Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (519)

Search Parameters:
Keywords = alkyl substitution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1191 KiB  
Review
The Link Between Human Alkyladenine DNA Glycosylase and Cancer Development
by Olga A. Kladova and Aleksandra A. Kuznetsova
Int. J. Mol. Sci. 2025, 26(15), 7647; https://doi.org/10.3390/ijms26157647 - 7 Aug 2025
Viewed by 315
Abstract
Alkyladenine DNA glycosylase (AAG) is a critical enzyme in the base excision repair (BER) pathway, responsible for removing a broad spectrum of alkylated DNA lesions. While AAG maintains genomic stability, dysregulated activity has been implicated in cancer development, drug resistance, and neurodegenerative diseases. [...] Read more.
Alkyladenine DNA glycosylase (AAG) is a critical enzyme in the base excision repair (BER) pathway, responsible for removing a broad spectrum of alkylated DNA lesions. While AAG maintains genomic stability, dysregulated activity has been implicated in cancer development, drug resistance, and neurodegenerative diseases. This review synthesizes the current knowledge on AAG’s structure, catalytic mechanism, and polymorphic variants, highlighting their potential roles in disease pathogenesis. A comprehensive bioinformatics analysis of over 370 AAG single-nucleotide polymorphisms (SNPs) is presented, identifying ~40% as high-risk variants likely to impair enzymatic function. Notably, 151 SNPs were predicted to be damaging by multiple algorithms, including substitutions at catalytic residues and non-conserved sites with unknown functional consequences. Analysis of cancer databases (COSMIC, cBioPortal, NCBI) revealed 93 tumor-associated AAG variants, with 18 classified as high-impact mutations. This work underscores the need for mechanistic studies of AAG variants using structural biology, cellular models, and clinical correlation analyses. Deciphering AAG’s polymorphic landscape may unlock personalized strategies for cancer prevention and treatment. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Genome Stability)
Show Figures

Figure 1

18 pages, 1500 KiB  
Article
Structure-Activity Relationships in Alkoxylated Resorcinarenes: Synthesis, Structural Features, and Bacterial Biofilm-Modulating Properties
by Mariusz Urbaniak, Łukasz Lechowicz, Barbara Gawdzik, Maciej Hodorowicz and Ewelina Wielgus
Molecules 2025, 30(15), 3304; https://doi.org/10.3390/molecules30153304 - 7 Aug 2025
Viewed by 297
Abstract
In this study, a series of novel alkoxylated resorcinarenes were synthesized using secondary and tertiary alcohols under mild catalytic conditions involving iminodiacetic acid. Structural characterization, including single-crystal X-ray diffraction, confirmed the successful incorporation of branched alkyl chains and highlighted the influence of substitution [...] Read more.
In this study, a series of novel alkoxylated resorcinarenes were synthesized using secondary and tertiary alcohols under mild catalytic conditions involving iminodiacetic acid. Structural characterization, including single-crystal X-ray diffraction, confirmed the successful incorporation of branched alkyl chains and highlighted the influence of substitution patterns on molecular packing. Notably, detailed mass spectrometric analysis revealed that, under specific conditions, the reaction pathway may shift toward the formation of defined oligomeric species with supramolecular characteristics—an observation that adds a new dimension to the synthetic potential of this system. To complement the chemical analysis, selected derivatives were evaluated for biological activity, focusing on bacterial growth and biofilm formation. Using four clinically relevant strains (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis), we assessed both planktonic proliferation (OD600) and biofilm biomass (crystal violet assay). Compound 2c (2-pentanol derivative) consistently promoted biofilm formation, particularly in S. aureus and B. subtilis, while having limited cytotoxic effects. In contrast, compound 2e and the DMSO control exhibited minimal impact on biofilm development. The results suggest that specific structural features of the alkoxy chains may modulate microbial responses, potentially via membrane stress or quorum sensing interference. This work highlights the dual relevance of alkoxylated resorcinarenes as both supramolecular building blocks and modulators of microbial behavior. Full article
Show Figures

Figure 1

16 pages, 1696 KiB  
Communication
Synthesis and Characterization of Amide-Based Cyclotriphosphazene Derivatives with Alkoxy Terminal Groups
by Khairunnisa Abdul Rahim and Zuhair Jamain
Molbank 2025, 2025(3), M2039; https://doi.org/10.3390/M2039 - 21 Jul 2025
Viewed by 306
Abstract
A series of new amide-based cyclotriphosphazene molecules consisting of different terminal groups (heptyl, decyl, and tetradecyl) at the periphery was successfully synthesized and characterized. The reaction began with the alkylation of methyl-4-hydroxybenzoate with 1-bromoheptane, 1-bromodecane, and 1-bromotetradecane, which was followed by reduction with [...] Read more.
A series of new amide-based cyclotriphosphazene molecules consisting of different terminal groups (heptyl, decyl, and tetradecyl) at the periphery was successfully synthesized and characterized. The reaction began with the alkylation of methyl-4-hydroxybenzoate with 1-bromoheptane, 1-bromodecane, and 1-bromotetradecane, which was followed by reduction with potassium hydroxide to form a series of benzoic acid intermediates (1a–c). These intermediates underwent a reaction with thionyl chloride, followed by a reaction with 4-nitroaniline and triethylamine, to form para-substituted amides (2a–c). Further reduction of intermediates 2a–c with sodium sulfide hydrate produced the anilines 3a–c. Another reaction of hexachlorocyclotriphosphazene (HCCP) with methyl-4-hydroxybenzoate yielded intermediate 4, which was then reduced with sodium hydroxide to form intermediate 5. Finally, chlorination of intermediate 5 with thionyl chloride, followed by a reaction with the aniline derivatives (3a–c), formed the hexasubstituted cyclotriphosphazene compounds 6a–c, with two amide linkages. The structures of these compounds were confirmed using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and CHN elemental analysis. Full article
Show Figures

Figure 1

23 pages, 4866 KiB  
Article
Role of Individual Amino Acid Residues Directly Involved in Damage Recognition in Active Demethylation by ABH2 Dioxygenase
by Anastasiia T. Davletgildeeva, Timofey E. Tyugashev, Mingxing Zhao, Alexander A. Ishchenko, Murat Saparbaev and Nikita A. Kuznetsov
Int. J. Mol. Sci. 2025, 26(14), 6912; https://doi.org/10.3390/ijms26146912 - 18 Jul 2025
Viewed by 252
Abstract
The enzyme ABH2, one of nine human DNA dioxygenases of the AlkB family, belongs to the superfamily of Fe(II)/α-ketoglutarate-dependent dioxygenases and plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases. ABH2 has broad substrate specificity, directly [...] Read more.
The enzyme ABH2, one of nine human DNA dioxygenases of the AlkB family, belongs to the superfamily of Fe(II)/α-ketoglutarate-dependent dioxygenases and plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases. ABH2 has broad substrate specificity, directly oxidizing DNA damages such as N1-methyladenine, N3-methylcytosine, 1,N6-ethenoadenine, 3,N4-ethenocytosine, and a number of others. In our investigation, we sought to uncover the subtleties of the mechanisms governing substrate specificity in ABH2 by focusing on several critical amino acid residues situated in its active site. To gain insight into the function of this enzyme, we performed a functional mapping of its active site region, concentrating on pivotal residues, participating in forming a damaged binding pocket of the enzyme (Val99 and Ser125), as well as the residues directly involved in interactions with damaged bases, namely Arg110, Phe124, Arg172, and Glu175. To support our experimental data, we conducted a series of molecular dynamics simulations, exploring the interactions between the ABH2 mutant forms, bearing corresponding substitutions and DNA substrates, and harboring various types of methylated bases, specifically N1-methyladenine or N3-methylcytosine. The comparative studies revealed compelling data indicating that alterations in most of the studied amino acid residues significantly influence both the binding affinity of the enzyme for DNA and its catalytic efficiency. Intriguingly, the findings suggest that the mutations impact the catalytic activity of ABH2 to a greater extent than its ability to associate with DNA strands. Collectively, these results show how changes to the active site affect molecular dynamics and reaction kinetics, improving our understanding of the substrate recognition process in this pivotal enzyme. Full article
(This article belongs to the Special Issue Molecular Mechanism in DNA Replication and Repair)
Show Figures

Figure 1

28 pages, 1957 KiB  
Article
Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors
by Xiaosong He, Jiahao Yi, Jianchen Yang, Genzoh Tanabe, Osamu Muraoka and Weijia Xie
Molecules 2025, 30(13), 2856; https://doi.org/10.3390/molecules30132856 - 4 Jul 2025
Viewed by 449
Abstract
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the [...] Read more.
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the sulfonium cation center. In vitro biological evaluation showed that selenonium replacement could significantly improve their α-glucosidase inhibitory activity. The most potent inhibitor 20c (10.0 mg/kg) reduced postprandial blood glucose by 48.6% (15 min), 52.8% (30 min), and 48.1% (60 min) in sucrose-loaded mice, outperforming acarbose (20.0 mg/kg). Docking studies of 20c with ntMGAM presented a new binding mode. In addition to conventional hydrogen bonding and electrostatic interaction, amino residue Ala-576 was first identified to contribute to binding affinity through π-alkyl and alkyl interactions with the chlorinated substituent and aromatic ring. The selected compounds exhibited a high degree of safety in cytotoxicity tests against normal cells. Kinetic characterization of α-glucosidase inhibition confirmed a fully competitive inhibitory mode of action for these sulfonium salts. Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

10 pages, 1659 KiB  
Brief Report
Pathogen Enzyme-Mediated Alkoxyamine Homolysis as a Killing Mechanism of Aspergillus fumigatus
by Marion Filliâtre, Pierre Voisin, Seda Seren, Ines Kelkoul, Olivier Glehen, Philippe Mellet, Sophie Thétiot-Laurent, Jean Menotti, Sylvain R. A. Marque, Gérard Audran and Abderrazzak Bentaher
J. Fungi 2025, 11(7), 503; https://doi.org/10.3390/jof11070503 - 4 Jul 2025
Viewed by 539
Abstract
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The [...] Read more.
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The synthesis of an alkoxyamine linked to a peptide substrate recognized by A. fumigatus-secreted dipeptidyl peptidase is described. Kinetic experiments show a stable prodrug prior to enzymatic activation. Ensuing peptide cleavage and spontaneous homolysis resulted in the generation of a stable nitroxide and a reactive alkyl radical moiety. Next, the exposure of A. fumigatus spores to the prodrug lead to pathogen growth inhibition in a compound concentration-dependent fashion (e.g., 42% inhibition at 10 µg/L). Importantly, the designed alkoxyamine inhibited not only the growth of a clinical voriconazole-susceptible A. fumigatus strain, but also the growth of a strain resistant to this azole. To determine the antifungal importance of the reactive alkyl radical, its substitution with a non-radical structure did not prevent A. fumigatus growth. Furthermore, the introduction of succinic group in the peptide substrate resulted in the loss of alkoxyamine antifungal properties. Our work reports a novel chemical strategy for antifungal therapy against A. fumigatus based on the pathogen enzyme-mediated generation of toxic radicals. Significantly, these findings are timely since they could overcome the emerged resistance to conventional drugs that are known to target defined pathogen biologic mechanisms such as ergosterol synthesis. Full article
(This article belongs to the Special Issue Fungal Infections and Antifungals)
Show Figures

Graphical abstract

12 pages, 2672 KiB  
Article
Visible-Light-Mediated Dehydrogenative Cross-Coupling of Azaarenes and Ethers
by Junsong Song, Wanyu Chen, Xin Chen, Yi Zhou, Bin Han, Yao Wang, Honghua Jia, Kai Guo, Jiangkai Qiu, Jian Wang and Canliang Ma
Chemistry 2025, 7(4), 103; https://doi.org/10.3390/chemistry7040103 - 23 Jun 2025
Viewed by 667
Abstract
Heteroaromatic motifs are prevalent in natural products and numerous high-value drug molecules. Consequently, the construction of alkylated heterocyclic frameworks holds significant importance. The Minisci reaction of heteroarenes has evolved into a flexible technique for the synthesis of substituted heterocyclic derivatives. However, the use [...] Read more.
Heteroaromatic motifs are prevalent in natural products and numerous high-value drug molecules. Consequently, the construction of alkylated heterocyclic frameworks holds significant importance. The Minisci reaction of heteroarenes has evolved into a flexible technique for the synthesis of substituted heterocyclic derivatives. However, the use of strong oxidants and external acid is inevitable during the reaction process. Herein, we present a versatile and accessible method for achieving cross dehydrogenation coupling between quinoline derivatives and inactive ether. This strategy utilizes inexpensive NaI and PPh3 to support the reaction, obviating the need for metal complexes or sacrificial oxidants, and enables the straightforward synthesis of a diverse library of alkyl-substituted N-heteroarenes. Additionally, radical trapping experiments and fluorescence quenching experiments have been conducted to gain a more comprehensive understanding of the reaction mechanism. Full article
(This article belongs to the Special Issue Organic Chalcogen Chemistry: Recent Advances)
Show Figures

Scheme 1

20 pages, 883 KiB  
Article
Photoexcited Palladium Complex-Catalyzed Isocyanide Insertion into Inactivated Alkyl Iodides
by Andrea Messina, Filippo Monticelli, Tiziano Miroglio, Anna Gagliardi, Igor Viviani, Luca Banfi, Renata Riva, Lisa Moni, Andrea Basso and Chiara Lambruschini
Molecules 2025, 30(12), 2584; https://doi.org/10.3390/molecules30122584 - 13 Jun 2025
Viewed by 578
Abstract
Isocyanides insertions represent an important transformation in the palladium-catalyzed reactions landscape. However, one of their most significant limitations is in the use of inactivated alkyl electrophiles. Palladium photocatalysis has been proven as a solid tool for the generation of alkyl radicals from alkyl [...] Read more.
Isocyanides insertions represent an important transformation in the palladium-catalyzed reactions landscape. However, one of their most significant limitations is in the use of inactivated alkyl electrophiles. Palladium photocatalysis has been proven as a solid tool for the generation of alkyl radicals from alkyl halides, which may engage in subsequent transformations with a variety of reaction partners, closing the catalytic cycle. Herein, we report the mild three-component isocyanide insertions into inactivated alkyl iodides mediated by the catalytic activity of a photoexcited palladium complex. We investigated the scope of the reaction obtaining differently substituted secondary amides in good to high yields. We also investigated the mechanism, hypothesizing a key role of 4-(N,N-dimethylamino)pyridine in the outcome of the reaction. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis—2nd Edition)
Show Figures

Graphical abstract

14 pages, 2197 KiB  
Article
Bulky Ligand-Induced Hindrance in Photocatalytic CO2 Reduction over Various Tris(bipyridine)cobalt(II) Chloride Complexes
by Jinliang Lin, Rongying Liao, Li Li, Shuli Yao, Shengkai Li, Yun Zheng and Fei Fei
Molecules 2025, 30(12), 2573; https://doi.org/10.3390/molecules30122573 - 13 Jun 2025
Viewed by 784
Abstract
Photocatalytic CO2 conversion is one of the ideal approaches to address both topics of solar energy shortage and carbon neutrality. Cobalt(II) centers coordinated with bipyridines have been designed and evaluated as catalysts for CO2 conversion under light irradiation. Herein, we report [...] Read more.
Photocatalytic CO2 conversion is one of the ideal approaches to address both topics of solar energy shortage and carbon neutrality. Cobalt(II) centers coordinated with bipyridines have been designed and evaluated as catalysts for CO2 conversion under light irradiation. Herein, we report a series of pyridine-based cobalt complexes with alkyl substituents as molecular photocatalysts, aiming to elucidate the effects of alkyl type and substitution position on catalytic performance through spectroscopic and electrochemical measurements. The substitution of the hydrogen at 4,4′-positions on the bipyridine ring with a methyl group, a tert-butyl group, and a nonyl group led to a decrease in the conversion rate of CO2 by 13.2%, 29.6%, and 98%, respectively. The methyl substituents at the 5, 5′-positions of the bipyridine ring resulted in a 71.1% decrease in the CO2 conversion rate. The usage of either 6, 6′-Me2-2,2′-bipy, 2,4-bipy, or 3,3′-bipy resulted in no detectable activity for CO2 conversion in the current system. Both photo- and electrochemical analyses have been employed to reveal the relationship between changing ligands and photocatalytic performance on the molecular scale. These results demonstrate that bulky ligands significantly hinder CO2 reduction by cobalt complexes due to steric interference with coordination and active-site accessibility. This study demonstrates that the substituent effect of ligands on photocatalytic reactions for CO2 conversion provides valuable insight into a deeper understanding of molecular catalysis. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

13 pages, 1681 KiB  
Communication
The Catalytic Hydrogenation of Phenanthrene: The Impact of Chrysotile and Coal Shale Catalysts
by Murzabek Baikenov, Dariya Izbastenova, Yue Zhang, Xintai Su, Nazerke Balpanova, Almas Tusipkhan, Zeinep Akanova, Amirbek Moldabayev, Balzhan Tulebaeva and Gulzhan Taurbaeva
Fuels 2025, 6(2), 47; https://doi.org/10.3390/fuels6020047 - 12 Jun 2025
Viewed by 843
Abstract
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was [...] Read more.
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was carried out. Pre-reduction in the catalysts has been found to increase the yield of partially and fully hydrogenated products, including tetrahydronaphthalene, trans-decalin and dihydrophenanthrene. Particular attention is paid to the role of coal shale as a donor source of hydrogen in thermolysis conditions. The results of hydrogenation revealed complex mechanisms of phenanthrene transformations, including partial saturation of aromatic rings, desulfurization and the formation of alkyl-substituted compounds. The obtained data emphasize the prospects of using the studied catalysts in the processes of processing heavy and solid hydrocarbon raw materials, which opens up opportunities for creating new technologies for the production of liquid fuel. Full article
Show Figures

Figure 1

16 pages, 774 KiB  
Article
Search for Antiviral Preparations in Series of New Derivatives of N-Substituted Piperidines
by Gulmira S. Akhmetova, Ulzhalgas B. Issayeva, Kaldybay D. Praliyev, Ilya S. Korotetskiy, Tulegen M. Seilkhanov, Samir A. Ross, Manas T. Omyrzakov, Ubaidilla M. Datkhayev, Khaidar S. Tassibekov, Lyudmila N. Ivanova and Natalya V. Zubenko
Molecules 2025, 30(12), 2540; https://doi.org/10.3390/molecules30122540 - 10 Jun 2025
Viewed by 789
Abstract
Cyanohydrin synthesis, as the simplest preparative method for introducing a carboxyl group into a piperidine molecule, has been used to obtain potentially biologically active piperidinecarboxylic acids, which have alkyl and arylalkyl radicals at the nitrogen atom of the piperidine ring. Hydrochlorides of cyclopropanecarboxylic [...] Read more.
Cyanohydrin synthesis, as the simplest preparative method for introducing a carboxyl group into a piperidine molecule, has been used to obtain potentially biologically active piperidinecarboxylic acids, which have alkyl and arylalkyl radicals at the nitrogen atom of the piperidine ring. Hydrochlorides of cyclopropanecarboxylic acid esters based on piperidinecarboxylic acids, as well as hydrochlorides of fluorobenzoic acid esters of N-substituted piperidines, have been synthesized. The purpose of this study was to search for antiviral drugs among new piperidine derivatives. The structure of the synthesized compounds was studied by NMR methods, including COSY (1H-1H), HMQC (1H-13C) and HMBC (1H-13C) techniques. The values of chemical shifts, multiplicities, and integrated intensities of 1H and 13C signals in one-dimensional NMR spectra were determined. The results of COSY (1H-1H), HMQC (1H-13C), and HMBC (1H-13C) revealed homo- and heteronuclear interactions, confirming the structure of the studied compounds. The antiviral and cytotoxic activities of the synthesized compounds were studied. The antiviral activity in vitro was determined according to the therapeutic regimen against the influenza A/Swine/Iowa/30 (H1N1) virus on the MDCK cell model. The cytotoxicity of the studied substances in vitro was assessed using the MTT test. Based on the results of the antiviral activity against the influenza A virus, it can be concluded that all substances are effective against the influenza A/H1N1 virus compared to the commercial preparations Tamiflu and Rimantadine. Full article
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Development of 2,1,3-Benzothiadiazole-Based Room-Temperature Fluorescent Nematic Liquid Crystals
by Muhammad Suhail bin Uzair, Yoshimichi Shimomura, Takuya Tanaka, Takashi Kajitani and Gen-ichi Konishi
Molecules 2025, 30(11), 2438; https://doi.org/10.3390/molecules30112438 - 2 Jun 2025
Cited by 1 | Viewed by 1432
Abstract
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized [...] Read more.
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized a series of 2,1,3-benzothiadiazole (BTD)-based fluorescent nematic liquid crystals incorporating donor (D) or acceptor (A) groups to form D–A–D or D–A–A structures. Most of the synthesized derivatives exhibited supercooled nematic phases at room temperature. They composed various functional groups, such as secondary alkylamine, branched alkyl chain, and trifluoroacetyl groups, which are rarely used in calamitic nematic LCs. Notably, dimethylamine- and carbonyl-substituted derivatives exhibited relatively high fluorescence quantum yields (Φfl) in both solid and mesophase states, demonstrating their potential as efficient fluorescent materials. Our findings underscore the versatility of BTD-based mesogenic skeletons for designing room-temperature fluorescent nematic LCs with various functional groups. These materials offer promising opportunities for next-generation display technologies, optical sensors, and photonic applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Figure 1

15 pages, 1941 KiB  
Article
The High Interfacial Activity of Betaine Surfactants Triggered by Nonionic Surfactant: The Vacancy Size Matching Mechanism of Hydrophobic Groups
by Guoqiao Li, Jinyi Zhao, Lu Han, Qingbo Wu, Qun Zhang, Bo Zhang, Rushan Yue, Feng Yan, Zhaohui Zhou and Wei Ding
Molecules 2025, 30(11), 2413; https://doi.org/10.3390/molecules30112413 - 30 May 2025
Viewed by 519
Abstract
Alkyl sulfobetaine shows a strong advantage in the compounding of surfactants due to the defects in the size matching of hydrophilic and hydrophobic groups. The interfacial tensions (IFTs) of alkyl sulfobetaine (ASB) and xylene-substituted alkyl sulfobetaine (XSB) with oil-soluble (Span80) and water-soluble (Tween80) [...] Read more.
Alkyl sulfobetaine shows a strong advantage in the compounding of surfactants due to the defects in the size matching of hydrophilic and hydrophobic groups. The interfacial tensions (IFTs) of alkyl sulfobetaine (ASB) and xylene-substituted alkyl sulfobetaine (XSB) with oil-soluble (Span80) and water-soluble (Tween80) nonionic surfactants on a series of n-alkanes were studied using a spinning drop tensiometer to investigate the mechanism of IFT between nonionic and betaine surfactants. The two betaine surfactants’ IFTs are considerably impacted differently by Span80 and Tween80. The results demonstrate that Span80, through mixed adsorption with ASB and XSB, can create a relatively compacted interfacial film at the n-alkanes–water interface. The equilibrium IFT can be reduced to ultra-low values of 5.7 × 10−3 mN/m at ideal concentrations by tuning the fit between the size of the nonionic surfactant and the size of the oil-side vacancies of the betaine surfactant. Nevertheless, Tween80 has minimal effect on the IFT of betaine surfactants, and the betaine surfactant has no vacancies on the aqueous side. The present study provides significant research implications for screening betaine surfactants and their potential application in enhanced oil recovery (EOR) processes. Full article
Show Figures

Figure 1

23 pages, 12241 KiB  
Article
Biodiesel Isomerization Using Sulfated Tin(IV) Oxide as a Superacid Catalyst to Improve Cold Flow Properties
by Yano Surya Pradana, I Gusti Bagus Ngurah Makertihartha, Tirto Prakoso, Tatang Hernas Soerawidjaja and Antonius Indarto
Technologies 2025, 13(5), 203; https://doi.org/10.3390/technologies13050203 - 16 May 2025
Cited by 1 | Viewed by 556
Abstract
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended [...] Read more.
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended to substitute petroleum diesel. Nevertheless, implementation of pure biodiesel is not recommended for conventional diesel engines. It holds poor values of cold flow properties, as the effect of high saturated FAAE content contributes to this constraint. Several processes have been proposed to enhance cold flow properties of biodiesel, but this work focuses on the skeletal isomerization process. This process rearranges the skeletal carbon chain of straight-chain FAAE into branched isomeric products to lower the melting point, related to the good cold flow behavior. This method specifically requires an acid catalyst to elevate the isomerization reaction rate. And then, sulfated tin(IV) oxide emerged as a solid superacid catalyst due to its superiority in acidity. The results of biodiesel isomerization over this catalyst and its modification with iron had not satisfied the expectation of high isomerization yield and significant CFP improvement. However, they emphasized that the skeletal isomers demonstrated minimum impact on biodiesel oxidation stability. They also affirmed the role of an acid catalyst in the reaction mechanism in terms of protonation, isomerization, and deprotonation. Furthermore, the metal promotion was theoretically necessary to boost the catalytic activity of this material. It initiated the dehydrogenation of linear hydrocarbon before protonation and terminated the isomerization by hydrogenating the branched carbon chain after deprotonation. Finally, the overall findings indicated promising prospects for further enhancement of catalyst performance and reusability. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Graphical abstract

25 pages, 1938 KiB  
Article
Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel Coumarin–Triazole–Isatin Hybrids as Selective Butyrylcholinesterase Inhibitors
by Aleksandar Dimkovski, Vladimir Dobričić, Milena R. Simić, Maja Jurhar Pavlova, Evgenija Mihajloska, Zoran Sterjev and Ana Poceva Panovska
Molecules 2025, 30(10), 2121; https://doi.org/10.3390/molecules30102121 - 11 May 2025
Cited by 1 | Viewed by 1456
Abstract
A series of 21 novel coumarin–triazole–isatin hybrids was synthesized and evaluated for their potential as multitarget agents in Alzheimer’s disease (AD). The compounds featured variations in alkyl linker length that connects coumarin and triazole and substitution at the 5-position of the isatin ring. [...] Read more.
A series of 21 novel coumarin–triazole–isatin hybrids was synthesized and evaluated for their potential as multitarget agents in Alzheimer’s disease (AD). The compounds featured variations in alkyl linker length that connects coumarin and triazole and substitution at the 5-position of the isatin ring. Several derivatives showed potent butyrylcholinesterase (BChE) inhibition with selectivity over acetylcholinesterase (AChE). The lead compound, 6c1, exhibited strong BChE inhibition (IC50 = 1.74 μM), surpassing donepezil. Enzyme kinetics revealed a mixed-type mechanism, while molecular docking studies confirmed dual binding at catalytic and peripheral sites. Structure–activity relationship (SAR) analysis highlighted the influence of linker flexibility and steric/electronic effects of substituents. The observed BChE selectivity, combined with favorable in vitro profiles, identifies these hybrids as promising leads for AD drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop