Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = airborne sound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3500 KiB  
Article
Effect of Window Structure and Mounting on Sound Insulation: A Laboratory-Based Study
by Leszek Dulak and Artur Nowoświat
Sustainability 2025, 17(15), 6892; https://doi.org/10.3390/su17156892 - 29 Jul 2025
Viewed by 177
Abstract
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to [...] Read more.
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to determine the impact of construction details and installation techniques on sound insulation, specifically Rw and Rw + Ctr values. The experimental variables included mounting methods (expansion tape versus low-pressure polyurethane foam), the presence or absence of a threshold in the lower frame, and the type of mullion (fixed versus movable). The tests involved two types of IGUs characterized by different acoustic properties. The findings indicate that the frame configuration, including threshold and mullion type, has a negligible influence on sound insulation. However, the standard method for estimating acoustic performance (EN 14351-1:2006 + A2:2017), which relies on IGU-based data, proved unreliable for modern window assemblies. The estimated values of Rw and Rw + Ctr were consistently lower than those obtained from direct laboratory measurements. These results highlight the need for verification through full-size window testing and suggest that reliance on simplified estimation procedures may lead to underperformance in real-world acoustic applications. Full article
(This article belongs to the Special Issue Advancements in Green Building Materials, Structures, and Techniques)
Show Figures

Figure 1

19 pages, 6101 KiB  
Article
Modern Capabilities of Semi-Airborne UAV-TEM Technology on the Example of Studying the Geological Structure of the Uranium Paleovalley
by Ayur Bashkeev, Alexander Parshin, Ilya Trofimov, Sergey Bukhalov, Danila Prokhorov and Nikolay Grebenkin
Minerals 2025, 15(6), 630; https://doi.org/10.3390/min15060630 - 10 Jun 2025
Cited by 1 | Viewed by 426
Abstract
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as [...] Read more.
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as minimizing problems in cases where the pedestrian walkability of the site is a challenge. Lightweight and cheap UAV systems with a take-off weight in the low tens of kilograms are unable to carry a powerful current source; therefore, semi-airborne systems with a ground transmitter (an ungrounded loop or grounded at the ends of the line) and a measuring system towed on a UAV are becoming more and more widespread. This paper presents the results for a new generation of semi-airborne technology SibGIS UAV-TEMs belonging to the “line-loop” type and capable of realizing the transient/time-domain (TEM) electromagnetics method used for studying a uranium object of the paleovalley type. Objects of this type are characterized by a low resistivity of the ore zone located in relatively high-resistivity host rocks and, from the position of the geoelectric structure, can be considered a good benchmark for assessing the capabilities of different electrical exploration technologies in general. The aeromobile part of the geophysical system created is implemented on the basis of a hexacopter carrying a measuring system with an inductive sensor, an analog of a 50 × 50 m loop, an 18-bit ADC with satellite synchronization, and a transmitter. The ground part consists of a galvanically grounded supply line and a current source with a transmitter creating multipolar pulses of quasi-DC current in the line. The survey is carried out with a terrain drape based on a satellite digital terrain model. The article presents the results obtained from the electromagnetic soundings in comparison with the reference (drilled) profile, convincingly proving the high efficiency of UAV-TEM. This approach to pre-processing UAV–electrospecting data is described with the aim of improving data quality by taking into account the movement and swaying of the measuring system’s sensor. On the basis of the real data obtained, the sensitivity of the created semi-airborne system was modeled by solving a direct problem in the class of 3D models, which allowed us to evaluate the effectiveness of the method in relation to other geological cases. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

21 pages, 2572 KiB  
Article
Acoustic Measurements and Simulations on Yachts: An Evaluation of Airborne Sound Insulation
by Michele Rocca, Francesca Di Puccio, Paola Forte, Francesco Fidecaro, Francesco Artuso, Simon Kanka and Francesco Leccese
J. Mar. Sci. Eng. 2025, 13(5), 988; https://doi.org/10.3390/jmse13050988 - 20 May 2025
Cited by 1 | Viewed by 504
Abstract
The perceived acoustic comfort on board modern yachts has recently been the subject of specific attention by the most important classification societies, which have issued new guidelines and regulations for the evaluation of noise and vibrations. The evaluation of the acoustic insulation performance [...] Read more.
The perceived acoustic comfort on board modern yachts has recently been the subject of specific attention by the most important classification societies, which have issued new guidelines and regulations for the evaluation of noise and vibrations. The evaluation of the acoustic insulation performance of the internal partitions of yachts is, therefore, a very current topic. The estimation of the acoustic performance of internal partitions can be very complex; on the one hand, on-board measurements can be extremely difficult, but on the other hand, manual or software calculation is extremely complex or potentially affected by non-negligible errors, which is also due to the high amount of highly detailed information required. This paper explores the possibility of using simplified models, commonly used in building construction, to determine the acoustic insulation of the internal partitions of yachts in the design phase, without having to resort, even from the beginning, to very advanced calculation tools such as those based on the Finite Elements Method or Statistical Energy Analysis. Using a 44 m yacht as a case study, this paper presents the results of a series of acoustic simulations of single partitions and compares them with the results of an on-board measurement campaign. From the comparison of the obtained results, it was possible to state that the simulations of single partitions (therefore, those not of the whole vessel) can be useful in the design phase to verify compliance with the acoustic requirements requested by the classification societies. Considering that the propagation of sound and vibrations through the structures is a determining factor for the correct acoustic design of the vessel and therefore for the achievement of adequate levels of acoustic comfort, the analysis with simplified models (which consider the single partition) can be extremely useful in the preliminary phase of the design process. Subsequently, starting from the data acquired in the first simulation phase, it is possible to proceed with more complex simulations of specific situations and of the whole vessel. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 16538 KiB  
Article
Attempts at Pseudo-Inverse Vibro-Acoustics by Means of SLDV-Based Full-Field Mobilities
by Alessandro Zanarini
Machines 2025, 13(4), 324; https://doi.org/10.3390/machines13040324 - 16 Apr 2025
Viewed by 425
Abstract
Lightweight components can have structural integrity and reliability concerns, coming from dynamic airborne pressure fields. Hardly tuned numerical structural models may enter into vibro-acoustic simulations of the pressure fields radiated by vibrating plates, potentially masking the forecast of severe outputs. Instead, this paper [...] Read more.
Lightweight components can have structural integrity and reliability concerns, coming from dynamic airborne pressure fields. Hardly tuned numerical structural models may enter into vibro-acoustic simulations of the pressure fields radiated by vibrating plates, potentially masking the forecast of severe outputs. Instead, this paper proposes—for the direct and inverse vibro-acoustic approaches—to characterise the broad frequency band structural dynamics of radiating surfaces by means of experiment-based full-field contactless techniques, with increased spatial resolution, but without the inertia-related distortions of traditional measurement transducers. The SLDV-based mobilities bring the real-life behaviour of the component into the vibro-acoustic simulations, with the actual realisation-related complete structural dynamics and broad frequency band excitation. The paper aims at assessing the procedure for the estimation, in the whole spectrum, of the airborne force, which can be transmitted by an airborne pressure field to known structural locations. The simulation tools revisit the simple Rayleigh integral approximation of sound radiation from a vibrating surface, a real thin flat plate, describable by SLDV-based complex-valued full-field mobilities. Airborne pressure fields and excitation forces concern the early attempts of direct and pseudo-inverse vibro-acoustics. Details, examples and considerations about the whole procedures are thoroughly provided: on the simulation of the vibro-acoustic transfer matrix and of the radiated sound pressures with given excitation forces; on the retrieval of the airborne forces in restraining locations, together with the assessment of the numerical precision of the retrieving procedure. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

18 pages, 4429 KiB  
Article
Composition and Dynamics of the Sonosphere Along a Soil-Surface Ecotone at an Agricultural Site in Northern Italy: A Preliminary Approach
by Almo Farina and Timothy C. Mullet
Geosciences 2025, 15(2), 34; https://doi.org/10.3390/geosciences15020034 - 21 Jan 2025
Viewed by 763
Abstract
Investigating the sonosphere can serve as a valuable proxy for understanding various ecosystem processes. Consequently, an ecoacoustic perspective broadens our capacity to understand how airborne sounds interact along an ecotone at the soil surface with the subterranean sounds generated within a pedon. We [...] Read more.
Investigating the sonosphere can serve as a valuable proxy for understanding various ecosystem processes. Consequently, an ecoacoustic perspective broadens our capacity to understand how airborne sounds interact along an ecotone at the soil surface with the subterranean sounds generated within a pedon. We explored techniques that could detect, quantify, and analyze the sonic dimensions of a sonosphere in the form of sounds within a unit of soil (sonopedon), sounds from a landscape unit (sonotope), and the sonic ecotone (sonotone) where these phenomena converge. We recorded sounds for 24 h over 20 days in September 2024 at 40 sites distributed evenly across a small rural parcel of agricultural land in Northern Italy. We utilized a sound recording device fabricated with a sonic probe that simultaneously operated inside the soil and the grounds’ surface, which successfully captured sounds attributable both to the soilscape and to the landscape. We calculated the Sonic Heterogeneity Indices, SHItf and SHIft, and analyzed the Spectral and Temporal Sonic Signatures along with Spectral Sonic Variability, Effective Number of Frequency Bins, and Sonic Dissimilarity. Each calculation contributed to a detailed description of how the sonosphere is characterized across the frequency spectrum, temporal dynamics, and sound sources. The sonosphere in our study area, primarily characterized by the low-frequency spectra, possessed a mix of biological, geophysical, and anthropogenic sounds displaying distinct temporal patterns (sonophases) that coincided with astronomic divisions of the day (daytime, twilights, and nighttime). Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

29 pages, 19709 KiB  
Article
Surveying Nearshore Bathymetry Using Multispectral and Hyperspectral Satellite Imagery and Machine Learning
by David Hartmann, Mathieu Gravey, Timothy David Price, Wiebe Nijland and Steven Michael de Jong
Remote Sens. 2025, 17(2), 291; https://doi.org/10.3390/rs17020291 - 15 Jan 2025
Viewed by 1692
Abstract
Nearshore bathymetric data are essential for assessing coastal hazards, studying benthic habitats and for coastal engineering. Traditional bathymetry mapping techniques of ship-sounding and airborne LiDAR are laborious, expensive and not always efficient. Multispectral and hyperspectral remote sensing, in combination with machine learning techniques, [...] Read more.
Nearshore bathymetric data are essential for assessing coastal hazards, studying benthic habitats and for coastal engineering. Traditional bathymetry mapping techniques of ship-sounding and airborne LiDAR are laborious, expensive and not always efficient. Multispectral and hyperspectral remote sensing, in combination with machine learning techniques, are gaining interest. Here, the nearshore bathymetry of southwest Puerto Rico is estimated with multispectral Sentinel-2 and hyperspectral PRISMA imagery using conventional spectral band ratio models and more advanced XGBoost models and convolutional neural networks. The U-Net, trained on 49 Sentinel-2 images, and the 2D-3D CNN, trained on PRISMA imagery, had a Mean Absolute Error (MAE) of approximately 1 m for depths up to 20 m and were superior to band ratio models by ~40%. Problems with underprediction remain for turbid waters. Sentinel-2 showed higher performance than PRISMA up to 20 m (~18% lower MAE), attributed to training with a larger number of images and employing an ensemble prediction, while PRISMA outperformed Sentinel-2 for depths between 25 m and 30 m (~19% lower MAE). Sentinel-2 imagery is recommended over PRISMA imagery for estimating shallow bathymetry given its similar performance, much higher image availability and easier handling. Future studies are recommended to train neural networks with images from various regions to increase generalization and method portability. Models are preferably trained by area-segregated splits to ensure independence between the training and testing set. Using a random train test split for bathymetry is not recommended due to spatial autocorrelation of sea depth, resulting in data leakage. This study demonstrates the high potential of machine learning models for assessing the bathymetry of optically shallow waters using optical satellite imagery. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

14 pages, 2225 KiB  
Article
Assessment of Indoor Classroom Environment Quality Associated with Student Sleepiness: Pathways Towards a Sustainable Environment Through a Pilot Study
by Alexandro Andrade, Anderson D’Oliveira, Joaquim Henrique Lorenzetti Branco, Aldo Russi, Luca Stabile and Giorgio Buonanno
Sustainability 2025, 17(2), 506; https://doi.org/10.3390/su17020506 - 10 Jan 2025
Viewed by 1428
Abstract
Student sleepiness during classes is a frequently reported condition that can impair performance in the teaching–learning process and is even unsustainable for health. Although the environmental quality of the classroom may affect the students’ sleepiness, studies that exhaustively investigate the relationship between indoor [...] Read more.
Student sleepiness during classes is a frequently reported condition that can impair performance in the teaching–learning process and is even unsustainable for health. Although the environmental quality of the classroom may affect the students’ sleepiness, studies that exhaustively investigate the relationship between indoor environmental quality (IEQ) and sleepiness levels in classrooms are lacking. To this end, in the present paper, we carried out an experimental pilot study involving twenty-seven Italian adolescent students to determine the increase in their sleepiness rate during the school period utilizing the Epworth Sleepiness Scale (ESS). The analysis was performed in a classroom in which the indoor environmental quality was monitored, including measurements of the thermal comfort, sound pressure level, illuminance, carbon dioxide (CO2) concentrations, and airborne particle concentrations (both sub-micrometric particles and PM10). Three measurement days were considered. The results showed that student sleepiness significantly increased during the school period (Day 1 p = 0.00, Day 2 p = 0.03, and Day 3 p = 0.03). This increase was observed on measurement days characterized as having both perceived higher and lower thermal comfort and even in the presence of limited exposure to airborne particle concentrations, presenting an association with the high indoor concentration of CO2 detected in the classroom (Day 1 between 978 and 3261 ppm; Day 2 between 1044 and 2338 ppm; Day 3 between 1116 and 2623 ppm), due to reduced ventilation rates and the students’ sleepiness. Thus, the findings suggest that adequate ventilation rates can limit the increase in the rate of sleepiness, indicating, from our pilot study, that recommendations of sustainable environmental practices through comprehensive feasibility studies can promote positive changes in indoor environments such as classrooms. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Graphical abstract

26 pages, 1667 KiB  
Article
A Design Methodology Incorporating a Sound Insulation Prediction Model, Life Cycle Assessment (LCA), and Thermal Insulation: A Comparative Study of Various Cross-Laminated Timber (CLT) and Ribbed CLT-Based Floor Assemblies
by Mohamad Bader Eddin, Sylvain Ménard, Bertrand Laratte and Tingting Vogt Wu
Acoustics 2024, 6(4), 1021-1046; https://doi.org/10.3390/acoustics6040056 - 25 Nov 2024
Cited by 1 | Viewed by 2114
Abstract
Mass timber is increasingly being employed in constructing low- and mid-rise buildings. One of the primary reasons for using mass timber structures is their sustainability and ability to reduce environmental consequences in the building sector. One criticism of these structures is their lower [...] Read more.
Mass timber is increasingly being employed in constructing low- and mid-rise buildings. One of the primary reasons for using mass timber structures is their sustainability and ability to reduce environmental consequences in the building sector. One criticism of these structures is their lower subjective sound insulation quality. Therefore, acoustic treatments should be considered. However, acoustic solutions do not necessarily contribute to lower environmental impacts or improved thermal insulation performance. This paper discusses a design methodology that incorporates the development of a sound insulation prediction tool (using an artificial neural networks approach), life cycle assessment analysis, and thermal insulation study. A total of 112 sound insulation measurements (in one-third octave bands from 50 to 5000 Hz) are utilized to develop the network model and are also used for the LCA and thermal insulation study. They are lab-based measurements and are performed on 45 various CLT- and ribbed CLT-based assemblies. The acoustic model demonstrates satisfactory results with 1 dB differences in the prediction of airborne and impact sound indices (Rw and Ln,w). An acoustic sensitivity study and a statistical analysis are then conducted to validate the model’s results. Additionally, an LCA analysis is performed on the floor assemblies to calculate their environmental footprints. LCA categories are plotted against the acoustic performance of floors. No correlations are found, and the results emphasize that a wide range of sound insulation can be achieved with similar environmental impacts. Within each acoustic performance tier, the LCA results can be optimized for a floor assembly by selecting appropriate materials. The thermal insulation of floors is then calculated. Overall, a strong positive correlation is found between the total thermal resistance and heat loss against acoustic performance. Designers should be cognizant of the trade-offs between acoustic, thermal insulation, and environmental performance when choosing assemblies with favorable environmental impacts relative to acoustic and thermal insulation ratios. Full article
(This article belongs to the Special Issue Building Materials and Acoustics (2nd Edition))
Show Figures

Figure 1

12 pages, 6758 KiB  
Article
Evaluation of the Applicability of Waste Rubber in Insulation Panels with Regard to Its Grain Size and Panel Thickness
by Zdravko Cimbola, Anđelko Crnoja, Ivana Barišić and Ivanka Netinger Grubeša
Materials 2024, 17(21), 5251; https://doi.org/10.3390/ma17215251 - 28 Oct 2024
Cited by 1 | Viewed by 976
Abstract
This paper explores the effect of waste rubber grain size on the porosity, modulus of elasticity, thermal properties, and soundproofing performance of polymer composites with different thicknesses (10, 15, and 20 mm). All properties were tested in accordance with European standards, with the [...] Read more.
This paper explores the effect of waste rubber grain size on the porosity, modulus of elasticity, thermal properties, and soundproofing performance of polymer composites with different thicknesses (10, 15, and 20 mm). All properties were tested in accordance with European standards, with the exception of porosity, which was measured using Archimedes’ principle. The findings indicate that with a consistent amount of polyurethane glue, finer rubber grains result in composites with higher porosity, leading to a lower modulus of elasticity but enhanced thermal and sound insulation. In contrast, coarser rubber grains produced composites with lower porosity and a higher modulus of elasticity, though with slightly reduced thermal insulation and significantly worse soundproofing. A combination of fine and coarse rubber grains provided a balanced performance, offering both good thermal and sound insulation while maintaining a high modulus of elasticity. Among the thicknesses tested, 15 mm was identified as optimal, combining a relatively high modulus of elasticity, low thermal conductivity, and better airborne sound insulation index. Future research will focus on applying this composite in concrete building products that meet noise protection and energy efficiency standards. Full article
Show Figures

Figure 1

18 pages, 26341 KiB  
Article
The Historical Building and Room Acoustics of the Stockholm Public Library (1925–28, 1931–32)
by Patrick H. Fleming
Acoustics 2024, 6(3), 754-771; https://doi.org/10.3390/acoustics6030041 - 19 Aug 2024
Viewed by 2559
Abstract
The Stockholm Public Library was realized in two distinct phases of construction in the 1920s and early 1930s, and remains a well-known work in twentieth-century architecture, with a heritage status today. While previous studies have focused on the library’s architectural design, particularly its [...] Read more.
The Stockholm Public Library was realized in two distinct phases of construction in the 1920s and early 1930s, and remains a well-known work in twentieth-century architecture, with a heritage status today. While previous studies have focused on the library’s architectural design, particularly its lighting, acoustics were also an important aspect of the building’s design and construction. This study marks the first detailed investigation of the library’s architectural acoustics, with a suite of standard measurements performed to assess and characterize the library’s historical room and building acoustics. Reverberation time measurements in the library’s reading rooms yielded results of about 1.5–2 s for frequencies associated with speech. A significantly longer reverberation time of 5–6 s was measured in the library’s central rotunda, confirming a prominent acoustic issue in the library, where appropriate heritage discussions are needed in the future as the library undergoes a major renovation in the coming years. A comparison of the measured airborne and impact sound insulation of the 1920s and 1930s reading room ceilings also yielded interesting results. While the materials in library’s two construction periods are notably different, the airborne sound insulation performance of the 1920s and 1930s floors or ceilings was comparable and in line with contemporary standards. Impact sound insulation results from the 1920s and 1930s floors, however, differed significantly, with the latter displaying a relatively poor performance. Flanking transmission effects related to historical construction details and deviations from archival plans were investigated and discussed. This work emphasizes the practical and academic importance of conducting on-site measurements, and the close mutual development of modern architecture, construction, and architectural acoustics. Full article
(This article belongs to the Collection Historical Acoustics)
Show Figures

Figure 1

15 pages, 4158 KiB  
Article
Experimental Investigation on Building Sound Environment: Traffic-Induced Air Noise and Structure-Borne Noise
by Jialiang Chen, Lingshan He, Xuming Li, Bokai Zheng, Teng Wang, Dongyang Wang and Chao Zou
Buildings 2024, 14(8), 2380; https://doi.org/10.3390/buildings14082380 - 1 Aug 2024
Cited by 2 | Viewed by 2240
Abstract
The impact of urban traffic on human health is significant. This research conducts field measurements in Guangzhou, China, focusing on a building situated near subgrade roads and viaducts to investigate the characteristics of airborne and structure-borne noise generated by these infrastructures. The analysis [...] Read more.
The impact of urban traffic on human health is significant. This research conducts field measurements in Guangzhou, China, focusing on a building situated near subgrade roads and viaducts to investigate the characteristics of airborne and structure-borne noise generated by these infrastructures. The analysis involves the use of both sound pressure level and overall sound pressure level, as well as an examination of the transfer function between outdoor and indoor noise levels. The findings indicate that traffic-related airborne noise demonstrates a characteristic frequency at 1000 Hz in this scenario, while viaduct- and building-generated structure-borne noise is predominantly distributed at lower frequencies. Additionally, it is worth noting that structural vibrations generate significantly less energy compared to airborne traffic noise sources. The variation in outdoor road noise across different floors over the entire frequency range demonstrates an initial increase followed by a decrease with rising floor height due to air damping effects as well as sound barriers’ attenuation properties. These results enhance engineers’ understanding of urban traffic-induced airborne or structure-borne noise while establishing foundational data for designing layouts integrating urban buildings with roads. Full article
(This article belongs to the Special Issue Vibration Prediction and Noise Assessment of Building Structures)
Show Figures

Figure 1

14 pages, 5751 KiB  
Article
Study of Acoustic Prototypes Based on Plastic Cap Waste
by Romina Del Rey, José Enrique Crespo Amorós, Joan Escales Tur and Jesús Alba
Buildings 2024, 14(6), 1652; https://doi.org/10.3390/buildings14061652 - 4 Jun 2024
Cited by 1 | Viewed by 1899
Abstract
This paper presents the initial prototypes of solutions designed using plastic caps, seeking acoustic applications for both airborne sound insulation and the acoustic conditioning of rooms. Plastic caps are a waste product from the packaging sector and they constitute a major waste problem, [...] Read more.
This paper presents the initial prototypes of solutions designed using plastic caps, seeking acoustic applications for both airborne sound insulation and the acoustic conditioning of rooms. Plastic caps are a waste product from the packaging sector and they constitute a major waste problem, given that, if they are not attached to the packaging, they get lost during the recycling cycle and end up in landfill. Finding an application for this waste that can provide acoustic improvements is a sustainable alternative. This paper shows the results of airborne sound insulation measurements obtained in a scaled transmission chamber and sound absorption measurements obtained in a scaled reverberation chamber for different combinations of single and double plastic caps and combinations with thin sheets of sustainable materials, such as jute weaving, textile waste, hemp felt and cork board. Tests have shown that obtaining sound reduction index values of up to 20 dB is possible with plastic cap configurations, or even up to 30 dB is possible at some frequencies with combinations of caps and certain eco-materials. With regard to the sound absorption coefficient tests, close to unity absorption values have been achieved with the appropriate configuration at frequencies that can also be selected. The results indicate that these panels can be eco-solutions for airborne sound insulation as lightweight elements, or they can be used for the conditioning of rooms, tailoring the sound absorption maximums to the desired frequencies. Full article
Show Figures

Figure 1

24 pages, 7830 KiB  
Article
Novel Learning of Bathymetry from Landsat 9 Imagery Using Machine Learning, Feature Extraction and Meta-Heuristic Optimization in a Shallow Turbid Lagoon
by Hang Thi Thuy Tran, Quang Hao Nguyen, Ty Huu Pham, Giang Thi Huong Ngo, Nho Tran Dinh Pham, Tung Gia Pham, Chau Thi Minh Tran and Thang Nam Ha
Geosciences 2024, 14(5), 130; https://doi.org/10.3390/geosciences14050130 - 11 May 2024
Cited by 2 | Viewed by 2446
Abstract
Bathymetry data is indispensable for a variety of aquatic field studies and benthic resource inventories. Determining water depth can be accomplished through an echo sounding system or remote estimation utilizing space-borne and air-borne data across diverse environments, such as lakes, rivers, seas, or [...] Read more.
Bathymetry data is indispensable for a variety of aquatic field studies and benthic resource inventories. Determining water depth can be accomplished through an echo sounding system or remote estimation utilizing space-borne and air-borne data across diverse environments, such as lakes, rivers, seas, or lagoons. Despite being a common option for bathymetry mapping, the use of satellite imagery faces challenges due to the complex inherent optical properties of water bodies (e.g., turbid water), satellite spatial resolution limitations, and constraints in the performance of retrieval models. This study focuses on advancing the remote sensing based method by harnessing the non-linear learning capabilities of the machine learning (ML) model, employing advanced feature selection through a meta-heuristic algorithm, and using image extraction techniques (i.e., band ratio, gray scale morphological operation, and morphological multi-scale decomposition). Herein, we validate the predictive capabilities of six ML models: Random Forest (RF), Support Vector Machine (SVM), CatBoost (CB), Extreme Gradient Boost (XGB), Light Gradient Boosting Machine (LGBM), and KTBoost (KTB) models, both with and without the application of meta-heuristic optimization (i.e., Dragon Fly, Particle Swarm Optimization, and Grey Wolf Optimization), to accurately ascertain water depth. This is achieved using a diverse input dataset derived from multi-spectral Landsat 9 imagery captured on a cloud-free day (19 September 2023) in a shallow, turbid lagoon. Our findings indicate the superior performance of LGBM coupled with Particle Swamp Optimization (R2 = 0.908, RMSE = 0.31 m), affirming the consistency and reliability of the feature extraction and selection-based framework, while offering novel insights into the expansion of bathymetric mapping in complex aquatic environments. Full article
Show Figures

Figure 1

17 pages, 1481 KiB  
Article
Resolving the Loss of Intermediate-Size Speech Aerosols in Funnel-Guided Particle Counting Measurements
by Tayeb Kakeshpour and Adriaan Bax
Atmosphere 2024, 15(5), 570; https://doi.org/10.3390/atmos15050570 - 7 May 2024
Viewed by 1889
Abstract
Modeling of airborne virus transmission and protection against it requires knowledge of the amount of biofluid emitted into the atmosphere and its viral load. Whereas viral concentrations in biofluids are readily measured by quantitative PCR, the total volume of fluids aerosolized during speaking, [...] Read more.
Modeling of airborne virus transmission and protection against it requires knowledge of the amount of biofluid emitted into the atmosphere and its viral load. Whereas viral concentrations in biofluids are readily measured by quantitative PCR, the total volume of fluids aerosolized during speaking, as measured by different researchers using various technologies, differs by several orders of magnitude. We compared collection methods in which the aerosols first enter into a low-humidity chamber either by direct injection or via commonly used funnel and tubing arrangements, followed by standard optical particle sizer measurement. This “collect first, measure later” approach sacrifices the recording of the temporal correlation between aerosol generation and sound types such as plosives and vowels. However, the direct-injection mode prevents inertia deposition associated with the funnel arrangements and reveals far more intermediate-size (5–20 μm in diameter) particles that can dominate the total mass of ejected respiratory aerosol. The larger aerosol mass observed with our method partially reconciles the large discrepancy between the SARS-CoV-2 infectious dose estimated from superspreader event analyses and that from human challenge data. Our results also impact measures to combat airborne virus transmission because they indicate that aerosols that settle faster than good room ventilation rates can dominate this process. Full article
(This article belongs to the Special Issue Atmospheric Bioaerosols: Detection, Characterization and Modelling)
Show Figures

Figure 1

21 pages, 6495 KiB  
Article
Evaluation and Wind Field Detection of Airborne Doppler Wind Lidar with Automatic Intelligent Processing in North China
by Xu Zhang, Zhifeng Lin, Chunqing Gao, Chao Han, Lin Fan and Xinxi Zhao
Atmosphere 2024, 15(5), 536; https://doi.org/10.3390/atmos15050536 - 27 Apr 2024
Cited by 3 | Viewed by 1743
Abstract
Airborne wind measurement is of great significance for understanding atmospheric motion and meteorological monitoring. In this paper, we present the development and verification of an airborne Doppler wind lidar (ADWL), featuring an approach proposed to integrate a real-time wind retrieval method with an [...] Read more.
Airborne wind measurement is of great significance for understanding atmospheric motion and meteorological monitoring. In this paper, we present the development and verification of an airborne Doppler wind lidar (ADWL), featuring an approach proposed to integrate a real-time wind retrieval method with an intelligent processing method for automatic adaptive wind detection. Several verification experiments were conducted to evaluate the measurement effectiveness, including comparisons with a calibrated ground-based Doppler wind lidar (GDWL) and a sounding balloon. Compared with the sounding balloon, the ADWL demonstrated mean errors of 0.53 m/s for horizontal wind velocity and 4.60° for wind direction. The correlation coefficients consistently exceeded 0.98 in all linear analyses. Employed in multiple airborne wind detection events in North China at altitudes up to 6600 m, the ADWL provided effective wind field results with a vertical resolution of 50 m and a data rate of 2 Hz. The wind field results obtained during the detection events validate the ADWL’s capabilities in diverse environments and underscore its potential for the comprehensive detection of meteorological information. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop