Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography
Abstract
:1. Introduction
2. Materials and Methods
3. Results and discussion
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keith, L.H. The Source of US EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Compd. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out153_en.pdf (accessed on 28 January 2019).
- Available online: http://apps.who.int/iris/bitstream/handle/10665/43258/WHO_TRS_930_eng.pdf?sequence=1 (accessed on 28 January 2019).
- Ding, Y.S.; Trommel, J.S.; Yan, X.Z.J.; Ashley, D.; Watson, C.H. Determination of 14 polycyclic aromatic hydrocarbons in mainstream smoke from domestic cigarettes. Environ. Sci. Technol. 2005, 39, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Dagnac, T.; Llompart, M. Determination of priority and other hazardous substances in football fields of synthetic turf by gas chromatography-mass spectrometry: A health and environmental concern. Chemosphere 2018, 195, 201–211. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; Law, R.J. Developments in the use of chromatographic techniques in marine laboratories for the determination of halogenated contaminants and polycyclic aromatic hydrocarbons. J. Chromatogr. A 2003, 1000, 223–251. [Google Scholar] [CrossRef]
- Poster, D.L.; Schantz, M.M.; Sander, L.C.; Wise, S.A. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Anal. Bioanal. Chem. 2006, 386, 859–881. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.A.; Sander, L.C.; Schantz, M.M. Analytical Methods for Determination of Polycyclic Aromatic Hydrocarbons (PAHs)—A Historical Perspective on the 16 US EPA Priority Pollutant PAHs. Polycycl. Aromat. Compd. 2015, 35, 187–247. [Google Scholar] [CrossRef]
- Available online: https://www.epa.gov/sites/production/files/2015-10/documents/method_610_1984.pdf (accessed on 28 January 2019).
- Gomez-Ruiz, J.A.; Wenzl, T. Evaluation of gas chromatography columns for the analysis of the 15+1 EU-priority polycyclic aromatic hydrocarbons (PAHs). Anal. Bioanal. Chem. 2009, 393, 1697–1707. [Google Scholar] [CrossRef]
- Nalin, F.; Sander, L.C.; Wilson, W.B.; Wise, S.A. Gas chromatographic retention behavior of polycyclic aromatic hydrocarbons (PAHs) and alkyl-substituted PAHs on two stationary phases of different selectivity. Anal. Bioanal. Chem. 2018, 410, 1123–1137. [Google Scholar] [CrossRef]
- Wilson, W.B.; Sander, L.C.; Ona-Ruales, J.O.; Moessner, S.G.; Sidisky, L.M.; Lee, M.L.; Wise, S.A. Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycle isomers in gas chromatography on stationary phases of different selectivity. J. Chromatogr. A 2017, 1484, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L.; Armstrong, D.W. Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. Anal. Chem. 2005, 77, 6453–6462. [Google Scholar] [CrossRef]
- Poole, C.F.; Poole, S.K. Ionic liquid stationary phases for gas chromatography. J. Sep. Sci. 2011, 34, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Berthod, A.; Ruiz-Angel, M.J.; Huguet, S. Nonmolecular solvents in separation methods: Dual nature of room temperature ionic liquids. Anal. Chem. 2005, 77, 4071–4080. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; Blok, D.; Ballesteros-Gomez, A. Assessment of ionic liquid stationary phases for the determination of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers. J. Chromatogr. A 2014, 1348, 158–163. [Google Scholar] [CrossRef]
- Ros, M.; Escobar-Arnanz, J.; Sanz, M.L.; Ramos, L. Evaluation of ionic liquid gas chromatography stationary phases for the separation of polychlorinated biphenyls. J. Chromatogr. A 2018, 1559, 156–163. [Google Scholar] [CrossRef]
- Antle, P.M.; Zeigler, C.D.; Wilton, N.M.; Robbat, A. A more accurate analysis of alkylated PAH and PASH and its implications in environmental forensics. Int. J. Environ. Anal. Chem. 2014, 94, 332–347. [Google Scholar] [CrossRef]
- Stout, S.A.; Emsbo-Mattingly, S.D.; Douglas, G.S.; Uhler, A.D.; McCarthy, K.J. Beyond 16 Priority Pollutant PAHs: A Review of PACs used in Environmental Forensic Chemistry. Polycycl. Aromat. Compd. 2015, 35, 285–315. [Google Scholar] [CrossRef]
- Lam, M.M.; Bulow, R.; Engwall, M.; Giesy, J.P.; Larsson, M. Methylated PACs Are More Potent Than Their Parent Compounds: A Study of Aryl Hydrocarbon Receptor-Mediated Activity, Degradability, and Mixture Interactions in the H4IIE-luc Assay. Environ. Toxicol. Chem. 2018, 37, 1409–1419. [Google Scholar] [CrossRef]
- Brack, W.; Schirmer, K.; Erdinger, L.; Hollert, H. Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ. Toxicol. Chem. 2005, 24, 2445–2458. [Google Scholar] [CrossRef] [PubMed]
- Kaisarevic, S.; Luebcke-von Varel, U.; Orcic, D.; Streck, G.; Schulze, T.; Pogrmic, K.; Teodorovic, I.; Brack, W.; Kovacevic, R. Effect-directed analysis of contaminated sediment from the wastewater canal in Pancevo industrial area, Serbia. Chemosphere 2009, 77, 907–913. [Google Scholar] [CrossRef]
- Meyer, W.; Seiler, T.-B.; Christ, A.; Redelstein, R.; Puettmann, W.; Hollert, H.; Achten, C. Mutagenicity, dioxin-like activity and bioaccumulation of alkylated picene and chrysene derivatives in a German lignite. Sci. Total Environ. 2014, 497, 634–641. [Google Scholar] [CrossRef]
- Xiao, H.; Krauss, M.; Floehr, T.; Yan, Y.; Bahlmann, A.; Eichbaum, K.; Brinkmann, M.; Zhang, X.; Yuan, X.; Brack, W. Effect-Directed Analysis of Aryl Hydrocarbon Receptor Agonists in Sediments from the Three Gorges Reservoir, China. Environ. Sci. Technol. 2016, 50, 11319–11328. [Google Scholar] [CrossRef] [PubMed]
- Arp, H.P.H.; Azzolina, N.A.; Cornelissen, G.; Hawthorne, S.B. Predicting Pore Water EPA-34 PAH Concentrations and Toxicity in Pyrogenic-Impacted Sediments Using Pyrene Content. Environ. Sci. Technol. 2011, 45, 5139–5146. [Google Scholar] [CrossRef] [PubMed]
- Richter-Brockmann, S.; Achten, C. Analysis and toxicity of 59 PAH in petrogenic and pyrogenic environmental samples including dibenzopyrenes, 7H-benzo c fluorene, 5-methylchrysene and 1-methylpyrene. Chemosphere 2018, 200, 495–503. [Google Scholar] [CrossRef]
- Available online: https://clu-in.org/conf/tio/porewater1/resources/EPA-ESB-Procedures-PAH-mixtures.pdf (accessed on 28 January 2019).
- Skoczynska, E.; Leonards, P.; de Boer, J. Identification and quantification of methylated PAHs in sediment by two-dimensional gas chromatography/mass spectrometry. Anal. Methods 2013, 5, 213–218. [Google Scholar] [CrossRef]
GC Column | Stationary Phase | Dimensions | Max. temp. (Isotherm/Programmed) °C |
---|---|---|---|
VDB-5ms | Phenyl Arylene polymer, virtually equivalent to 5%-phenyl-methylpolysiloxane | 30 m × 0.25 mm ID × 0.25 µm | 300/320 °C |
SLB PAHms (Supelco) | Denoted as 50% phenyl dimethylpolysiloxane | 30 m × 0.25 mm ID × 0.25 µm | 350/360 °C |
SLB®-ILPAH (Supelco) | Non-bonded, 1,12-Di(tripropylphosphonium) dodecane bis(trifluoromethanesulfonyl)imide | 20 m × 0.18 mm ID × 0.05 µm | 300/300 °C |
Code | DB-5ms | RT | RRT | Code | SLB PAHms | RT | RRT | Code | SLB-ILPAH | RT | RRT |
---|---|---|---|---|---|---|---|---|---|---|---|
N | Naphthalene | 13.20 | 0.353 | N | Naphthalene | 16.12 | 0.379 | N | Naphthalene | 5.86 | 0.188 |
N2 | 2-Methylnaphthalene | 17.65 | 0.472 | N2 | 2-Methylnaphthalene | 20.03 | 0.471 | N2 | 2-Methylnaphthalene | 9.13 | 0.292 |
N1 | 1-Methylnaphthalene | 18.19 | 0.486 | N1 | 1-Methylnaphthalene | 20.82 | 0.489 | N1 | 1-Methylnaphthalene | 9.33 | 0.299 |
N2,6 | 2,6-Dimethylnaphthalene | 21.25 | 0.568 | N2,6 | 2,6-Dimethylnaphthalene | 23.31 | 0.548 | N2,7 | 2,7-Dimethylnaphthalene | 12.07 | 0.386 |
N2,7 | 2,7-Dimethylnaphthalene | 21.31 | 0.570 | N2,7 | 2,7-Dimethylnaphthalene | 23.35 | 0.549 | N2,6 | 2,6-Dimethylnaphthalene | 12.11 | 0.388 |
N1,3 | 1,3-Dimethylnaphthalene | 21.66 | 0.579 | N1,3 | 1,3-Dimethylnaphthalene | 24.04 | 0.565 | N1,3 | 1,3-Dimethylnaphthalene | 12.14 | 0.389 |
N1,6 | 1,6-Dimethylnaphthalene | 21.78 | 0.583 | N1,6 | 1,6-Dimethylnaphthalene | 24.05 | 0.565 | N1,6 | 1,6-Dimethylnaphthalene | 12.21 | 0.391 |
N1,4 | 1,4-Dimethylnaphthalene | 22.22 | 0.594 | N1,4 | 1,4-Dimethylnaphthalene | 24.73 | 0.581 | N1,4 | 1,4-Dimethylnaphthalene | 12.21 | 0.391 |
N1,5 | 1,5-Dimethylnaphthalene | 22.31 | 0.597 | N1,5 | 1,5-Dimethylnaphthalene | 24.87 | 0.584 | N1,5 | 1,5-Dimethylnaphthalene | 12.34 | 0.395 |
Al | Acenaphthylene | 22.53 | 0.603 | N1,2 | 1,2-Dimethylnaphthalene | 25.26 | 0.593 | N1,2 | 1,2-Dimethylnaphthalene | 13.23 | 0.424 |
N1,2 | 1,2-Dimethylnaphthalene | 22.65 | 0.606 | Al | Acenaphthylene | 25.96 | 0.610 | N1,8 | 1,8-Dimethylnaphthalene | 13.72 | 0.439 |
N1,8 | 1,8-Dimethylnaphthalene | 23.25 | 0.622 | N1,8 | 1,8-Dimethylnaphthalene | 26.17 | 0.615 | At | Acenaphthene | 13.72 | 0.439 |
At | Acenaphthene | 23.48 | 0.628 | At | Acenaphthene | 26.66 | 0.626 | N1,6,7 | 1,6,7-Trimethylnaphthalane | 15.83 | 0.507 |
N1,6,7 | 1,6,7-Trimethylnaphthalane | 25.59 | 0.684 | N1,6,7 | 1,6,7-Trimethylnaphthalane | 27.82 | 0.654 | Al | Acenaphthylene | 15.88 | 0.508 |
Fl | Fluorene | 26.13 | 0.699 | Fl | Fluorene | 29.38 | 0.690 | Fl | Fluorene | 17.29 | 0.554 |
Ph | Phenanthrene | 30.75 | 0.822 | Ph | Phenanthrene | 34.88 | 0.819 | Ph | Phenanthrene | 23.84 | 0.763 |
A | Anthracene | 30.99 | 0.829 | A | Anthracene | 35.10 | 0.825 | A | Anthracene | 23.98 | 0.768 |
Ph2 | 2-Methylphenanthrene | 33.25 | 0.889 | Ph2 | 2-Methylphenanthrene | 37.22 | 0.874 | 45MP | 4,5-Methylenephenanthrene | 25.49 | 0.816 |
An2 | 2-Methylanthracene | 33.47 | 0.895 | An2 | 2-Methylanthracene | 37.38 | 0.878 | Ph2 | 2-Methylphenanthrene | 25.89 | 0.829 |
45MP | 4,5-Methylenephenanthrene | 33.55 | 0.897 | An1 | 1-Methylanthracene | 37.64 | 0.884 | An1 | 1-Methylanthracene | 25.93 | 0.830 |
An1 | 1-Methylanthracene | 33.68 | 0.901 | Ph1 | 1-Methylphenanthrene | 37.90 | 0.890 | An2 | 2-Methylanthracene | 26.03 | 0.833 |
Ph1 | 1-Methylphenanthrene | 33.73 | 0.902 | 45MP | 4,5-Methylenephenanthrene | 37.92 | 0.891 | Ph1 | 1-Methylphenanthrene | 26.15 | 0.837 |
An9 | 9-Methylanthracene | 34.40 | 0.920 | An9 | 9-Methylanthracene | 38.84 | 0.912 | An9 | 9-Methylanthracene | 26.58 | 0.851 |
Ph3,6 | 3,6-Dimethylphenanthrene | 35.36 | 0.946 | Ph3,6 | 3,6-Dimethylphenanthrene | 38.87 | 0.913 | Ph3,6 | 3,6-Dimethylphenanthrene | 27.72 | 0.888 |
Fa | Fluoranthene | 36.39 | 0.973 | An2,3 | 2,3-Dimethylanthracene | 40.64 | 0.955 | Ph9,10 | 9,10-Dimethylanthracene | 28.90 | 0.925 |
An2,3 | 2,3-Dimethylanthracene | 36.63 | 0.980 | Fa | Fluoranthene | 41.16 | 0.967 | An2,3 | 2,3-Dimethylanthracene | 29.10 | 0.932 |
Py | Pyrene | 37.39 | 1.000 | An9,10 | 9,10-Dimethylanthracene | 42.36 | 0.995 | Fa | Fluoranthene | 30.42 | 0.974 |
An9,10 | 9,10-Dimethylanthracene | 37.63 | 1.006 | Py | Pyrene | 42.57 | 1.000 | Py | Pyrene | 31.23 | 1.000 |
Fa2 | 2-Methylfluoranthene | 38.58 | 1.032 | Fa2 | 2-Methylfluoranthene | 43.11 | 1.013 | Fl2 | 2-Methylfluoranthene | 32.29 | 1.034 |
Py1 | 1-Methylpyrene | 40.07 | 1.072 | Py1 | 1-Methylpyrene | 45.25 | 1.063 | Bc1 | 1-Methylbenzo(c)phenanthrene | 33.37 | 1.069 |
Bc1 | 1-Methylbenzo(c)phenanthrene | 42.36 | 1.133 | Bc1 | 1-Methylbenzo(c)phenanthrene | 47.71 | 1.121 | Py1 | 1-Methylpyrene | 33.43 | 1.070 |
Ba | Benz(a)anthracene | 43.12 | 1.153 | Bc2 | 2-Methylbenzo(c)phenanthrene | 48.63 | 1.142 | Bc2 | 2-Methylbenzo(c)phenanthrene | 35.98 | 1.152 |
T | Triphenylene | 43.22 | 1.156 | Ba | Benz(a)anthracene | 48.68 | 1.144 | Bc1,12 | 1,12-Dimethylbenzo(c)phenanthrene | 36.46 | 1.168 |
C | Chrysene | 43.27 | 1.157 | T | Triphenylene | 49.00 | 1.151 | Bc4 | 4-Methylbenzo(c)phenanthrene | 36.72 | 1.176 |
Bc2 | 2-Methylbenzo(c)phenanthrene | 43.49 | 1.163 | C | Chrysene | 49.07 | 1.153 | Bc3 | 3-Methylbenzo(c)phenanthrene | 36.77 | 1.178 |
23BA | 2,3-Benzanthracene | 43.72 | 1.169 | Bc3 | 3-Methylbenzo(c)phenanthrene | 49.42 | 1.161 | Bc5 | 5-Methylbenzo(c)phenanthrene | 36.82 | 1.179 |
Bc3 | 3-Methylbenzo(c)phenanthrene | 44.11 | 1.180 | 23BA | 2,3-Benzanthracene | 49.51 | 1.163 | Ba | Benz(a)anthracene | 37.29 | 1.194 |
Bc5 | 5-Methylbenzo(c)phenanthrene | 44.39 | 1.187 | Bc5 | 5-Methylbenzo(c)phenanthrene | 49.90 | 1.172 | C | Chrysene | 37.43 | 1.199 |
Bc4 | 4-Methylbenzo(c)phenanthrene | 44.45 | 1.189 | Bc4 | 4-Methylbenzo(c)phenanthrene | 49.98 | 1.174 | T | Triphenylene | 37.56 | 1.203 |
Ba2 | 2-Methylbenz(a)anthracene | 44.92 | 1.201 | Ba2 | 2-Methylbenz(a)anthracene | 50.13 | 1.178 | 23Ba | 2,3-Benzanthracene | 37.85 | 1.212 |
Ba1 | 1-Methylbenz(a)anthracene | 44.92 | 1.201 | Ba7 | 7-Methylbenz(a)anthracene | 50.39 | 1.184 | Ba1 | 1-Methylbenz(a)anthracene | 37.85 | 1.212 |
Ba7 | 7-Methylbenz(a)anthracene | 45.08 | 1.206 | Ba9 | 9-Methylbenz(a)anthracene | 50.47 | 1.186 | C5 | 5-Methylchrysene | 38.41 | 1.230 |
Ba9 | 9-Methylbenz(a)anthracene | 45.08 | 1.206 | Ba1 | 1-Methylbenz(a)anthracene | 50.52 | 1.187 | C4 | 4-Methylchrysene | 38.51 | 1.234 |
Ba6 | 6-Methylbenz(a)anthracene | 45.16 | 1.208 | Ba6 | 4-Methylbenz(a)anthracene | 50.52 | 1.187 | Ba6 | 6-Methylbenz(a)anthracene | 38.70 | 1.240 |
Ba4 | 4-Methylbenz(a)anthracene | 45.16 | 1.208 | Ba4 | 6-Methylbenz(a)anthracene | 50.52 | 1.187 | Ba4 | 4-Methylbenz(a)anthracene | 38.70 | 1.240 |
C5 | 5-Methylchrysene | 45.33 | 1.212 | Ba3 | 3-Methylbenz(a)anthracene | 50.96 | 1.197 | Ba2 | 2-Methylbenz(a)anthracene | 38.76 | 1.242 |
C6 | 6-Methylchrysene | 45.42 | 1.215 | Ba5 | 5-Methylbenz(a)anthracene | 50.96 | 1.197 | Ba9 | 9-Methylbenz(a)anthracene | 38.85 | 1.244 |
Ba3 | 3-Methylbenz(a)anthracene | 45.42 | 1.215 | C6 | 6-Methylchrysene | 51.03 | 1.199 | Ba7 | 7-Methylbenz(a)anthracene | 38.91 | 1.246 |
C4 | 4-Methylchrysene | 45.42 | 1.215 | C5 | 5-Methylchrysene | 51.12 | 1.201 | C6 | 6-Methylchrysene | 39.13 | 1.253 |
Ba5 | 5-Methylbenz(a)anthracene | 45.42 | 1.215 | C4 | 4-Methylchrysene | 51.25 | 1.204 | Ba3 | 3-Methylbenz(a)anthracene | 39.13 | 1.253 |
Bc1,12 | 1,12-Dimethylbenzo(c)phenanthrene | 45.49 | 1.217 | Ba6,8 | 6,8-Dimethylbenz(a)anthracene | 51.26 | 1.204 | Ba5 | 5-Methylbenz(a)anthracene | 39.13 | 1.253 |
Ba10 | 10-Methylbenz(a)anthracene | 45.95 | 1.229 | Ba10 | 10-Methylbenz(a)anthracene | 51.73 | 1.215 | Ba10 | 10-Methylbenz(a)anthracene | 39.45 | 1.264 |
Ba6,8 | 6,8-Dimethylbenz(a)anthracene | 46.74 | 1.250 | Bc1,12 | 1,12-Dimethylbenzo(c)phenanthrene | 51.91 | 1.219 | Ba6,8 | 6,8-Dimethylbenz(a)anthracene | 39.61 | 1.269 |
Ba3,9 | 3,9-Dimethylbenz(a)anthracene | 46.93 | 1.255 | Ba3,9 | 3,9-Dimethylbenz(a)anthracene | 52.17 | 1.226 | Ba7,12 | 7,12-Dimethylbenz(a)anthracene | 39.71 | 1.272 |
BbF | Benzo(b)fluoranthene | 47.82 | 1.279 | Ba7,12 | 7,12-Dimethylbenz(a)anthracene | 53.98 | 1.268 | Ba3,9 | 3,9-Dimethylbenz(a)anthracene | 40.37 | 1.293 |
Ba7,12 | 7,12-Dimethylbenz(a)anthracene | 47.88 | 1.281 | BbF | Benzo(b)fluoranthene | 54.02 | 1.269 | Ba8,9,11 | 8,9,11-Trimethylbenz(a)anthracene | 41.40 | 1.326 |
BkF | Benzo(k)fluoranthene | 47.94 | 1.282 | BkF | Benzo(k)fluoranthene | 54.12 | 1.271 | BbF | Benzo(b)fluoranthene | 42.86 | 1.373 |
BeP | Benzo(e)pyrene | 48.88 | 1.307 | Ba8,9,11 | 8,9,11-Trimethylbenz(a)anthracene | 54.30 | 1.276 | BkF | Benzo(k)fluoranthene | 43.02 | 1.378 |
Ba8,9,11 | 8,9,11-Trimethylbenz(a)anthracene | 49.03 | 1.311 | BeP | Benzo(e)pyrene | 55.61 | 1.306 | BeP | Benzo(e)pyrene | 44.04 | 1.411 |
BaP | Benzo(a)pyrene | 49.08 | 1.313 | BaP | Benzo(a)pyrene | 55.86 | 1.312 | BaP | Benzo(a)pyrene | 44.08 | 1.412 |
BaP9 | 9-Methylbenzo(a)pyrene | 50.71 | 1.356 | BaP9 | 9-Methylbenzo(a)pyrene | 57.19 | 1.343 | BaP10 | 10-Methylbenzo(a)pyrene | 45.24 | 1.449 |
BaP8 | 8-Methylbenzo(a)pyrene | 50.84 | 1.360 | BaP8 | 8-Methylbenzo(a)pyrene | 57.39 | 1.348 | BaP9 | 9-Methylbenzo(a)pyrene | 45.49 | 1.457 |
BaP7 | 7-Methylbenzo(a)pyrene | 51.07 | 1.366 | BaP7 | 7-Methylbenzo(a)pyrene | 57.71 | 1.356 | BaP8 | 7-Methylbenzo(a)pyrene | 45.49 | 1.457 |
BaP10 | 10-Methylbenzo(a)pyrene | 51.12 | 1.367 | BaP10 | 10-Methylbenzo(a)pyrene | 57.94 | 1.361 | BaP7 | 8-Methylbenzo(a)pyrene | 45.49 | 1.457 |
BaP7,10 | 7,10-Dimethylbenzo(a)pyrene | 52.93 | 1.416 | BaP7,10 | 7,10-Dimethylbenzo(a)pyrene | 59.77 | 1.404 | BaP7,10 | 7,10-Dimethylbenzo(a)pyrene | 46.27 | 1.482 |
Indeno(1,2,3-c,d)pyrene | 53.26 | 1.424 | Indeno(1,2,3-c,d)pyrene | 60.86 | 1.430 | Dibenz(a,h)anthracene | 48.68 | 1.559 | |||
Dibenz(a,h)anthracene | 53.44 | 1.429 | Dibenz(a,h)anthracene | 60.94 | 1.432 | Indeno(1,2,3-c,d)pyrene | 49.02 | 1.570 | |||
Benzo(g,h,i)perylene | 54.26 | 1.451 | Benzo(g,h,i)perylene | 62.89 | 1.477 | Benzo(g,h,i)perylene | 50.01 | 1.602 |
GC Columns | Phenyl Arylene | 50% Phenyl Polysiloxane | SLB-ILPAH |
---|---|---|---|
Overlap > 90% | 12 peaks | 11 peaks | 19 peaks |
90% > overlap > 50% | 7 peaks | 2 peaks | 3 peaks |
Overlap < 50% | 4 peaks | 4 peaks | 1 peak |
Peak shape | Good | Good | Good |
Analysis time | Long | Long | Shorter than on the other two columns |
Bleeding | Substantial bleeding above 260 °C | No bleeding till 300 °C | No bleeding till 300 °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoczyńska, E.; de Boer, J. Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography. Separations 2019, 6, 7. https://doi.org/10.3390/separations6010007
Skoczyńska E, de Boer J. Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography. Separations. 2019; 6(1):7. https://doi.org/10.3390/separations6010007
Chicago/Turabian StyleSkoczyńska, Ewa, and Jacob de Boer. 2019. "Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography" Separations 6, no. 1: 7. https://doi.org/10.3390/separations6010007
APA StyleSkoczyńska, E., & de Boer, J. (2019). Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography. Separations, 6(1), 7. https://doi.org/10.3390/separations6010007