Assessment and Characterization of Alkylated PAHs in Selected Sites across Canada
Abstract
:1. Introduction
2. Experimental
2.1. Study Sites
2.2. Sampling and Chemical Analysis
2.3. Quality Assurance/Quality Control
2.4. Description and Grouping of Studied Compounds
2.5. Data Analysis and Processing
3. Results and Discussion
3.1. General Characteristics of Ambient PACs in Ambient Air
Seasonal Variations in PAC Levels
3.2. Impact of Petrogenic Emissions
3.3. PACs Sources Identification
3.3.1. Fingerprint of Alkylated Classes
3.3.2. Ternary Plots for Cluster Groupings
3.3.3. Potential Source Attribution by Factor Analysis
3.3.4. PCA: Projection of Cases on Factor-Plane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keyte, I.J.; Harrison, R.M.; Lammel, G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—A review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.T.; Achten, C. Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycycl. Aromat. Compd. 2015, 35, 330–354. [Google Scholar] [CrossRef] [PubMed]
- Galarneau, E. Editorial to “Polycyclic aromatic compounds (PACs) in the Canadian environment: Overview of results and knowledge gaps from the special issue”. Environ. Pollut. 2021, 285, 117607. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Zou, T.H.; Lee, J.J.; Shih, T.T. Variations in traffic-related polycyclic aromatic hydrocarbons in PM2.5 in Kanazawa, Japan, after the implementation of a new vehicle emission regulation. J. Environ. Sci. 2022, 121, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.-J.; Ma, W.-L.; Hu, P.-T.; Zhang, Z.-F.; Li, Y.-F. Temporal trends of atmospheric PAHs: Implications for the influence of the clean air action. J. Clean. Prod. 2021, 296, 126494. [Google Scholar] [CrossRef]
- Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environ. Health Perspect. 2004, 112, 970–978. [Google Scholar] [CrossRef]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Int. Agency Res. Cancer 2010, 92, 1–853. [Google Scholar]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans—Chemical Agents and Related Occupations. Int. Agency Res. Cancer 2012, 9, 100F. [Google Scholar]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; et al. Polycyclic aromatic hydrocarbon and its effects on human health: An overview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef]
- Du, W.; Yun, X.; Chen, Y.; Zhong, Q.; Wang, W.; Wang, L.; Qi, M.; Shen, G.; Tao, S. PAHs emissions from residential biomass burning in real-world cooking stoves in rural China. Environ. Pollut. 2020, 267, 115592. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Lohmann, R.; Yu, N.; Zhang, C.; Gao, Y.; Zhao, J.; Ma, L. Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China. Atmos. Environ. 2015, 107, 129–136. [Google Scholar] [CrossRef]
- Harner, T.; Rauert, C.; Muir, D.; Schuster, J.; Hsu, Y.-M.; Zhang, L.; Marson, G.; Watson, J.G.; Ahad, J.; Cho, S.; et al. Air synthesis review: Polycyclic aromatic compounds in the oil sands region. Environ. Rev. 2018, 26, 430–468. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Schuster, J.K.; Harner, T.; Su, K.; Eng, A.; Wnorowski, A.; Charland, J.P. Temporal and Spatial Trends of Polycyclic Aromatic Compounds in Air across the Athabasca Oil Sands Region Reflect Inputs from Open Pit Mining and Forest Fires. Environ. Sci. Technol. Lett. 2019, 6, 178–183. [Google Scholar] [CrossRef]
- Wnorowski, A.; Aklilu, Y.A.; Harner, T.; Schuster, J.; Charland, J.P. Polycyclic aromatic compounds in ambient air in the surface minable area of Athabasca oil sands in Alberta (Canada). Atmos. Environ. 2021, 244, 117897. [Google Scholar] [CrossRef]
- Schuster, J.K.; Harner, T.; Su, K.; Mihele, C.; Eng, A. First Results from the Oil Sands Passive Air Monitoring Network for Polycyclic Aromatic Compounds. Environ. Sci. Technol. 2015, 49, 2991–2998. [Google Scholar] [CrossRef]
- Marvin, C.H.; Tomy, G.T.; Thomas, P.J.; Holloway, A.C.; Sandau, C.D.; Idowu, I.; Xia, Z. Considerations for Prioritization of Polycyclic Aromatic Compounds as Environmental Contaminants. Environ. Sci. Technol. 2020, 54, 14787–14789. [Google Scholar] [CrossRef]
- Hawthorne, S.B.; Miller, D.J.; Kreitinger, J.P. Measurement of total polycyclic aromatic hydrocarbon concentrations in sediments and toxic units used for estimating risk to benthic invertebrates at manufactured gas plant sites. Environ. Toxicol. Chem. 2006, 25, 287–296. [Google Scholar] [CrossRef]
- Berthiaume, A.; Galarneau, E.; Marson, G. Polycyclic aromatic compounds (PACs) in the Canadian environment: Sources and emissions. Environ. Pollut. 2021, 269, 116008. [Google Scholar] [CrossRef]
- Pampanin, D.M.; Sydnes, M.O. Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment. In Hydrocarbon; Kutcherov, V., Kolesnikov, A., Eds.; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Ott, F.S.; Harris, R.P.; O’Hara, S.C.M. Acute and sublethal toxicity of naphthalene and three methylated derivatives to the estuarine copepod, Eurytemora affinis. Mar. Environ. Res. 1978, 1, 49–58. [Google Scholar] [CrossRef]
- Marvanova, S.; Vondracek, J.; Penccikova, K.; Trilecova, L.; Krcmarr, P.; Topinka, J.; Novakova, Z.; Milcova, A.; Machala, M. Toxic effects of methylated benz[a]anthracenes in liver cells. Chem. Res. Toxicol. 2008, 21, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, D.; Akhtar, P.; Bowerman, M.; Kiparissis, Y.; Brown, R.S.; Hodson, P.V. Measuring the toxicity of alkyl-phenanthrenes to early life stages of medaka (Oryzias latipes) using partition-controlled delivery. Environ. Toxicol. Chem. 2011, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Jariyasopit, N.; Harner, T.; Wu, D.; Williams, A.; Halappanavar, S.; Su, K. Mapping Indicators of Toxicity for Polycyclic Aromatic Compounds in the Atmosphere of the Athabasca Oil Sands Region. Environ. Sci. Technol. 2016, 50, 11282–11291. [Google Scholar] [CrossRef]
- Lam, M.M.; Bulow, R.; Engwall, M.; Giesy, J.P.; Larsson, M. Methylated PACs are more potent than their parent compounds: A study of aryl hydrocarbon receptor-mediated activity, degradability, and mixture interactions in the H4IIE-luc assay. Environ. Toxicol. Chem. 2018, 37, 1409–1419. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhu, Q.; Wu, W. The weathering of oil after the Deepwater Horizon oil spill: Insights from the chemical composition of the oil from the sea surface, salt marshes and sediments. Environ. Res. Lett. 2012, 7, 14. [Google Scholar] [CrossRef]
- Custer, T.W.; Custer, C.M.; Dummer, P.M.; Bigorgne, E.; Oziolor, E.M.; Karouna-Renier, N.; Schultz, S.; Erickson, R.A.; Aagaard, K.; Matson, C. W EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree swallow (Tachycineta bicolor) nestlings from Great Lakes Areas of Concern. Ecotoxicology 2017, 26, 1392–1407. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, S.Y.; Kwon, J.H. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2016, 312, 200–207. [Google Scholar] [CrossRef]
- Wallace, S.J.; de Solla, S.R.; Head, J.A.; Hodson, P.V.; Parrott, J.L.; Thomas, P.J.; Berthiaume, A.; Langlois, V.S. Polycyclic aromatic compounds (PACs) in the Canadian environment: Exposure and effects on wildlife. Environ. Pollut. 2020, 265, 114863. [Google Scholar] [CrossRef]
- Khan, R.A.; Ryan, P. Long term effects of crude oil on common murres (Uria aalge) following rehabilitation. Bull. Environ. Contam. Toxicol. 1991, 46, 216–222. [Google Scholar] [CrossRef]
- Iakovides, M.; Iakovides, G.; Stephanou, E.G. Atmospheric particle-bound polycyclic aromatic hydrocarbons, n-alkanes, hopanes, steranes and trace metals: PM2.5 source identification, individual and cumulative multi-pathway lifetime cancer risk assessment in the urban environment. Sci. Total Environ. 2021, 752, 141834. [Google Scholar] [CrossRef]
- Lewis, C.; Galloway, T. Genotoxic damage in polychaetes: A study of species and cell-type sensitivities. Mutat. Res. 2008, 654, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Page, D.S.; Boehm, P.D.; Stubblefield, W.A.; Parker, K.R.; Gilfillan, E.S.; Neff, J.M.; Maki, A.W. Hydrocarbon composition and toxicity of sediments following the Exxon Valdez oil spill in Prince William Sound, Alaska, USA. Environ. Toxicol. Chem. 2002, 21, 1438–1450. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.H.; Grover, P.L.; Sims, P. A quantitative determination of the covalent binding of a series of polycyclic hydrocarbons to DNA in mouse skin. Int. J. Cancer 1979, 23, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.; Wen, D.; Zhang, L.; Wu, Z.; Qiu, X.; Yang, F.; Harner, T. Deposition Mapping of Polycyclic Aromatic Compounds in the Oil Sands Region of Alberta, Canada and Linkages to Ecosystem Impacts. Environ. Sci. Technol. 2018, 52, 12456–12464. [Google Scholar] [CrossRef]
- Jariyasopit, N.; Tung, P.; Su, K.; Halappanavar, S.; Evans, G.J.; Su, Y.; Khoomrung, S.; Harner, T. Polycyclic aromatic compounds in urban air and associated inhalation cancer risks: A case study targeting distinct source sectors. Environ. Pollut. 2019, 252 Pt B, 1882–1891. [Google Scholar] [CrossRef]
- Moradi, M.; Hung, H.; Li, J.; Park, R.; Shin, C.; Alexandrou, N.; Iqbal, M.A.; Takhar, M.; Chan, A.; Brook, J.R. Assessment of Alkylated and Unsubstituted Polycyclic Aromatic Hydrocarbons in Air in Urban and Semi-Urban Areas in Toronto, Canada. Environ. Sci. Technol. 2022, 56, 2959–2967. [Google Scholar] [CrossRef]
- Studabaker, W.B.; Puckett, K.J.; Percy, K.E.; Landis, M.S. Determination of polycyclic aromatic hydrocarbons, dibenzothiophene, and alkylated homologs in the lichen Hypogymnia physodes by gas chromatography using single quadrupole mass spectrometry and time-of-flight mass spectrometry. J. Chromatogr. A 2017, 1492, 106–116. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Z.; Yang, Z.; Hollebone, B.; Brown, C.E.; Landriault, M.; Fieldhouse, B. Chemical fingerprints of Alberta oil sands and related petroleum products. Environ. Forensics 2011, 12, 173–188. [Google Scholar] [CrossRef]
- Larsson, M.; Lam, M.M.; van Hees, P.; Giesy, J.P.; Engwall, M. Occurrence and leachability of polycyclic aromatic compounds in contaminated soils: Chemical and bioanalytical characterization. Sci. Total Environ. 2018, 622–623, 1476–1484. [Google Scholar] [CrossRef]
- Eisentraeger, A.; Brinkmann, C.; Hollert, H.; Sagner, A.; Tiehm, A.; Neuwoehner, J. Heterocyclic compounds: Toxic effects using algae, daphnids, and the Salmonella/microsome test taking methodical quantitative aspects into account. Environ. Toxicol. Chem. 2008, 27, 1590–1596. [Google Scholar] [CrossRef]
- Kropp, K.G.; Fedorak, P.M. A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J. Microbiol. 1998, 44, 605–622. [Google Scholar] [CrossRef]
- Eastmond, D.A.; Booth, G.M.; Lee, M.L. Toxicity, accumulation, and elimination of polycyclic aromatic sulfur heterocycles in Daphnia magna. Arch. Environ. Contam. Toxicol. 1984, 13, 105–111. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Y.; Chen, Y.-J.; Chen, Y.; Lu, Y.; Li, R.; Dong, C.; Hu, D.; Cai, Z. Discovery of emerging sulfur-containing PAHs in PM2.5: Contamination profiles and potential health risks. J. Hazard. Mater. 2021, 416, 125795. [Google Scholar] [CrossRef]
- Tian, X.; An, C.; Chen, Z.; Tian, Z. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 2021, 765, 144270. [Google Scholar] [CrossRef]
- ECCC. Sources of Air Pollution-Canada. Department of the Environment and Climate Change Canada. 2017. Available online: https://www.canada.ca/en/environment-climate-change/services/air-pollution/sources/transportation/cars-trucks-vans-suvs.html (accessed on 11 March 2021).
- Wnorowski, A.; Tardif, M.; Harnish, D.; Poole, G.; Chiu, C.H. Correction of analytical results for recovery: Determination of PAHs in ambient air, soil, and diesel emission control samples by isotope dilution gas chromatography-mass spectrometry. Polycycl. Aromat. Compd. 2006, 26, 313–329. [Google Scholar] [CrossRef]
- USEPA. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MD), Compendium Method TO-13A, 2nd ed.; USEPA: Cincinnati, OH, USA, 1999. Available online: https://www.epa.gov/sites/default/files/2019-11/documents/to-13arr.pdf (accessed on 11 March 2021).
- Wnorowski, A. Characterization of the ambient air content of parent polycyclic aromatic hydrocarbons in the Fort McKay region (Canada). Chemosphere 2017, 174, 371–379. [Google Scholar] [CrossRef]
- Wallace, S.J.; de Solla, S.R.; Thomas, P.J.; Harner, T.; Eng, A.; Langlois, V.S. Airborne polycyclic aromatic compounds contribute to the induction of the tumour-suppressing P53 pathway in wild double-crested cormorants. Ecotoxicol. Environ. Saf. 2018, 150, 176–189. [Google Scholar] [CrossRef]
- Halappanavar, S.; Wu, D.; Boyadzhiev, A.; Solorio-Rodriguez, A.; Williams, A.; Jariyasopit, N.; Saini, A.; Harner, T. Toxicity screening of air extracts representing different source sectors in the Greater Toronto and Hamilton areas: In vitro oxidative stress, pro-inflammatory response, and toxicogenomic analysis. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis 2021, 872, 503415. [Google Scholar] [CrossRef]
- Poerschmann, J.; Parsi, Z.; Gorecki, T. Non-discriminating flash pyrolysis and thermochemolysis of heavily contaminated sediments from the Hamilton Harbor (Canada). J. Chromatogr. A 2008, 1186, 211–221. [Google Scholar] [CrossRef]
- ECCC. 2003–2016 Fuel Volumes and Sulphur Mass Content National. In Data Collected under the Fuels Information Regulations; No. 1.; Department of the Environment and Climate Change Canada; 2017; Available online: http://data.ec.gc.ca/data/regulatee/submissions/data-collected-under-the-fuels-information-regulations-no.-1/2003-2016FuelVolumesAndSulphurMassAndContentNationalVolumesDeCarburantEtTeneurEtMasseDeSoufreNational.csv (accessed on 20 May 2021).
- Pehnec, G.; Jakovljević, I.; Šišović, A.; Bešlić, I.; Vađić, V. Influence of ozone and meteorological parameters on levels of polycyclic aromatic hydrocarbons in the air. Atmos. Environ. 2016, 131, 263–268. [Google Scholar] [CrossRef]
- Prevedouros, K.; Brorström-Lundén, E.; Halsall, C.J.; Jones, K.C.; Lee, R.G.M.; Sweetman, A.J. Seasonal and long-term trends in atmospheric PAH concentrations: Evidence and implications. Environ. Pollut. 2004, 128, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Soleimanian, E.; Taghvaee, S.; Sioutas, C. Characterization of organic compounds and oxidative potential of aqueous PM2.5 suspensions collected via an aerosol-into-liquid collector for use in toxicology studies. Atmos. Environ. 2020, 241, 117839. [Google Scholar]
- Juostas, A.; Janulevičius, A. Evaluating working quality of tractors by their harmful impact on the environment. J. Environ. Eng. Landsc. Manag. 2009, 17, 106–113. [Google Scholar] [CrossRef]
- Marris, C.R.; Kompella, S.N.; Miller, M.R.; Incardona, J.P.; Brette, F.; Hancox, J.C.; Sørhus, E.; Shiels, H.A. Polyaromatic hydrocarbons in pollution: A heart-breaking matter. J. Physiol. 2020, 598, 227–247. [Google Scholar] [CrossRef]
- Abdel-Shafy, I.H.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Gunawardena, J.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Role of traffic in atmospheric accumulation of heavy metals and polycyclic aromatic hydrocarbons. Atmos. Environ. 2012, 54, 502–510. [Google Scholar] [CrossRef]
- Harrison, R.M.; Tilling, R.; Callén Romero, M.S.; Harrad, S.; Jarvis, K. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos. Environ. 2003, 37, 2391–2402. [Google Scholar] [CrossRef]
- Hopke, K.P.; Jaffe, D.A. Letter to the Editor: Ending the Use of Obsolete Data Analysis Methods. Aerosol Air Qual. Res. 2020, 20, 688–689. [Google Scholar] [CrossRef]
- Camp, C.H. PyMCR: A python library for multivariatecurve resolution analysis with alternating regression (MCR-AR). J. Res. Natl. Inst. Stand. Technol. 2019, 1, 124. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Tauler, R.; Kowalski, B.; Fleming, S. Multivariate Curve Resolution Applied to Spectral Data from Multiple Runs of an Industrial Process. Anal. Chem. 1993, 65, 2040–2047. [Google Scholar] [CrossRef]
Site (NAPS ID) | Abbreviation | Location | Source Sector |
---|---|---|---|
Montréal, QC (050129) | MTL | 45°39′06.6″ N 73°34′25.1″ W | PE, LU, R, P6 |
Toronto, ON (060438) | HWY401 | 43°42′39.9″ N 79°32′36.0″ W | T, LU, C, P6 |
Hamilton, ON (060512) | HMT | 43°15′28.0″ N 79°51′42.0″ W | PS, LU, R, P6 |
Simcoe, ON (062601) | SIM | 42°51′24.7″ N 80°16′10.7″ W | RB, SU, A, P2 |
Edmonton, AB (090132) | EDM | 53°29′09.6″ N 113°27′52.6″ W | PE, LU, R, P6 |
Factor 1—“Heavy Mass” PACs | Factor 2—“Medium Mass” PAHs | Factor 3—“Medium Mass” alkyl-PAHs | Factor 4—“Volatile” PACs |
---|---|---|---|
C1-C4 FLT/PY (0.88) | PHE (0.84) | C1-C4 FL (0.90) | C1-C4 NAP (0.79) |
C1-C4 BTC (0.89) | AN (0.74) | C1-C4 DBT (0.76) | AL (0.78) |
B[a]AN (0.93) | FLT (0.95) | C1-C4 PHE/AN (0.85) | AE (0.78) |
CHRY (0.72) | PY (0.89) | FL (0.72) | |
B[b]FLT (0.74) | |||
B[k]FLT (0.77) | |||
B[a]P (0.95) | |||
B[e]P (0.93) | |||
IP (0.73) | |||
B[ghi]P (0.89) | |||
47% | 20% | 13% | 7% |
< ---------------------------------- Total Variance ---------------------------------------- > |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wnorowski, A.; Harnish, D.; Jiang, Y.; Celo, V.; Dabek-Zlotorzynska, E.; Charland, J.-P. Assessment and Characterization of Alkylated PAHs in Selected Sites across Canada. Atmosphere 2022, 13, 1320. https://doi.org/10.3390/atmos13081320
Wnorowski A, Harnish D, Jiang Y, Celo V, Dabek-Zlotorzynska E, Charland J-P. Assessment and Characterization of Alkylated PAHs in Selected Sites across Canada. Atmosphere. 2022; 13(8):1320. https://doi.org/10.3390/atmos13081320
Chicago/Turabian StyleWnorowski, Andrzej, David Harnish, Ying Jiang, Valbona Celo, Ewa Dabek-Zlotorzynska, and Jean-Pierre Charland. 2022. "Assessment and Characterization of Alkylated PAHs in Selected Sites across Canada" Atmosphere 13, no. 8: 1320. https://doi.org/10.3390/atmos13081320
APA StyleWnorowski, A., Harnish, D., Jiang, Y., Celo, V., Dabek-Zlotorzynska, E., & Charland, J. -P. (2022). Assessment and Characterization of Alkylated PAHs in Selected Sites across Canada. Atmosphere, 13(8), 1320. https://doi.org/10.3390/atmos13081320