FLGO oxygen removal by up to 59% due to the in situ hydrogen generation as compared to the use of SCW only. Physicochemical characterization of the reduced FLGO (rFLGO) showed a high restoration of the sp2-conjugated carbon network. FLGO sheets with a starting C/O ratio of 2.5 are reduced by SCW gasification of glycerol to rFLGO with a C/O ratio of 28.2, above those reported for hydrazine-based methods. Additionally, simultaneous glycerol gasification resulted in the concurrent production of H2, CO, CH4 and valuable hydrocarbons such as alkylated and non-alkylated long chain hydrocarbon (C12–C31), polycyclic aromatic hydrocarbons (PAH), and phthalate, phenol, cresol and furan based compounds. Full article
Show Figures

Graphical abstract

Back to TopTop