Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = alarm pheromone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3837 KiB  
Article
Functional Analysis of NPC2 in Alarm Pheromone Recognition by the Red Imported Fire Ant, Solenopsis invicta (Formicidae: Solenopsis)
by Peng Lin, Jiacheng Shen, Xinyi Jiang, Fenghao Liu and Youming Hou
Insects 2025, 16(8), 766; https://doi.org/10.3390/insects16080766 - 25 Jul 2025
Viewed by 375
Abstract
The red imported fire ant (Solenopsis invicta) is a dangerous invasive insect. These ants rely on releasing an alarm pheromone, mainly composed of 2-ethyl-3,6-dimethylptrazine (EDMP), to warn nestmates of danger and trigger group defense or escape behaviors. This study found two [...] Read more.
The red imported fire ant (Solenopsis invicta) is a dangerous invasive insect. These ants rely on releasing an alarm pheromone, mainly composed of 2-ethyl-3,6-dimethylptrazine (EDMP), to warn nestmates of danger and trigger group defense or escape behaviors. This study found two NPC2 proteins in the ant antennae: SinvNPC2a and SinvNPC2b. SinvNPC2a was highly expressed in the antennae; phylogenetic analysis also suggests that SinvNPC2 likely possesses conserved olfactory recognition functions. By knocking down the SinvNPC2a gene, we found that the electrophysiological response of ant antennae to EDMP became weaker. More importantly, ants lacking SinvNPC2a showed significantly reduced movement range and speed when exposed to EDMP, compared to normal ants not treated with RNAi. These ants did not spread out quickly. Furthermore, tests showed that the purified SinvNPC2a protein could directly bind to EDMP molecules. Computer modeling also showed that they fit together tightly. These findings provide direct evidence that the SinvNPC2a protein plays a key role in helping fire ants detect the EDMP alarm pheromone. It enables the ants to sense this chemical signal, allowing ant colonies to respond quickly. Understanding this mechanism improves our knowledge of how insects smell things. It also suggests a potential molecular target for developing new methods to control fire ants, such as using RNAi to block its function. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

23 pages, 1592 KiB  
Review
The Pheromone Landscape of Apis mellifera: Caste-Determined Chemical Signals and Their Influence on Social Dynamics
by Anna Gryboś, Patrycja Staniszewska, Maciej Sylwester Bryś and Aneta Strachecka
Molecules 2025, 30(11), 2369; https://doi.org/10.3390/molecules30112369 - 29 May 2025
Viewed by 966
Abstract
A honeybee (Apis mellifera) colony is a superorganism of complex social dynamics. Within the colony, communication between individuals and castes is crucial for maintaining homeostasis. Such complex interactions are possible thanks to semiochemicals called pheromones. The spectrum of pheromonal communication in [...] Read more.
A honeybee (Apis mellifera) colony is a superorganism of complex social dynamics. Within the colony, communication between individuals and castes is crucial for maintaining homeostasis. Such complex interactions are possible thanks to semiochemicals called pheromones. The spectrum of pheromonal communication in bee colonies is wide and differs between castes, especially the queen and the workers. Gland morphology and compounds of secretions result in alterations in both physiological and behavioral responses to certain pheromones in castes. The queen’s glands produce pheromones that maintain her reign and induce division of labor among workers. Workers’ pheromones are adapted to multiple tasks performed by this caste within the colony. This review outlines a neurophysiological pathway in the perception pheromone molecule, with a specific description of the individual anatomical structures essential for the path, such as the morphology of antennae, sensilla, antennal lobes and mushroom bodies. Later on, the study provides insight into specific aspects of the differences between the two castes (queen and workers) in terms of complex pheromonal communication in the hive, by describing the pheromones present in it (QMP, tergal gland pheromone, Dufour gland pheromone, Nasonov pheromone, sting alarm pheromone and tarsal gland pheromone). Full article
Show Figures

Figure 1

25 pages, 10241 KiB  
Article
Machine Learning-Based Acoustic Analysis of Stingless Bee (Heterotrigona itama) Alarm Signals During Intruder Events
by Ashan Milinda Bandara Ratnayake, Hartini Mohd Yasin, Abdul Ghani Naim, Rahayu Sukmaria Sukri, Norhayati Ahmad, Nurul Hazlina Zaini, Soon Boon Yu, Mohammad Amiruddin Ruslan and Pg Emeroylariffion Abas
Agriculture 2025, 15(6), 591; https://doi.org/10.3390/agriculture15060591 - 11 Mar 2025
Viewed by 881
Abstract
Heterotrigona itama, a widely reared stingless bee species, produces highly valued honey. These bees naturally secure their colonies within logs, accessed via a single entrance tube, but remain vulnerable to intruders and predators. Guard bees play a critical role in colony defense, [...] Read more.
Heterotrigona itama, a widely reared stingless bee species, produces highly valued honey. These bees naturally secure their colonies within logs, accessed via a single entrance tube, but remain vulnerable to intruders and predators. Guard bees play a critical role in colony defense, exhibiting the ability to discriminate between nestmates and non-nestmates and employing strategies such as pheromone release, buzzing, hissing, and vibrations to alert and recruit hive mates during intrusions. This study investigated the acoustic signals produced by H. itama guard bees during intrusions to determine their potential for intrusion detection. Using a Jetson Nano equipped with a microphone and camera, guard bee sounds were recorded and labeled. After preprocessing the sound data, Mel Frequency Cepstral Coefficients (MFCCs) were extracted as features, and various dimensionality reduction techniques were explored. Among them, Linear Discriminant Analysis (LDA) demonstrated the best performance in improving class separability. The reduced feature set was used to train both Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) classifiers. KNN outperformed SVM, achieving a Precision of 0.9527, a Recall of 0.9586, and an F1 Score of 0.9556. Additionally, KNN attained an Overall Cross-Validation Accuracy of 95.54% (±0.67%), demonstrating its superior classification performance. These findings confirm that H. itama produces distinct alarm sounds during intrusions, which can be effectively classified using machine learning; thus, demonstrating the feasibility of sound-based intrusion detection as a cost-effective alternative to image-based approaches. Future research should explore real-world implementation under varying environmental conditions and extend the study to other stingless bee species. Full article
Show Figures

Figure 1

15 pages, 4770 KiB  
Article
High Antennal Expression of CYP6K1 and CYP4V2 Participate in the Recognition of Alarm Pheromones by Solenopsis invicta Buren
by Xinyi Jiang, Jiacheng Shen, Peng Lin and Youming Hou
Insects 2025, 16(1), 43; https://doi.org/10.3390/insects16010043 - 5 Jan 2025
Cited by 1 | Viewed by 1079
Abstract
Insects have highly developed olfactory systems in which cytochrome P450s (CYPs) were involved as odor-degrading enzymes throughout the olfactory recognition of odor compounds by insects to avoid continuous stimulation of signaling molecules and thus damage to the olfactory nervous. To understand whether the [...] Read more.
Insects have highly developed olfactory systems in which cytochrome P450s (CYPs) were involved as odor-degrading enzymes throughout the olfactory recognition of odor compounds by insects to avoid continuous stimulation of signaling molecules and thus damage to the olfactory nervous. To understand whether the highly expressed CYPs in the antennae play an olfactory function in Solenopsis invicta worker, in this study, we find six highly expressed antennal CYPs from the transcriptome of S. invicta. Multiple sequence alignment and phylogenetic analysis divided them into two families: the CYP3 family (SinvCYP6K1, SinvCYP6K1-1) and the CYP4 family (SinvCYP4C1, SinvCYP4C1-1, SinvCYP4C1-2, SinvCYP4V2). The expression patterns of these six CYPs were analyzed by RT-qPCR, which revealed that SinvCYP6K1 and SinvCYP4V2 were only highly expressed in the antennae of adult workers. The expression of SinvCYP6K1 and SinvCYP4V2 in workers was markedly diminished after feeding with dsRNA. The electroantennography (EAG) assay demonstrated that the silencing of either SinvCYP6K1 or SinvCYP4V2 resulted in a notable reduction in the EAG response of workers to 2-ethyl-3,6(5)-dimethylpyrazine (EDMP). Furthermore, the trajectory behavior assay showed that the worker’s range and speed of movement in response to EDMP significant decreased after the silencing of SinvCYP6K1 and SinvCYP4V2. The findings indicated that both SinvCYP6K1 and SinvCYP4V2 were implicated in the recognition of EDMP by S. invicta. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

12 pages, 2167 KiB  
Article
Differentiation of Vespa velutina nigrithorax Colonies Using Volatile Organic Compound Profiles of Hornets and Nests
by Omaira de la Hera and Rosa María Alonso
Insects 2024, 15(10), 811; https://doi.org/10.3390/insects15100811 - 16 Oct 2024
Cited by 1 | Viewed by 1313
Abstract
Vespa velutina (Lepeletier, 1836) (Hymenoptera: Vespidae) is a eusocial insect that lives in colonies of hundreds to thousands of individuals, which are divided into castes according to their task: queens, workers, and males. The proper functioning of the colony requires communication between the [...] Read more.
Vespa velutina (Lepeletier, 1836) (Hymenoptera: Vespidae) is a eusocial insect that lives in colonies of hundreds to thousands of individuals, which are divided into castes according to their task: queens, workers, and males. The proper functioning of the colony requires communication between the individuals that make up the colony. Chemical signals (pheromones) are the most common means of communication used by these insects to alarm and differentiate between individuals belonging or not to the colony. In this work, profiles of volatile organic compounds were obtained from the hornets and the external cover of four secondary nests located in the Basque Country. The obtained profiles were treated using chemometric tools. The grouping of hornets and nests according to the different colonies and geographical location was observed. In total, 37 compounds were found in common in hornets and nests. Most of them have been reported in the literature as belonging to different insects and plant species. This would corroborate the transfer of chemical compounds between the nest and the hornets’ nest and vice versa. This information could be applied to the development of more efficient control methods for this invasive species, such as attractive traps or baits containing the relevant compounds. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Graphical abstract

10 pages, 1011 KiB  
Article
Can a Mixture of Farnesene Isomers Avert the Infestation of Aphids in Sugar Beet Crops?
by Denise Kuhn, Nils Nägele, Till Tolasch, Georg Petschenka and Johannes L. M. Steidle
Insects 2024, 15(10), 736; https://doi.org/10.3390/insects15100736 - 24 Sep 2024
Viewed by 1335
Abstract
The negative impact of pesticides on the environment and the potential of pest species to develop pesticide resistance make it necessary to explore new methods of pest control. Pheromones and other behavior-modifying semiochemicals are already important in integrated pest management (IPM). (E)-ß-farnesene (EBF) [...] Read more.
The negative impact of pesticides on the environment and the potential of pest species to develop pesticide resistance make it necessary to explore new methods of pest control. Pheromones and other behavior-modifying semiochemicals are already important in integrated pest management (IPM). (E)-ß-farnesene (EBF) is a semiochemical that acts as an alarm pheromone in aphids. Upon perception of EBF, aphids stop feeding, move away, and sometimes even abandon the host plant. The aphids Myzus persicae and Aphis fabae are significant crop pests and vectors of many harmful phytopathogens affecting sugar beet (Beta vulgaris). Field trials were conducted at different locations in Germany to test whether dispensers containing a mixture of farnesene isomers (FIMs) including EBF were able to reduce the infestation of these species on sugar beet. Our results showed a reduction in aphid abundance in the FIM-treated patches in two out of three sites. Therefore, we hypothesize that FIM dispensers could prevent aphid infestation and could be used in combination with other IPM measures. However, more research is required to increase the effect and ensure the reliability of this method. Full article
Show Figures

Graphical abstract

16 pages, 4651 KiB  
Article
Design of Novel Membranes for the Efficient Separation of Bee Alarm Pheromones in Portable Membrane Inlet Mass Spectrometric Systems
by Stevan Armaković, Daria Ilić and Boris Brkić
Int. J. Mol. Sci. 2024, 25(16), 8599; https://doi.org/10.3390/ijms25168599 - 7 Aug 2024
Cited by 1 | Viewed by 979
Abstract
Bee alarm pheromones are essential molecules that are present in beehives when some threats occur in the bee population. In this work, we have applied multilevel modeling techniques to understand molecular interactions between representative bee alarm pheromones and polymers such as polymethyl siloxane [...] Read more.
Bee alarm pheromones are essential molecules that are present in beehives when some threats occur in the bee population. In this work, we have applied multilevel modeling techniques to understand molecular interactions between representative bee alarm pheromones and polymers such as polymethyl siloxane (PDMS), polyethylene glycol (PEG), and their blend. This study aimed to check how these interactions can be manipulated to enable efficient separation of bee alarm pheromones in portable membrane inlet mass spectrometric (MIMS) systems using new membranes. The study involved the application of powerful computational atomistic methods based on a combination of modern semiempirical (GFN2-xTB), first principles (DFT), and force-field calculations. As a fundamental work material for the separation of molecules, we considered the PDMS polymer, a well-known sorbent material known to be applicable for light polar molecules. To improve its applicability as a sorbent material for heavier polar molecules, we considered two main factors—temperature and the addition of PEG polymer. Additional insights into molecular interactions were obtained by studying intrinsic reactive properties and noncovalent interactions between bee alarm pheromones and PDMS and PEG polymer chains. Full article
(This article belongs to the Special Issue Carbon–Multidisciplinary Investigations and Innovative Solutions)
Show Figures

Figure 1

13 pages, 2951 KiB  
Article
Juvenile Hormone Involved in the Defensive Behaviors of Soldiers in Termite Reticulitermes aculabialis
by Yiying Li, Letong Yin, Ruiyao Guo, Yunliang Du, Bo Wang, Long Liu, Zhenya Li, Wei Liu, Guozhi Zhang, Shiheng An, Xinming Yin and Lijuan Su
Insects 2024, 15(2), 130; https://doi.org/10.3390/insects15020130 - 14 Feb 2024
Cited by 3 | Viewed by 2481
Abstract
Eusocial insects have evolved specific defensive strategies to protect their colonies. In termite colonies, soldiers perform a colony-level defense by displaying mechanical biting, head-banging and mandible opening–closing behaviors. However, few studies have been reported on the factors modulating defensive behaviors in termites. Owing [...] Read more.
Eusocial insects have evolved specific defensive strategies to protect their colonies. In termite colonies, soldiers perform a colony-level defense by displaying mechanical biting, head-banging and mandible opening–closing behaviors. However, few studies have been reported on the factors modulating defensive behaviors in termites. Owing to JH (juvenile hormone) being involved in soldier differentiation, JH was speculated to affect defensive behaviors in termite soldiers. To determine the effect of JH on the defensive behaviors of termite soldiers, we performed a JHA-feeding and RaSsp1-silencing experiment and then tested the changes in defense-related behaviors, alarm pheromones and key JH signaling genes. The observed result was that after feeding workers with JHA, soldiers displayed the following: (1) decreased biting events and increased head-banging events; (2) a reduced expression of RaSsp1 and increased expression of Met (methoprene-tolerant, the nuclear receptor of JH) and Kr-h1 (the JH-inducible transcription factor Krüppel homolog 1); and (3) a decreased concentration of alarm pheromones, including α-pinene, β-pinene and limonene (+, −). Further study showed that soldiers silenced for RaSsp1 also exhibited (1) decreased biting events and increased head-banging events and (2) increased expression of Met and Kr-h1. In addition, soldiers stimulated by the alarm pheromone limonene displayed an increase in the frequency of mandible opening–closing and biting behavior. All of these results show that JHA influenced the defensive behaviors of termite soldiers, possibly via downregulating RaSsp1 expression, up-regulating Met and Kr-h1 and stimulating the secretion of alarm pheromones, suggesting that the JH pathway plays important roles in modulating social behaviors in termite colonies. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

15 pages, 2152 KiB  
Article
Mutagenesis of Odorant Receptor Coreceptor Orco Reveals the Odorant-Detected Behavior of the Predator Eupeodes corollae
by Ji-Nan Wu, Chen-Xi Cai, Wen-Biao Liu, Dong Ai, Song Cao, Bing Wang and Gui-Rong Wang
Int. J. Mol. Sci. 2023, 24(24), 17284; https://doi.org/10.3390/ijms242417284 - 9 Dec 2023
Cited by 2 | Viewed by 1922
Abstract
The successful mating of the hoverfly and the search for prey aphids are of great significance for biological control and are usually mediated by chemical cues. The odorant receptor co-receptor (Orco) genes play a crucial role in the process of insect [...] Read more.
The successful mating of the hoverfly and the search for prey aphids are of great significance for biological control and are usually mediated by chemical cues. The odorant receptor co-receptor (Orco) genes play a crucial role in the process of insect odor perception. However, the function of Orco in the mating and prey-seeking behaviors of the hoverfly remains relatively unexplored. In this study, we characterized the Orco gene from the hoverfly, Eupeodes corollae, a natural enemy insect. We used the CRISPR/Cas9 technique to knock out the Orco gene of E. corollae, and the EcorOrco−/− homozygous mutant was verified by the genotype analysis. Fluorescence in situ hybridization showed that the antennal ORN of EcorOrco−/− mutant lack Orco staining. Electroantennogram (EAG) results showed that the adult mutant almost lost the electrophysiological response to 15 odorants from three types. The two-way choice assay and the glass Y-tube olfactometer indicated that both the larvae and adults of hoverflies lost their behavioral preference to the aphid alarm pheromone (E)-β-farnesene (EBF). In addition, the mating assay results showed a significant decrease in the mating rate of males following the knock out of the EcorOrco gene. Although the mating of females was not affected, the amount of eggs being laid and the hatching rate of the eggs were significantly reduced. These results indicated that the EcorOrco gene was not only involved in the detection of semiochemicals in hoverflies but also plays a pivotal role in the development of eggs. In conclusion, our results expand the comprehension of the chemoreceptive mechanisms in the hoverflies and offers valuable insights for the advancement of more sophisticated pest management strategies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

6 pages, 212 KiB  
Communication
Evaluating Formic Acid as a Behavioral Modifier in African Savanna Elephants
by Mark G. Wright, Irene Gatti, Michelle G. Au, Juliana Salehi, Craig R. Spencer, Paul Allin and Agenor Mafra-Neto
Diversity 2023, 15(10), 1079; https://doi.org/10.3390/d15101079 - 12 Oct 2023
Cited by 1 | Viewed by 1794
Abstract
Formic acid was investigated as a potential repellant for African savanna elephants (Loxodonta africana) as a semiochemical option for managing elephant movements and interactions with human infrastructure. Formic acid is a naturally occurring compound, used as an alarm pheromone and as [...] Read more.
Formic acid was investigated as a potential repellant for African savanna elephants (Loxodonta africana) as a semiochemical option for managing elephant movements and interactions with human infrastructure. Formic acid is a naturally occurring compound, used as an alarm pheromone and as a defensive chemical in Formicine ants, and thus a potentially desirable option compared to introducing exogenous deterrents that are foreign to the elephants’ natural habitats. Although most elephants observed (85%) did not interact with treatments containing formic acid, of the cohort of individuals (n = 38) that did respond, the majority showed a mild to moderate avoidance response, while a small proportion of elephants were distinctly repelled when experiencing formic acid cues, in some cases causing whole herds to evacuate an area. The potential for using formic acid as an elephant repellant to modulate elephant behavior in field situations is discussed. Full article
13 pages, 1022 KiB  
Article
Honey Bee Colonies (Apis mellifera L.) Perform Orientation Defensiveness That Varies among Bred Lines
by Peter Njukang Akongte, Bo-Sun Park, Dong-Won Kim and Yong-Soo Choi
Insects 2023, 14(6), 546; https://doi.org/10.3390/insects14060546 - 12 Jun 2023
Viewed by 2119
Abstract
Honey bees (Apis mellifera L.) express complex behavioral patterns (aggressiveness) in defensive mechanisms for their survival. Their phenotypic expression of defensive behavior is influenced by internal and external stimuli. Knowledge of this behavior has recently become increasingly important, though beekeepers are still [...] Read more.
Honey bees (Apis mellifera L.) express complex behavioral patterns (aggressiveness) in defensive mechanisms for their survival. Their phenotypic expression of defensive behavior is influenced by internal and external stimuli. Knowledge of this behavior has recently become increasingly important, though beekeepers are still faced with the challenges of selecting defensive and less-defensive bred lines. Field evaluation of defensive behavior among bred lines of honey bees is required to overcome the challenges. Chemical cues (alarm pheromone and isopentyl acetate mixed with paraffin oil) and physical and visual stimuli (dark leather suede, colony marbling, and suede jiggling) were used to evaluate defensiveness and orientation among five bred lines of honeybee colonies. Our results showed that both chemical assays recruited bees, but the time of recruitment was significantly faster for alarm pheromone. Honeybees’ response to both assays culminated in stings that differed among bred lines for alarm pheromone and paraffin when colonies were marbled. Honeybee orientation defensiveness varied among bred lines and was higher in more defensive bred lines compared to less-defensive bred lines. Our findings suggest that it is crucial to repeatedly evaluate orientation defensiveness at the colony level and among bred lines when selecting breeding colonies. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

26 pages, 2022 KiB  
Review
Life History Traits of the Pentatomidae (Hemiptera) for the Development of Pest Management Tools
by Elisa Pal, Jeremy D. Allison, Brett P. Hurley, Bernard Slippers and Gerda Fourie
Forests 2023, 14(5), 861; https://doi.org/10.3390/f14050861 - 22 Apr 2023
Cited by 10 | Viewed by 6935
Abstract
Knowledge of the biology of a pest is essential for building sustainable management programmes. Pentatomidae have a hemimetabolous life cycle with egg, nymphal, and adult life stages, which differ in morphological, ecological, and behavioural traits. Some of these traits, such as mating behaviour, [...] Read more.
Knowledge of the biology of a pest is essential for building sustainable management programmes. Pentatomidae have a hemimetabolous life cycle with egg, nymphal, and adult life stages, which differ in morphological, ecological, and behavioural traits. Some of these traits, such as mating behaviour, pheromones (alarm and aggregation pheromones) and the acquisition of gut symbionts can be targeted for pest management strategies. Here, we review the available literature on these life history traits of the Pentatomidae with potential for use in management programmes. Pheromone-mediated aggregation and the disruption of symbiont acquisition are two important targets for Pentatomidae control. Other traits such as the use of alarm pheromones for enhancing natural enemies and substrate-borne vibration for mating disruption deserve further consideration. Colour vision and flight ability are still poorly studied, despite their potential importance for stink bug management. Full article
(This article belongs to the Special Issue Applied Chemical Ecology of Forest Insects)
Show Figures

Figure 1

12 pages, 1517 KiB  
Article
Kairomonal Effect of Aphid Alarm Pheromones and Analogs on the Parasitoid Diaeretiella rapae
by Yaoguo Qin, Shangyang Zhang and Zhengxi Li
Insects 2022, 13(11), 1055; https://doi.org/10.3390/insects13111055 - 15 Nov 2022
Cited by 3 | Viewed by 3412
Abstract
Aphid alarm pheromones, as important semiochemicals, not only mediate behavioral response of aphids, but can also act as kairomones to attract their natural enemies. The sesquiterpene (E)-β-farnesene (EβF), the major alarm pheromone component of most aphid species, has been shown to have a [...] Read more.
Aphid alarm pheromones, as important semiochemicals, not only mediate behavioral response of aphids, but can also act as kairomones to attract their natural enemies. The sesquiterpene (E)-β-farnesene (EβF), the major alarm pheromone component of most aphid species, has been shown to have a kairomonal effect on the predators of aphids, but other alarm pheromone components, especially the monoterpenes and analogs, are rarely investigated. Here, two EβF analogs were successfully synthesized via the nucleophilic substitution reaction, and we then examined the kairomonal effects of four alarm pheromone components and two EβF analogs on the aphid parasitoid, Diaeretiella rapae. In olfactory bioassays, D. rapae females generally showed no significant behavioral response to these alarm pheromone components and analogs under low concentrations (0.1 μg/μL). Nevertheless, their olfactory response to these compounds gradually enhanced with increasing concentrations. Among the four pheromone components, EβF showed the highest attractive activity, but the parasitoid preferred blends over single compounds. Moreover, the response time decreased as the concentration increased. We confirmed the kairomonal effect of monoterpene alarm pheromone components and their blends, in addition to EβF, on the natural enemies of aphids. This is the first report that the blend of alarm pheromone components and their analogs has a stronger kairomonal effect than do the single components on the natural enemies of aphids. This study contributes to our understanding of the mechanisms involved in the regulation of parasitoid behaviors by kairomones and provides a promising opportunity for designing kairomones for the aphid parasitoid to mediate aphid populations in the field. Full article
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Floral Volatile Organic Compounds and a List of Pollinators of Fallopia baldschuanica (Polygonaceae)
by Anna Jakubska-Busse, Mariusz Dziadas, Iwona Gruss and Michał J. Kobyłka
Insects 2022, 13(10), 904; https://doi.org/10.3390/insects13100904 - 5 Oct 2022
Cited by 4 | Viewed by 3745
Abstract
Fallopia baldschuanica (Polygonaceae) is an Asian plant growing wild in parts of Europe and North and Central America as an introduced taxon, in many countries it is considered a potentially invasive species. This article presents the list of 18 volatile organic compounds (VOCs) [...] Read more.
Fallopia baldschuanica (Polygonaceae) is an Asian plant growing wild in parts of Europe and North and Central America as an introduced taxon, in many countries it is considered a potentially invasive species. This article presents the list of 18 volatile organic compounds (VOCs) emitted by the flowers of F. baldchuanica and identified by headspace gas chromatography/mass spectrometry (HS-GC/MS) analyzes, and a list of flower-visiting and pollinating insects that have been observed in the city center of Wrocław (SW Poland). β-ocimene, heptanal, nonanal, α-pinene, 3-thujene, and limonene, were detected as the floral scent’s most important aroma compounds. F. baldschuanica also produces the aphid alarm pheromones, i.e., β-farnesene and limonene, that repels aphids. Additionally, the pollinators of F. baldschuanica were indicated, based on two years of observations in five sites in the urban area. It was found, that the pollinators of this plant with the highest species stability are: Diptera from families Syrphidae (Chrysotoxum bicinctum, Eristalis pertinax, Eupeodes corollae, Episyrphus balteatus, Eristalis tenax, Syrphus ribesii, Eristalis intricaria), Muscidae (Musca domestica), Sarcophagidae (Sarcophaga spp.), Calliphoridae (Lucilia sericata, Lucilia caesar), Hymenoptera from families Vespidae (Vespula vulgaris), and Apidae (Apis sp., Bombus sp.). The key role of VOCs in adaptation to plant expansion is discussed. Full article
(This article belongs to the Special Issue Physical and Chemical Interactions between Insects and Plants)
Show Figures

Figure 1

20 pages, 1917 KiB  
Review
Olfactory Strategies in the Defensive Behaviour of Insects
by Kavitha Kannan, C. Giovanni Galizia and Morgane Nouvian
Insects 2022, 13(5), 470; https://doi.org/10.3390/insects13050470 - 18 May 2022
Cited by 31 | Viewed by 9452
Abstract
Most animals must defend themselves in order to survive. Defensive behaviour includes detecting predators or intruders, avoiding them by staying low-key or escaping or deterring them away by means of aggressive behaviour, i.e., attacking them. Responses vary across insect species, ranging from individual [...] Read more.
Most animals must defend themselves in order to survive. Defensive behaviour includes detecting predators or intruders, avoiding them by staying low-key or escaping or deterring them away by means of aggressive behaviour, i.e., attacking them. Responses vary across insect species, ranging from individual responses to coordinated group attacks in group-living species. Among different modalities of sensory perception, insects predominantly use the sense of smell to detect predators, intruders, and other threats. Furthermore, social insects, such as honeybees and ants, communicate about danger by means of alarm pheromones. In this review, we focus on how olfaction is put to use by insects in defensive behaviour. We review the knowledge of how chemical signals such as the alarm pheromone are processed in the insect brain. We further discuss future studies for understanding defensive behaviour and the role of olfaction. Full article
(This article belongs to the Special Issue Recent Advances in Physiology of Insect Olfaction)
Show Figures

Figure 1

Back to TopTop