Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = airway-on-a-chip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 13833 KiB  
Article
Host Serine Proteases and Antiviral Innate Immunity as Potential Therapeutic Targets in Influenza A Virus Infection-Induced COPD Exacerbations
by Haiqing Bai, Melissa Rodas, Longlong Si, Yuncheng Man, Jie Ji, Roberto Plebani, Johnathan D. Mercer, Rani K. Powers, Chaitra Belgur, Amanda Jiang, Sean R. R. Hall, Rachelle Prantil-Baun and Donald E. Ingber
Int. J. Mol. Sci. 2025, 26(6), 2549; https://doi.org/10.3390/ijms26062549 - 12 Mar 2025
Viewed by 1255
Abstract
Lung manifestations of chronic obstructive pulmonary disease (COPD) are often exacerbated by influenza A virus infections; however, the underlying mechanisms remain largely unknown, and hence therapeutic options are limited. Using a physiologically relevant human lung airway-on-a-chip (Airway Chip) microfluidic culture model lined with [...] Read more.
Lung manifestations of chronic obstructive pulmonary disease (COPD) are often exacerbated by influenza A virus infections; however, the underlying mechanisms remain largely unknown, and hence therapeutic options are limited. Using a physiologically relevant human lung airway-on-a-chip (Airway Chip) microfluidic culture model lined with human airway epithelium from COPD or healthy donors interfaced with pulmonary microvascular endothelium, we observed that Airway Chips lined with COPD epithelium exhibit an increased sensitivity to influenza virus infection, as is observed clinically in COPD patients. Differentiated COPD airway epithelial cells display increased inflammatory cytokine production, barrier function loss, and mucus accumulation upon virus infection. Transcriptomic analysis revealed gene expression profiles characterized by upregulation of serine proteases that may facilitate viral entry and downregulation of interferon-related genes associated with antiviral immune responses. Importantly, treatment of influenza virus-infected COPD epithelium with a protease inhibitor, nafamostat, ameliorated the disease phenotype, as evidenced by dampened viral replication, reduced mucus accumulation, and improved tissue barrier integrity. These findings suggest that targeting host serine proteases may represent a promising therapeutic avenue against influenza-afflicted COPD exacerbations. Full article
Show Figures

Figure 1

22 pages, 5917 KiB  
Article
Development of a Widely Accessible, Advanced Large-Scale Microfluidic Airway-on-Chip
by Brady Rae, Gwenda F. Vasse, Jalal Mosayebi, Maarten van den Berge, Simon D. Pouwels and Irene H. Heijink
Bioengineering 2025, 12(2), 182; https://doi.org/10.3390/bioengineering12020182 - 13 Feb 2025
Cited by 2 | Viewed by 1511
Abstract
On-chip microfluidics are advanced in vitro models that simulate lung tissue’s native 3D environment more closely than static 2D models to investigate the complex lung architecture and multifactorial processes that lead to pulmonary disease. Current microfluidic systems can be restrictive in the quantities [...] Read more.
On-chip microfluidics are advanced in vitro models that simulate lung tissue’s native 3D environment more closely than static 2D models to investigate the complex lung architecture and multifactorial processes that lead to pulmonary disease. Current microfluidic systems can be restrictive in the quantities of biological sample that can be retrieved from a single micro-channel, such as RNA, protein, and supernatant. Here, we describe a newly developed large-scale airway-on-chip model that employs a surface area for a cell culture wider than that in currently available systems. This enables the collection of samples comparable in volume to traditional cell culture systems, making the device applicable to any workflow utilizing these static systems (RNA isolation, ELISA, etc.). With our construction method, this larger culture area allows for easier handling, the potential for a wide range of exposures, as well as the collection of low-quantity samples (e.g., volatiles or mitochondrial RNA). The model consists of two large polydimethylsiloxane (PDMS) cell culture chambers under an independent flow of medium or air, separated by a semi-permeable polyethylene (PET) cell culture membrane (23 μm thick, 0.4 μm pore size). Each chamber carries a 5 × 18 mm, 90 mm2 (92 mm2 with tapered chamber inlets) surface area that can contain up to 1–2 × 104 adherent structural lung cells and can be utilized for close contact co-culture studies of different lung cell types, including airway epithelial cells, fibroblasts, smooth muscle cells, and endothelial cells. The parallel bi-chambered design of the chip allows for epithelial cells to be cultured at the air–liquid interface (ALI) and differentiation into a dense, multi-layered, pseudostratified epithelium under biological flow rates. This millifluidic airway-on-chip advances the field by providing a readily reproducible, easily adjustable, and cost-effective large-scale fluidic 3D airway cell culture platform. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Figure 1

14 pages, 4119 KiB  
Article
Revolutionizing Epithelial Differentiability Analysis in Small Airway-on-a-Chip Models Using Label-Free Imaging and Computational Techniques
by Shiue-Luen Chen, Ren-Hao Xie, Chong-You Chen, Jia-Wei Yang, Kuan-Yu Hsieh, Xin-Yi Liu, Jia-Yi Xin, Ching-Kai Kung, Johnson H. Y. Chung and Guan-Yu Chen
Biosensors 2024, 14(12), 581; https://doi.org/10.3390/bios14120581 - 29 Nov 2024
Cited by 1 | Viewed by 1606
Abstract
Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, [...] Read more.
Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system. By integrating deep learning and image recognition techniques, we aim to analyze the differentiability of human small airway epithelial cells (HSAECs). Utilizing cell imaging on day 3 of culture, our approach accurately predicts the differentiability of HSAECs after 4 weeks of incubation. This breakthrough significantly enhances the efficiency and stability of establishing small airway-on-a-chip models. To further enhance our analysis capabilities, we have developed a customized MATLAB program capable of automatically processing ciliated cell beating images and calculating the beating frequency. This program enables continuous monitoring of ciliary beating activity. Additionally, we have introduced an automated fluorescent particle tracking system to evaluate the integrity of mucociliary clearance and validate the accuracy of our deep learning predictions. The integration of deep learning, label-free imaging, and advanced image analysis techniques represents a significant advancement in the fields of drug testing and physiological assessment. This innovative approach offers unprecedented insights into the functioning of the small airway epithelium, empowering researchers with a powerful tool to study respiratory physiology and develop targeted interventions. Full article
(This article belongs to the Special Issue Biosensors for Organ-on-Chip Devices)
Show Figures

Figure 1

12 pages, 4352 KiB  
Article
The Development of a Human Respiratory Mucosa-on-a-Chip Using Human Turbinate-Derived Mesenchymal Stem Cells
by Do Hyun Kim, Sang Hi Park, Mi-Yeon Kwon, Chae-Yoon Lim, Sun Hwa Park, David W. Jang, Se Hwan Hwang and Sung Won Kim
Medicina 2024, 60(11), 1741; https://doi.org/10.3390/medicina60111741 - 24 Oct 2024
Cited by 1 | Viewed by 1842
Abstract
Background and Objectives: This study aimed to investigate the influence of a respiratory mucosa-on-a-chip on the respiratory epithelial differentiation potential of human nasal inferior turbinate-derived stem cells (hNTSCs). Materials and Methods: After isolating hNTSCs from five patients, we divided the samples [...] Read more.
Background and Objectives: This study aimed to investigate the influence of a respiratory mucosa-on-a-chip on the respiratory epithelial differentiation potential of human nasal inferior turbinate-derived stem cells (hNTSCs). Materials and Methods: After isolating hNTSCs from five patients, we divided the samples from the patients into the study group with a mucosa-on-a-chip and the control group with conventional differentiation (using conventional differentiation methods). The respiratory epithelial differentiation potential of hNTSCs was analyzed by histology and gene expression. Results: In the quantitative analysis, PCR showed that the hNTSCs expressed the cytokeratin genes (KRT13, 14), transformation-related protein P63 (TP63), and vimentin of basal cells in the airway epithelium at higher levels, but cytokeratin genes (KRT6) at lower levels, in the mucosa-on-a-chip than in conventional differentiation. In the cytokine analysis (GM-CSF, IFNr, IL-1a, IL-1b, IL-4, IL-5, IL-10, IL-12(p70), IL-13, IL-17A, IL-17E/IL-25, RANTES, TNFa, IL-6, and IL-8), the expressions of IFNr, IL-13, RANTES, TNFa, IL-6, and IL-8 were significantly upregulated in the mucosa-on-a-chip than in conventional differentiation. Conclusions: We conclude that the human respiratory mucosa-on-a-chip using human turbinate-derived mesenchymal stem cells allows the respiratory differentiation of hNTSCs and shows the difference in gene and cytokine expression, which could serve as an alternative to conventional differentiation for the production of functionally competent hNTSCs for future clinical applications. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

16 pages, 5929 KiB  
Article
A High-Throughput, High-Containment Human Primary Epithelial Airway Organ-on-Chip Platform for SARS-CoV-2 Therapeutic Screening
by Christine R. Fisher, Felix Mba Medie, Rebeccah J. Luu, Robert B. Gaibler, Thomas J. Mulhern, Caitlin R. Miller, Chelsea J. Zhang, Logan D. Rubio, Elizabeth E. Marr, Vidhya Vijayakumar, Elizabeth P. Gabriel, Landys Lopez Quezada, Chun-Hui Zhang, Karen S. Anderson, William L. Jorgensen, Jehan W. Alladina, Benjamin D. Medoff, Jeffrey T. Borenstein and Ashley L. Gard
Cells 2023, 12(22), 2639; https://doi.org/10.3390/cells12222639 - 16 Nov 2023
Cited by 7 | Viewed by 3022
Abstract
COVID-19 emerged as a worldwide pandemic in early 2020, and while the rapid development of safe and efficacious vaccines stands as an extraordinary achievement, the identification of effective therapeutics has been less successful. This process has been limited in part by a lack [...] Read more.
COVID-19 emerged as a worldwide pandemic in early 2020, and while the rapid development of safe and efficacious vaccines stands as an extraordinary achievement, the identification of effective therapeutics has been less successful. This process has been limited in part by a lack of human-relevant preclinical models compatible with therapeutic screening on the native virus, which requires a high-containment environment. Here, we report SARS-CoV-2 infection and robust viral replication in PREDICT96-ALI, a high-throughput, human primary cell-based organ-on-chip platform. We evaluate unique infection kinetic profiles across lung tissue from three human donors by immunofluorescence, RT-qPCR, and plaque assays over a 6-day infection period. Enabled by the 96 devices/plate throughput of PREDICT96-ALI, we also investigate the efficacy of Remdesivir and MPro61 in a proof-of-concept antiviral study. Both compounds exhibit an antiviral effect against SARS-CoV-2 in the platform. This demonstration of SARS-CoV-2 infection and antiviral dosing in a high-throughput organ-on-chip platform presents a critical capability for disease modeling and therapeutic screening applications in a human physiology-relevant in vitro system. Full article
(This article belongs to the Collection Advances in 3D Cell Culture)
Show Figures

Graphical abstract

14 pages, 3711 KiB  
Article
Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA
by Julia Neumair, Marie Kröger, Evamaria Stütz, Claudia Jerin, Adam M. Chaker, Carsten B. Schmidt-Weber and Michael Seidel
Biosensors 2023, 13(7), 670; https://doi.org/10.3390/bios13070670 - 22 Jun 2023
Cited by 3 | Viewed by 2253
Abstract
Protein biomarkers in nasal secretions can be used as a measure to differentiate between allergies, airway diseases and infections for non-invasive diagnostics. The point-of-care quantification of biomarker levels using flow-based microarray facilitates precise and rapid diagnosis and displays the potential for targeted and [...] Read more.
Protein biomarkers in nasal secretions can be used as a measure to differentiate between allergies, airway diseases and infections for non-invasive diagnostics. The point-of-care quantification of biomarker levels using flow-based microarray facilitates precise and rapid diagnosis and displays the potential for targeted and effective treatment. For the first time, we developed a flow-based chemiluminescence sandwich microarray immunoassay (CL-SMIA) for the quantification of nasal interferon-beta (IFN-β) on the Microarray Chip Reader-Research (MCR-R). Polycarbonate foils are used as a cost-effective surface for immobilizing capture antibodies. By using a commercially available set of anti-human IFN-β antibodies, the CL-SMIA can be compared directly to an enzyme-linked immunosorbent assay (ELISA) performed in microtiter plates concerning the bioanalytical performance and economic issues. Pre-incubation of the sample with detection antibodies facilitates the lower consumption of detection antibodies, as this allows for a longer interaction time between the antibody and the biomarker. The direct injection of pre-incubated samples into the microarray chips eliminates the adsorption of proteins in the tubing as well as the contamination of the tubing and valves of the MCR-R with clinical samples. The small flow cell allows for a low sample volume of 50 μL. The limit of detection of 4.53 pg mL−1 was slightly increased compared to a sandwich ELISA performed on microtiter plates which were 1.60 pg mL−1. The possibility to perform the CL-SMIA in a multiplexed mode makes it a promising assay for the rapid and cost-effective non-invasive detection of biomarkers in nasal secretions. Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Healthcare Section)
Show Figures

Figure 1

15 pages, 8271 KiB  
Article
Genome-Wide Gene Expression Analysis Reveals Unique Genes Signatures of Epithelial Reorganization in Primary Airway Epithelium Induced by Type-I, -II and -III Interferons
by Anna Erb, Ulrich M. Zissler, Madlen Oelsner, Adam M. Chaker, Carsten B. Schmidt-Weber and Constanze A. Jakwerth
Biosensors 2022, 12(11), 929; https://doi.org/10.3390/bios12110929 - 26 Oct 2022
Cited by 12 | Viewed by 2693
Abstract
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip [...] Read more.
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell–cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II). Full article
(This article belongs to the Special Issue Biosensors for Monitoring of Biologically Relevant Molecules)
Show Figures

Graphical abstract

20 pages, 6477 KiB  
Article
PDMS Organ-On-Chip Design and Fabrication: Strategies for Improving Fluidic Integration and Chip Robustness of Rapidly Prototyped Microfluidic In Vitro Models
by Tiffany C. Cameron, Avineet Randhawa, Samantha M. Grist, Tanya Bennet, Jessica Hua, Luis G. Alde, Tara M. Caffrey, Cheryl L. Wellington and Karen C. Cheung
Micromachines 2022, 13(10), 1573; https://doi.org/10.3390/mi13101573 - 22 Sep 2022
Cited by 23 | Viewed by 7198
Abstract
The PDMS-based microfluidic organ-on-chip platform represents an exciting paradigm that has enjoyed a rapid rise in popularity and adoption. A particularly promising element of this platform is its amenability to rapid manufacturing strategies, which can enable quick adaptations through iterative prototyping. These strategies, [...] Read more.
The PDMS-based microfluidic organ-on-chip platform represents an exciting paradigm that has enjoyed a rapid rise in popularity and adoption. A particularly promising element of this platform is its amenability to rapid manufacturing strategies, which can enable quick adaptations through iterative prototyping. These strategies, however, come with challenges; fluid flow, for example, a core principle of organs-on-chip and the physiology they aim to model, necessitates robust, leak-free channels for potentially long (multi-week) culture durations. In this report, we describe microfluidic chip fabrication methods and strategies that are aimed at overcoming these difficulties; we employ a subset of these strategies to a blood–brain-barrier-on-chip, with others applied to a small-airway-on-chip. Design approaches are detailed with considerations presented for readers. Results pertaining to fabrication parameters we aimed to improve (e.g., the thickness uniformity of molded PDMS), as well as illustrative results pertaining to the establishment of cell cultures using these methods will also be presented. Full article
(This article belongs to the Special Issue Lab-on-a-Chip and Organ-on-a-Chip: Fabrications and Applications)
Show Figures

Figure 1

13 pages, 643 KiB  
Review
3D Lung Tissue Models for Studies on SARS-CoV-2 Pathophysiology and Therapeutics
by Roberto Plebani, Haiqing Bai, Longlong Si, Jing Li, Chunhe Zhang and Mario Romano
Int. J. Mol. Sci. 2022, 23(17), 10071; https://doi.org/10.3390/ijms231710071 - 3 Sep 2022
Cited by 15 | Viewed by 4552
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has provoked more than six million deaths worldwide and continues to pose a major threat to global health. Enormous efforts have been made by researchers around the world to elucidate [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has provoked more than six million deaths worldwide and continues to pose a major threat to global health. Enormous efforts have been made by researchers around the world to elucidate COVID-19 pathophysiology, design efficacious therapy and develop new vaccines to control the pandemic. To this end, experimental models are essential. While animal models and conventional cell cultures have been widely utilized during these research endeavors, they often do not adequately reflect the human responses to SARS-CoV-2 infection. Therefore, models that emulate with high fidelity the SARS-CoV-2 infection in human organs are needed for discovering new antiviral drugs and vaccines against COVID-19. Three-dimensional (3D) cell cultures, such as lung organoids and bioengineered organs-on-chips, are emerging as crucial tools for research on respiratory diseases. The lung airway, small airway and alveolus organ chips have been successfully used for studies on lung response to infection by various pathogens, including corona and influenza A viruses. In this review, we provide an overview of these new tools and their use in studies on COVID-19 pathogenesis and drug testing. We also discuss the limitations of the existing models and indicate some improvements for their use in research against COVID-19 as well as future emerging epidemics. Full article
Show Figures

Figure 1

23 pages, 1233 KiB  
Review
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis
by Iris A. L. Silva, Onofrio Laselva and Miquéias Lopes-Pacheco
J. Pers. Med. 2022, 12(8), 1321; https://doi.org/10.3390/jpm12081321 - 16 Aug 2022
Cited by 25 | Viewed by 6858
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over [...] Read more.
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Diagnosis, Treatment, and Related Disorders)
Show Figures

Figure 1

13 pages, 1089 KiB  
Review
Biological Models of the Lower Human Airways—Challenges and Special Requirements of Human 3D Barrier Models for Biomedical Research
by Cornelia Wiese-Rischke, Rasika S. Murkar and Heike Walles
Pharmaceutics 2021, 13(12), 2115; https://doi.org/10.3390/pharmaceutics13122115 - 8 Dec 2021
Cited by 15 | Viewed by 4134
Abstract
In our review, we want to summarize the current status of the development of airway models and their application in biomedical research. We start with the very well characterized models composed of cell lines and end with the use of organoids. An important [...] Read more.
In our review, we want to summarize the current status of the development of airway models and their application in biomedical research. We start with the very well characterized models composed of cell lines and end with the use of organoids. An important aspect is the function of the mucus as a component of the barrier, especially for infection research. Finally, we will explain the need for a nondestructive characterization of the barrier models using TEER measurements and live cell imaging. Here, organ-on-a-chip technology offers a great opportunity for the culture of complex airway models. Full article
(This article belongs to the Special Issue Biological Barriers in Health and Disease)
Show Figures

Figure 1

51 pages, 3691 KiB  
Review
Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease
by Tanya J. Bennet, Avineet Randhawa, Jessica Hua and Karen C. Cheung
Cells 2021, 10(7), 1602; https://doi.org/10.3390/cells10071602 - 26 Jun 2021
Cited by 53 | Viewed by 16414
Abstract
The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays [...] Read more.
The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements. Full article
Show Figures

Figure 1

17 pages, 1635 KiB  
Review
In Vitro Lung Models and Their Application to Study SARS-CoV-2 Pathogenesis and Disease
by Natalie Heinen, Mara Klöhn, Eike Steinmann and Stephanie Pfaender
Viruses 2021, 13(5), 792; https://doi.org/10.3390/v13050792 - 28 Apr 2021
Cited by 30 | Viewed by 12000
Abstract
SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially [...] Read more.
SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic. Full article
Show Figures

Figure 1

29 pages, 2083 KiB  
Review
Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa
by Ethan Iverson, Logan Kaler, Eva L. Agostino, Daniel Song, Gregg A. Duncan and Margaret A. Scull
Viruses 2020, 12(12), 1425; https://doi.org/10.3390/v12121425 - 11 Dec 2020
Cited by 23 | Viewed by 7311
Abstract
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus–host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture [...] Read more.
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus–host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air–liquid interface, organoids, or ‘on-chip’ technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium—the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding. Full article
(This article belongs to the Special Issue The Application of 3D Tissue Culture Systems in Virology)
Show Figures

Figure 1

18 pages, 4126 KiB  
Article
Pharmacokinetic Analysis of Epithelial/Endothelial Cell Barriers in Microfluidic Bilayer Devices with an Air–Liquid Interface
by Timothy S. Frost, Linan Jiang and Yitshak Zohar
Micromachines 2020, 11(5), 536; https://doi.org/10.3390/mi11050536 - 25 May 2020
Cited by 8 | Viewed by 4224
Abstract
As the range of applications of organs-on-chips is broadening, the evaluation of aerosol-based therapies using a lung-on-a-chip model has become an attractive approach. Inhalation therapies are not only minimally invasive but also provide optimal pharmacokinetic conditions for drug absorption. As drug development evolves, [...] Read more.
As the range of applications of organs-on-chips is broadening, the evaluation of aerosol-based therapies using a lung-on-a-chip model has become an attractive approach. Inhalation therapies are not only minimally invasive but also provide optimal pharmacokinetic conditions for drug absorption. As drug development evolves, it is likely that better screening through use of organs-on-chips can significantly save time and cost. In this work, bio-aerosols of various compounds including insulin were generated using a jet nebulizer. The aerosol flows were driven through microfluidic bilayer devices establishing an air–liquid interface to mimic the blood–air barrier in human small airways. The aerosol flow in the microfluidic devices has been characterized and adjusted to closely match physiological values. The permeability of several compounds, including paracellular and transcellular biomarkers, across epithelial/endothelial cell barriers was measured. Concentration–time plots were established in microfluidic devices with and without cells; the curves were then utilized to extract standard pharmacokinetic parameters such as the area under the curve, maximum concentration, and time to maximum concentration. The cell barrier significantly affected the measured pharmacokinetic parameters, as compound absorption through the barrier decreases with its increasing molecular size. Aerosolizing insulin can lead to the formation of fibrils, prior to its entry to the microfluidic device, with a substantially larger apparent molecular size effectively blocking its paracellular transport. The results demonstrate the advantage of using lung-on-a-chip for drug discovery with applications such as development of novel inhaled therapies. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop