Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = airtightness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 279
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

16 pages, 4172 KiB  
Article
Vapor Phase Application of Thymus vulgaris Essential Oil to Control the Biodeteriogenic Fungus Alternaria alternata
by Francesca Bosco, Chiara Mollea and Davide Fissore
Appl. Sci. 2025, 15(15), 8420; https://doi.org/10.3390/app15158420 - 29 Jul 2025
Viewed by 254
Abstract
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and [...] Read more.
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and inoculum age was evaluated in the vapor phase. In Petri dish screening, the influence of different EO volumes (5, 7.5, and 10 μL) on the microbial growth lag phase was investigated, and the growth inhibition period was established. The most effective treatment (10 μL EO) was then scaled up in a glass airtight container of 2650 cm3; a cold diffusion method was applied in order to quickly reach the maximum concentration of active compounds in the vapor phase. These tests demonstrated that EO efficacy is affected by the inoculum age and the contact time, and that the treatment should be performed as early as is feasible. A mycostatic effect was confirmed to be proportional to the utilized EO volume and independent from the treatment method. The information obtained in the present work will be applied to the set-up of an EO treatment in a library characterized by different levels of air contamination. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 185
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 739 KiB  
Review
Research and Prospects of Airtightness of Biological Laboratory Enclosures: Influencing Factors and Evaluation Methods
by Geqing Peng, Xiaoshuang Shi, Ruihan Hu, Xiaoli Wang and Jinsheng Zhan
Buildings 2025, 15(13), 2314; https://doi.org/10.3390/buildings15132314 - 1 Jul 2025
Viewed by 384
Abstract
The airtightness of enclosures in biological laboratories is paramount for effective isolation between internal and external environments, ensuring containment of hazardous pathogens and mitigating accidental release risks. Consequently, studying and enhancing the airtightness of these enclosures significantly contributes to maintaining laboratory safety, safeguarding [...] Read more.
The airtightness of enclosures in biological laboratories is paramount for effective isolation between internal and external environments, ensuring containment of hazardous pathogens and mitigating accidental release risks. Consequently, studying and enhancing the airtightness of these enclosures significantly contributes to maintaining laboratory safety, safeguarding personnel health, and preventing disease. This paper examines the critical role of the enclosure structure in biological laboratories and how airtightness impacts the laboratory environment. It analyzes the current state of research on the airtightness of high-level biological laboratory enclosures, drawing on domestic and international sources. This includes exploring issues and challenges related to material properties, process methods, and evaluation methods for the airtightness of concrete structural materials as well as steel structures. The paper also studies the airtightness of enclosure structures of biological laboratories, highlighting the shortcomings in this important field of research and its future prospects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2841 KiB  
Article
Evaluation of New Passive Heating Systems for Low-Cost Greenhouses in a Mild-Winter Area
by Santiago Bonachela, María Cruz Sánchez-Guerrero, Juan Carlos López, Evangelina Medrano and Joaquín Hernández
Horticulturae 2025, 11(7), 752; https://doi.org/10.3390/horticulturae11070752 - 1 Jul 2025
Viewed by 256
Abstract
The main objective of this work was to evaluate new variants of passive heating systems used for horticultural crop cycles planted in the cold period in low-cost greenhouses on the Mediterranean Spanish coast (a mild-winter area). The double low cover (DLC) is variant [...] Read more.
The main objective of this work was to evaluate new variants of passive heating systems used for horticultural crop cycles planted in the cold period in low-cost greenhouses on the Mediterranean Spanish coast (a mild-winter area). The double low cover (DLC) is variant of the conventional fixed plastic screen that reduces the air volume and increases the airtightness around crops. Three identical DLCs were installed inside a typical greenhouse, and the microclimate measured in the three DLCs was similar. The DLCs reduced the solar radiation transmissivity coefficient by around 0.05 but increased the mean daily substrate and air temperatures (up to 1.6 and 3.6 °C, respectively). They also modified the air humidity, although this can be modulated by opening the vertical sheets located on the greenhouse aisles (DLC vents). The black plastic mulch forming an air chamber around the substrate bags (BMC), a new mulch variant used in substrate-grown crops, increased the substrate temperature with respect to the conventional black mulch covering the entire ground surface. The combination of BMC plus DLC increased the mean daily substrate temperature by up to 2.9 °C, especially at night. Low tunnels covered with transparent film and with a spun-bonded fabric sheet were also compared, and both materials were efficient heating systems regarding substrate and air temperatures. Low tunnels combined with the DLC substantially increased air humidity, but this can be partially offset by opening the DLC vents. The combination of low tunnels and DLC does not seem recommendable for greenhouse crops planted in winter, since both systems reduce solar radiation transmissivity. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Graphical abstract

15 pages, 2017 KiB  
Article
Assessment of Harmful Emissions from Multiple Binder Systems in Pilot-Scale Sand Casting
by Erika Garitaonandia, Andoni Ibarra, Angelika Kmita, Rafał Dańko and Mariusz Holtzer
Molecules 2025, 30(13), 2765; https://doi.org/10.3390/molecules30132765 - 27 Jun 2025
Viewed by 295
Abstract
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests [...] Read more.
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests for the production of 60 kg iron alloy castings in 110 kg sand molds. The molds were evaluated under two configurations: homogeneous systems, where both mold and cores were manufactured using the same binder (five trials), and heterogeneous systems, where different binders were used for mold and cores (four trials). Each mold was placed in a metallic box fitted with a lid and an integrated gas extraction duct. The lid remained open during pouring and was closed immediately afterward to enable efficient evacuation of casting gases through the extraction system. Although the box was not completely airtight, it was designed to direct most exhaust gases through the duct. Along the extraction system line, different sampling instruments were strategically located for the precise measurement of contaminants: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenol, multiple forms of particulate matter (including crystalline silica content), and gases produced during pyrolysis. Across the nine trials, inorganic binders demonstrated significant reductions in gas emissions and priority pollutants, achieving decreases of over 90% in BTEX compounds (benzene, toluene, ethylbenzene, and xylene) and over 94% in PAHs compared to organic systems. Gas emissions were also substantially reduced, with CO emissions lowered by over 30%, NOx by more than 98%, and SO2 by over 75%. Conducted under the Greencasting LIFE project (LIFE 21 ENV/FI/101074439), this work provides empirical evidence supporting sodium silicate and geopolymer binders as viable, sustainable solutions for minimizing occupational and ecological risks in metal casting processes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

31 pages, 2557 KiB  
Systematic Review
The Research Review on Life Cycle Carbon Emissions in the Operational Process of Modular Buildings
by Yupei Hu, Luyao Xiang and Kai Shang
Buildings 2025, 15(12), 2085; https://doi.org/10.3390/buildings15122085 - 17 Jun 2025
Viewed by 636
Abstract
Climate change has intensified scrutiny of the building sector, a major source of global greenhouse gas emissions. Modular construction, recognized for its environmental, economic, and social benefits, is increasingly regarded as a key strategy to achieve sustainability goals. This study systematically reviews literature [...] Read more.
Climate change has intensified scrutiny of the building sector, a major source of global greenhouse gas emissions. Modular construction, recognized for its environmental, economic, and social benefits, is increasingly regarded as a key strategy to achieve sustainability goals. This study systematically reviews literature from 2005 to 2025 on life cycle carbon emissions (CEs) during the operational phase of modular buildings, using the PRISMA model. A comprehensive search of Scopus, ScienceDirect, Web of Science (WoS), and relevant institutional databases yielded 1131 records, from which 34 studies were selected based on defined inclusion criteria. These studies span residential, commercial, and public buildings across Asia, North America, Europe, and Australia. Findings reveal that while carbon impacts during the construction phase of modular buildings are well documented, research on the operational phase remains limited due to data scarcity and methodological complexity. Since operational emissions typically exceed 60% of total life cycle emissions, and modular buildings offer advantages in airtightness, precision, and passive design integration, they hold significant potential for reducing emissions. This study calls for enhanced integration of technological innovation and policy incentives to support operational decarbonization and contribute to global carbon neutrality efforts. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 7923 KiB  
Article
Prediction of Airtightness Performance of Stratospheric Ships Based on Multivariate Environmental Time-Series Data
by Yitong Bi, Wenkuan Xu, Lin Song, Molan Yang and Xiangqiang Zhang
Forecasting 2025, 7(2), 28; https://doi.org/10.3390/forecast7020028 - 12 Jun 2025
Viewed by 489
Abstract
This study addresses the challenge of predicting the airtightness of stratospheric airship envelopes, a critical factor influencing flight performance. Traditional ground-based airtightness tests often rely on limited resources and empirical formulas. To overcome these limitations, this paper explores the use of predictive models [...] Read more.
This study addresses the challenge of predicting the airtightness of stratospheric airship envelopes, a critical factor influencing flight performance. Traditional ground-based airtightness tests often rely on limited resources and empirical formulas. To overcome these limitations, this paper explores the use of predictive models to integrate multi-source test data, enhancing the accuracy of airtightness assessments. A performance comparison of various prediction models was conducted using ground-based test data from a specific stratospheric airship. Among the models evaluated, the NeuralProphet model demonstrated superior accuracy in long-term airtightness predictions, effectively capturing time-series dependencies and spatial interactions with environmental conditions. This work introduces an innovative approach to modeling airtightness, providing both experimental and theoretical contributions to the field of stratospheric airship performance prediction. Full article
Show Figures

Figure 1

26 pages, 2613 KiB  
Article
A Cognitive Load Assessment Method for Airtight Cabin Operators Based on a One-Dimensional Convolutional Neural Network
by Lei Wang, Jingluan Wang, Dengkai Chen and Jie Song
Symmetry 2025, 17(6), 915; https://doi.org/10.3390/sym17060915 - 10 Jun 2025
Viewed by 354
Abstract
Airtight cabins with highly complex human–machine systems impose an excessive cognitive load on operators. However, the traditional cognitive load assessment methods often cannot fully extract physiological features such as electroencephalogram and electrocardiogram signals, relying heavily on artificial feature extraction. Therefore, this study proposes [...] Read more.
Airtight cabins with highly complex human–machine systems impose an excessive cognitive load on operators. However, the traditional cognitive load assessment methods often cannot fully extract physiological features such as electroencephalogram and electrocardiogram signals, relying heavily on artificial feature extraction. Therefore, this study proposes an evaluation method based on a one-dimensional convolutional neural network to evaluate the cognitive load of airtight cabin workers. This evaluation method preprocesses and intercepts raw physiological signals such as electroencephalogram and electrocardiogram signals and then inputs them into the model for evaluation. The experimental results demonstrate that the training accuracy rate of the one-dimensional convolutional neural network is 97.6%, and the test classification accuracy rate is 86.5%. Despite sample size limitations, the proposed method demonstrates valid effectiveness in this study. Finally, taking a manned submersible as an example, cognitive load in different difficult tasks is identified, evaluated, and classified. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Computer-Aided Industrial Design)
Show Figures

Figure 1

30 pages, 9217 KiB  
Article
Navigating Energy Efficiency and Mould Risk in Australian Low-Rise Homes: A Comparative Analysis of Nine External Wall Systems in Southeast Australia
by Liqun Guan, Mark Dewsbury, Louise Wallis and Hartwig Kuenzel
Energies 2025, 18(11), 2843; https://doi.org/10.3390/en18112843 - 29 May 2025
Viewed by 877
Abstract
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall [...] Read more.
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall systems within southeastern Australia. More than 8000 hygrothermal and bio-hygrothermal simulations were completed to evaluate seasonal moisture patterns and calculate mould growth potential for nine typical external wall systems. Results reveal that the combination of increased thermal insulation and air-tightness measures between the 2010 and 2022 specified building envelope energy efficiency regulations further increased predicted Mould Index values, particularly in cool-temperate climates. This was in part due to insufficient moisture management requirements, like an air space between the cladding and the weather resistive layer and/or the low-water vapour permeability of exterior weather resistive pliable membranes. By contrast, warmer temperate climates and drier cool-temperate climates exhibit consistently lower calculated Mould Index values. Despite the 2022 requirement for a greater water vapour-permeance of exterior pliable membranes, the external walls systems explored in this research had a higher calculated Mould Index than the 2010 regulatory compliant external wall systems. Lower air change rates significantly increased calculated interstitial mould growth risk, while the use of interior vapour control membranes proved effective in its mitigation for most external wall systems. The addition of ventilated cavity in combination with either or both an interior vapour control membrane and a highly vapour-permeable exterior pliable membranes further reduced risk. The findings underscore the need for tailored, climate-responsive design interventions to minimise surface and interstitial mould growth risk and building durability, whilst achieving high performance external wall systems. Full article
Show Figures

Figure 1

22 pages, 5204 KiB  
Article
Ventilation Strategies for Deep Energy Renovations of High-Rise Apartment Buildings: Energy Efficiency and Implementation Challenges
by Anti Hamburg, Ülar Palmiste, Alo Mikola and Targo Kalamees
Energies 2025, 18(11), 2785; https://doi.org/10.3390/en18112785 - 27 May 2025
Viewed by 743
Abstract
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of [...] Read more.
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of different mechanical ventilation solutions with heat recovery, including centralized and decentralized balanced ventilation with heat recovery, single-room ventilation units, and mechanical extract ventilation with heat pump heat recovery or without heat recovery. An onsite survey revealed significant deficiencies in existing ventilation systems, such as airtight window installations without dedicated fresh air valves, misaligned and decayed exhaust shafts, and inadequate extract airflow in kitchens and bathrooms. SWOT analyses for each system highlighted their strengths, weaknesses, opportunities, and threats, providing valuable insights for decision-makers. The results indicate that while centralized and decentralized mechanical ventilation with heat recovery enhances energy efficiency and indoor air quality in high-rise multifamily apartment buildings, challenges such as high installation costs, maintenance complexity, and architectural constraints must be addressed. Heat recovery with exhaust air heat pumps is a viable alternative for high-rise apartment buildings when more efficient options are not feasible. Full article
(This article belongs to the Special Issue Recent Challenges in Buildings Ventilation and Indoor Air Quality)
Show Figures

Figure 1

15 pages, 8131 KiB  
Article
Utilizing Fly Ash from Coal-Fired Power Plants to Join ZrO2 and Crofer by Reactive Air Brazing
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2025, 18(9), 1956; https://doi.org/10.3390/ma18091956 - 25 Apr 2025
Viewed by 434
Abstract
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions [...] Read more.
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions in heterogeneous reactive air brazing (RAB) of the ZrO2 and Crofer alloy. The Ag-rich phase dominates the brazed zone. The interfacial reaction layers contain oxidation of the Cu-Ti coating layer, Crofer alloy, and the Si/Al-rich oxides from the fly ash particles. The 5% fly ash RAB joint maintained airtightness for 280 h under 2 psig helium at room temperature. When the test temperature was raised to 600 °C for 24 h, the pressure of the joint assembly still did not drop. When the fly ash addition was increased to 10 wt%, the joint assembly was no longer leak-free at room temperature. Many visible voids and cracks exist in the brazed zone and at the ZrO2/braze and braze/Crofer interfaces. A high volume fraction of the fly ash particles results in many brittle Si/Al-rich oxides in the joint after RAB, and the fracture of these oxides significantly deteriorates the airtightness of the joint. This study shows the feasibility and potential of introducing 5 wt% fly ash particles to the Ag-rich paste filler during the RAB of ZrO2 and Crofer for airtight applications. Full article
Show Figures

Figure 1

23 pages, 720 KiB  
Article
Global Solutions for Sustainable Heating, Ventilation, Air Conditioning, and Refrigeration Systems and Their Suitability to the New Zealand Market
by Nicholas Andrew Harvey and Eziaku Onyeizu Rasheed
Energies 2025, 18(9), 2190; https://doi.org/10.3390/en18092190 - 25 Apr 2025
Viewed by 545
Abstract
This paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load [...] Read more.
This paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load required by a structure are detailed. These technologies or solutions were then presented to heating, ventilation, air conditioning and refrigeration industry professionals in New Zealand to determine their viability and further establish market readiness towards integrating new, innovative, and sustainable solutions in New Zealand. A literature review was conducted to establish the performance of the selected solutions and understand their operational principles and the efficiency they provided. Qualitative research and data collected via semi-structured interviews provided the data for assessing the viability of the selected technologies in the New Zealand market. Following a thematic and hybrid-thematic analysis of the data, the technologies were ranked, and suggestions were made to help improve innovation and energy efficiency in the heating, ventilation, air conditioning, and refrigeration industry in New Zealand. Of the technologies selected, airtightness, heat recovery ventilation retrofits, materials and design principles, and photovoltaic hot water heating were identified as the most viable. The New Zealand market was deemed not to be in a good position to adopt new or alternative solutions. The main issues affecting New Zealand’s market readiness to assimilate innovative and energy-efficient solutions are a lack of new technologies, poor standards of education throughout the industry, a lack of regulation, and a lack of government incentives. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
Show Figures

Figure 1

25 pages, 6196 KiB  
Article
Development and Analysis of Easy-to-Implement Green Retrofit Technologies for Windows to Reduce Heating Energy Use in Older Residential Buildings
by Sukjoon Oh, Hosang Ahn, Minjung Bae and Jaesik Kang
Sustainability 2025, 17(8), 3307; https://doi.org/10.3390/su17083307 - 8 Apr 2025
Cited by 1 | Viewed by 849
Abstract
Green remodeling and retrofitting are effective strategies for enhancing the sustainability of existing buildings. While green remodeling involves significant structural modifications, green retrofitting typically focuses on improving energy efficiency and reducing environmental impact. However, easy-to-implement green retrofit technologies can be particularly valuable for [...] Read more.
Green remodeling and retrofitting are effective strategies for enhancing the sustainability of existing buildings. While green remodeling involves significant structural modifications, green retrofitting typically focuses on improving energy efficiency and reducing environmental impact. However, easy-to-implement green retrofit technologies can be particularly valuable for low-income communities, offering a more affordable way to upgrade residences without extensive renovations. This paper analyzed the effectiveness of newly developed, easy-to-implement green retrofit technologies for windows in reducing heating energy use and greenhouse gas emissions. We conducted experiments using secondary glazing and windproof materials to enhance the thermal insulation and air-tightness performance of a residential building. Subsequently, we simulated the effectiveness of these green retrofit technologies under various conditions for residential buildings. In addition, we analyzed utility bills using data collected from residents. Our findings demonstrated an average reduction of 10–15% in heating energy consumption through the implementation of these green retrofit technologies for windows in older residential buildings. Full article
(This article belongs to the Special Issue Sustainable Building Decarbonization)
Show Figures

Figure 1

Back to TopTop