Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = airborne disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3033 KiB  
Article
Mathematical Modelling of Upper Room UVGI in UFAD Systems for Enhanced Energy Efficiency and Airborne Disease Control: Applications for COVID-19 and Tuberculosis
by Mohamad Kanaan, Eddie Gazo-Hanna and Semaan Amine
Math. Comput. Appl. 2025, 30(4), 85; https://doi.org/10.3390/mca30040085 - 5 Aug 2025
Abstract
This study is the first to investigate the performance of ultraviolet germicidal irradiation (UVGI) in underfloor air distribution (UFAD) systems. A simplified mathematical model is developed to predict airborne pathogen transport and inactivation by upper room UVGI in UFAD spaces. The proposed model [...] Read more.
This study is the first to investigate the performance of ultraviolet germicidal irradiation (UVGI) in underfloor air distribution (UFAD) systems. A simplified mathematical model is developed to predict airborne pathogen transport and inactivation by upper room UVGI in UFAD spaces. The proposed model is substantiated for the SARS-CoV-2 virus as a simulated pathogen through a comprehensive computational fluid dynamics methodology validated against published experimental data of upper room UVGI and UFAD flows. Simulations show an 11% decrease in viral concentration within the upper irradiated zone when a 15 W louvered germicidal lamp is utilized. Finally, a case study on Mycobacterium tuberculosis (M. tuberculosis) bacteria is carried out using the validated simplified model to optimize the use of return air and UVGI implementation, ensuring acceptable indoor air quality and enhanced energy efficiency. Results reveal that the UFAD-UVGI system may consume up to 13.6% less energy while keeping the occupants at acceptable levels of M. tuberculosis concentration and UV irradiance when operated with 26% return air and a UVGI output of 72 W. Full article
Show Figures

Figure 1

22 pages, 13770 KiB  
Article
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning
by Jiazheng Zhu, Xize Huang, Xiaoyu Liang, Meng Wang and Yu Zhang
Plants 2025, 14(15), 2402; https://doi.org/10.3390/plants14152402 - 3 Aug 2025
Viewed by 209
Abstract
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into [...] Read more.
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into an epidemic under favorable environmental conditions. Accurate prediction and determination of the prevention and control period represent both a critical challenge and key focus area in managing rubber-tree powdery mildew. This study investigates the effects of spore concentration, environmental factors, and infection time on the progression of powdery mildew in rubber trees. By employing six distinct machine learning model construction methods, with the disease index of powdery mildew in rubber trees as the response variable and spore concentration, temperature, humidity, and infection time as predictive variables, a preliminary predictive model for the disease index of rubber-tree powdery mildew was developed. Results from indoor inoculation experiments indicate that spore concentration directly influences disease progression and severity. Higher spore concentrations lead to faster disease development and increased severity. The optimal relative humidity for powdery mildew development in rubber trees is 80% RH. At varying temperatures, the influence of humidity on the disease index differs across spore concentration, exhibiting distinct trends. Each model effectively simulates the progression of powdery mildew in rubber trees, with predicted values closely aligning with observed data. Among the models, the Kernel Ridge Regression (KRR) model demonstrates the highest accuracy, the R2 values for the training set and test set were 0.978 and 0.964, respectively, while the RMSE values were 4.037 and 4.926, respectively. This research provides a robust technical foundation for reducing the labor intensity of traditional prediction methods and offers valuable insights for forecasting airborne forest diseases. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

17 pages, 4148 KiB  
Article
Efficacy of Portable Fugitive Aerosol Mitigation Systems for Nebulizer Therapy During High-Flow Nasal Cannula and Non-Invasive Ventilation
by Adithya Shyamala Pandian, Bhavesh Patel, Karam Abi Karam, Amelia Lowell, Kelly McKay, Sabrina Jimena Mora, Piyush Hota, Gabriel Pyznar, Sandra Batchelor, Charles Peworski, David Rivas, Devang Sanghavi, Ngan Anh Nguyen, Aliaa Eltantawy, Xueqi Li, Xiaojun Xian, Michael Serhan and Erica Forzani
Emerg. Care Med. 2025, 2(3), 36; https://doi.org/10.3390/ecm2030036 - 29 Jul 2025
Viewed by 345
Abstract
Objectives: This study evaluates the efficacy of existing and new aerosol mitigation methods during nebulization (Neb) in combination with high-flow nasal cannula (HFNC) oxygen supplementation and non-invasive ventilation (NIV). Methods: We recorded fugitive aerosol particle concentrations over time and assessed the peak (P) [...] Read more.
Objectives: This study evaluates the efficacy of existing and new aerosol mitigation methods during nebulization (Neb) in combination with high-flow nasal cannula (HFNC) oxygen supplementation and non-invasive ventilation (NIV). Methods: We recorded fugitive aerosol particle concentrations over time and assessed the peak (P) and area (A) efficacy of active and passive mitigation methods, comparing them to a no-mitigation condition. Peak efficacy was measured by the reduction in maximum aerosol concentration, while area efficacy was quantified by the reduction of the area under the aerosol concentration–time curve. Results: For HFNC with Neb, we found that active mitigation using a mask with a biofilter and a fan (referred to as the aerosol barrier mask) significantly outperformed passive mitigation with a face mask. The peak and area efficacy for aerosol reduction were 99.0% and 96.4% for active mitigation and 35.9% and 7.6% for passive mitigation, respectively. For NIV with Neb, the active mitigation method, using a box with a biofilter and fan, also outperformed passive mitigation using only the box. The peak and area efficacy for aerosol reduction were 92.1% and 85.5% for active mitigation and 53.7.0% and 25.4% for passive mitigation, respectively. Conclusion: We concluded that active mitigation set up systems advantageous for effective reduction of airborne aerosols during aerosol generated procedures. Full article
Show Figures

Graphical abstract

36 pages, 3579 KiB  
Article
RNA Sequencing Reveals Inflammatory and Metabolic Changes in the Lung and Brain After Carbon Black and Naphthalene Whole Body Inhalation Exposure in a Rodent Model of Military Burn Pit Exposures
by Allison M. Haaning, Brian J. Sandri, Henry L. Wyneken, William T. Goldsmith, Joshua P. Nixon, Timothy R. Nurkiewicz, Chris H. Wendt, Paul Barach, Janeen H. Trembley and Tammy A. Butterick
Int. J. Mol. Sci. 2025, 26(15), 7238; https://doi.org/10.3390/ijms26157238 - 26 Jul 2025
Viewed by 562
Abstract
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. [...] Read more.
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. To investigate molecular mechanisms, adult male rats were exposed to filtered air, naphthalene (a representative volatile organic compound), or a combination of naphthalene and carbon black (surrogate for particulate matter; CBN) via whole-body inhalation (six hours/day, three consecutive days). Lung, brain, and plasma samples were collected 24 h after the final exposure. Pro-inflammatory biomarkers were assessed using multiplex electrochemiluminescence and western blot. Differentially expressed genes (DEGs) were identified by RNA sequencing, and elastic net modeling was used to define exposure-predictive gene signatures. CBN exposure altered inflammatory biomarkers across tissues, with activation of nuclear factor kappa B (NF-κB) signaling. In the lung, gene set enrichment revealed activated pathways related to proliferation and inflammation, while epithelial–mesenchymal transition (EMT) and oxidative phosphorylation were suppressed. In the brain, EMT, inflammation, and senescence pathways were activated, while ribosomal function and oxidative metabolism were downregulated. Elastic net modeling identified a lung gene signature predictive of CBN exposure, including Kcnq3, Tgfbr1, and Tm4sf19. These findings demonstrate that inhalation of a surrogate burn pit mixture induces inflammatory and metabolic gene expression changes in both lung and brain tissues, supporting the utility of this animal model for understanding systemic effects of airborne military toxicants and for identifying potential biomarkers relevant to DRRD and Veteran health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Viewed by 892
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

20 pages, 10320 KiB  
Article
Advancing Grapevine Disease Detection Through Airborne Imaging: A Pilot Study in Emilia-Romagna (Italy)
by Virginia Strati, Matteo Albéri, Alessio Barbagli, Stefano Boncompagni, Luca Casoli, Enrico Chiarelli, Ruggero Colla, Tommaso Colonna, Nedime Irem Elek, Gabriele Galli, Fabio Gallorini, Enrico Guastaldi, Ghulam Hasnain, Nicola Lopane, Andrea Maino, Fabio Mantovani, Filippo Mantovani, Gian Lorenzo Mazzoli, Federica Migliorini, Dario Petrone, Silvio Pierini, Kassandra Giulia Cristina Raptis and Rocchina Tisoadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(14), 2465; https://doi.org/10.3390/rs17142465 - 16 Jul 2025
Viewed by 394
Abstract
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease [...] Read more.
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease (Esca complex), crucial for preventing the disease from spreading to unaffected areas. Conducted over a 17 ha vineyard in the Forlì municipality in Emilia-Romagna (Italy), the aerial survey utilized a photogrammetric camera capturing centimeter-level resolution images of the whole area in 17 minutes. These images were then processed through an automated analysis leveraging RGB-based spectral indices (Green–Red Vegetation Index—GRVI, Green–Blue Vegetation Index—GBVI, and Blue–Red Vegetation Index—BRVI). The analysis scanned the 1.24 · 109 pixels of the orthomosaic, detecting 0.4% of the vineyard area showing evidence of disease. The instances, density, and incidence maps provide insights into symptoms’ spatial distribution and facilitate precise interventions. High specificity (0.96) and good sensitivity (0.56) emerged from the ground field observation campaign. Statistical analysis revealed a significant edge effect in symptom distribution, with higher disease occurrence near vineyard borders. This pattern, confirmed by spatial autocorrelation and non-parametric tests, likely reflects increased vector activity and environmental stress at the vineyard margins. The presented pilot study not only provides a reliable detection tool for grapevine diseases but also lays the groundwork for an early warning system that, if extended to larger areas, could offer a valuable system to guide on-the-ground monitoring and facilitate strategic decision-making by the authorities. Full article
Show Figures

Figure 1

22 pages, 1389 KiB  
Article
Cancer Risk Associated with Inhalation Exposure to PM10-Bound PAHs and PM10-Bound Heavy Metals in Polish Agglomerations
by Barbara Kozielska and Dorota Kaleta
Appl. Sci. 2025, 15(14), 7903; https://doi.org/10.3390/app15147903 - 15 Jul 2025
Viewed by 464
Abstract
Particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) present in polluted air are strongly associated with an increased risk of respiratory diseases. In our study, we grouped cities based on their pollution levels using a method called Ward’s cluster analysis [...] Read more.
Particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) present in polluted air are strongly associated with an increased risk of respiratory diseases. In our study, we grouped cities based on their pollution levels using a method called Ward’s cluster analysis and looked at the increased cancer risk from PM10-bound harmful substances for adult men and women living in Polish cities. The analysis was based on data from 8 monitoring stations where concentrations of PM10, PAHs, and HMs were measured simultaneously between 2018 and 2022. The cluster analysis made it possible to distinguish three separate agglomeration clusters: cluster I (Upper Silesia, Wroclaw) with the highest concentrations of heavy metals and PAHs, with mean levels of lead 14.97 ± 7.27 ng·m−3, arsenic 1.73 ± 0.60 ng·m−3, nickel 1.77 ± 0.95 ng·m−3, cadmium 0.49 ± 0.28 ng·m−3, and ∑PAHs 15.53 ± 6.44 ng·m−3, cluster II (Warsaw, Łódź, Lublin, Cracow) with dominant road traffic emissions and low emissions, with average levels of lead 8.00 ± 3.14 ng·m−3, arsenic 0.70 ± 0.17 ng·m−3, nickel 1.64 ± 0.96 ng·m−3, and cadmium 0.49 ± 0.28 ng·m−3, and cluster III (Szczecin, Tricity) with the lowest concentration levels with favourable ventilation conditions. All calculated ILCR values were in the range of 1.20 × 10−6 to 1.11 × 10−5, indicating a potential cancer risk associated with long-term exposure. The highest ILCR values were reached in Upper Silesia and Wroclaw (cluster I), and the lowest in Tricity, which was classified in cluster III. Our findings suggest that there are continued preventive actions and stricter air quality control. The results confirm that PM10 is a significant carrier of airborne carcinogens and should remain a priority in both environmental and public health policy. Full article
Show Figures

Figure 1

13 pages, 264 KiB  
Review
Impact of Climate Change and Air Pollution on Bronchiolitis: A Narrative Review Bridging Environmental and Clinical Insights
by Cecilia Nobili, Matteo Riccò, Giulia Piglia and Paolo Manzoni
Pathogens 2025, 14(7), 690; https://doi.org/10.3390/pathogens14070690 - 14 Jul 2025
Viewed by 451
Abstract
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute [...] Read more.
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute to the incidence and severity of bronchiolitis, with a focus on biological mechanisms, epidemiological trends, and public health implications. Bronchiolitis remains one of the leading causes of hospitalization in infancy, with Respiratory Syncytial Virus (RSV) being responsible for the majority of severe cases. Airborne pollutants penetrate deep into the airways, triggering inflammation, compromising mucosal defenses, and impairing immune function, especially in infants with pre-existing vulnerabilities. These interactions can intensify the clinical course of viral infections and contribute to more severe disease presentations. Children in urban areas exposed to high levels of traffic-related emissions are disproportionately affected, underscoring the need for integrated public health interventions. These include stricter emission controls, urban design strategies to reduce exposure, and real-time health alerts during pollution peaks. Prevention strategies should also address indoor air quality and promote risk awareness among families and caregivers. Further research is needed to standardize exposure assessments, clarify dose–response relationships, and deepen our understanding of how pollution interacts with viral immunity. Bronchiolitis emerges as a sentinel condition at the crossroads of climate, environment, and pediatric health, highlighting the urgent need for collaboration across clinical medicine, epidemiology, and environmental science. Full article
13 pages, 1084 KiB  
Article
Airborne SARS-CoV-2 Detection by ddPCR in Adequately Ventilated Hospital Corridors
by Joan Truyols-Vives, Marta González-López, Antoni Colom-Fernández, Alexander Einschütz-López, Ernest Sala-Llinàs, Antonio Doménech-Sánchez, Herme García-Baldoví and Josep Mercader-Barceló
Toxics 2025, 13(7), 583; https://doi.org/10.3390/toxics13070583 - 12 Jul 2025
Viewed by 507
Abstract
Indoors, the infection risk of diseases transmitted through the airborne route is estimated from indoor carbon dioxide (CO2) levels. However, the approaches to assess this risk do not account for the airborne concentration of pathogens, among other limitations. In this study, [...] Read more.
Indoors, the infection risk of diseases transmitted through the airborne route is estimated from indoor carbon dioxide (CO2) levels. However, the approaches to assess this risk do not account for the airborne concentration of pathogens, among other limitations. In this study, we analyzed the relationship between airborne SARS-CoV-2 levels and environmental parameters. Bioaerosols were sampled (n = 40) in hospital corridors of two wards differing in the COVID-19 severity of the admitted patients. SARS-CoV-2 levels were quantified using droplet digital PCR. SARS-CoV-2 was detected in 60% of the total air samples. The ward where the mildly ill patients were admitted had a higher occupancy, transit of people in the corridor, and CO2 levels, but there were no significant differences in SARS-CoV-2 detection between wards. The mean CO2 concentration in the positive samples was 569 ± 35.6 ppm. Considering all samples, the CO2 levels in the corridor were positively correlated with patient door openings but inversely correlated with SARS-CoV-2 levels. In conclusion, airborne SARS-CoV-2 can be detected indoors with optimal ventilation, and its levels do not scale with CO2 concentration in hospital corridors. Therefore, CO2 assessment should not be interpreted as a surrogate of airborne viral presence in all indoor spaces. Full article
Show Figures

Figure 1

17 pages, 2146 KiB  
Article
Synthesis and Antiviral Activity of Nanowire Polymers Activated with Ag, Zn, and Cu Nanoclusters
by Thomas Thomberg, Hanna Bulgarin, Andres Lust, Jaak Nerut, Tavo Romann and Enn Lust
Pharmaceutics 2025, 17(7), 887; https://doi.org/10.3390/pharmaceutics17070887 - 6 Jul 2025
Viewed by 496
Abstract
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) [...] Read more.
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) dissolved in N,N-dimethylacetamide and functionalized with copper, silver, and zinc nanoclusters were fabricated via electrospinning. This study aims to evaluate and compare the virucidal effects of nanofibers functionalized with metal nanoclusters against the human influenza A virus A/WSN/1933 (H1N1) and SARS-CoV-2. Methods: A comprehensive characterization of materials, including X-ray diffraction, scanning electron microscopy, microwave plasma atomic emission spectroscopy, thermogravimetric analysis, contact angle measurements, nitrogen sorption analysis, mercury intrusion porosimetry, filtration efficiency, and virucidal tests, was used to understand the interdependence of the materials’ physical characteristics and biological effects, as well as to determine their suitability for application as antiviral materials in air filtration systems. Results: All the filter materials tested demonstrated very high particle filtration efficiency (≥98.0%). The material embedded with copper nanoclusters showed strong virucidal efficacy against the SARS-CoV-2 alpha variant, achieving an approximately 1000-fold reduction in infectious virions within 12 h. The fibrous nanowire polymer functionalized with zinc nanoclusters was the most effective material against the human influenza A virus strain A/WSN/1933 (H1N1). Conclusions: The materials with Cu nanoclusters can be used with high efficiency to passivate and kill the SARS-CoV-2 alpha variant virions, and Zn nanoclusters modified activated porous membranes for killing human influenza A virus A7WSN/1933 (H1N1) virions. Full article
Show Figures

Figure 1

14 pages, 2241 KiB  
Article
Evaluating the Efficacy of Microwave Sanitization in Reducing SARS-CoV-2 Airborne Contagion Risk in Office Environments
by Margherita Losardo, Marco Simonetti, Pietro Bia, Antonio Manna, Marco Verratti and Hamed Rasam
Appl. Sci. 2025, 15(12), 6940; https://doi.org/10.3390/app15126940 - 19 Jun 2025
Viewed by 491
Abstract
The COVID-19 pandemic has heightened awareness of airborne disease susceptibility, leading to the development and adoption of various preventive technologies. Among these, microwave sanitization, which inactivates virions through non-thermal mechanical resonance, has gained significant scientific credibility. Laboratory tests have demonstrated its high efficacy, [...] Read more.
The COVID-19 pandemic has heightened awareness of airborne disease susceptibility, leading to the development and adoption of various preventive technologies. Among these, microwave sanitization, which inactivates virions through non-thermal mechanical resonance, has gained significant scientific credibility. Laboratory tests have demonstrated its high efficacy, prompting further investigation into its effectiveness in real-world settings. This study employs multi-physical, fluid-dynamic and electromagnetic simulations of office environments to evaluate the reduction of contagion risk. By integrating these simulations with virus inactivation experimental laboratory results, we observed that the introduction of a microwave sanitization device significantly reduces the risk of contamination among individuals in the same environment. These findings suggest potential applications and further studies in other everyday scenarios. Full article
(This article belongs to the Special Issue Electromagnetic Radiation and Human Environment)
Show Figures

Figure 1

17 pages, 2696 KiB  
Article
Comparative Analysis of Airborne Particle Concentrations in Textile Industry Environments Throughout the Workday
by Emilia Visileanu, Korinna Altmann, Raluca Stepa, Maria Haiducu, Paul Tiberiu Miclea, Alina Vladu, Felicia Dondea, Marian Catalin Grosu and Razvan Scarlat
Microplastics 2025, 4(2), 34; https://doi.org/10.3390/microplastics4020034 - 18 Jun 2025
Viewed by 482
Abstract
This paper addresses the growing concern surrounding microplastic pollution, particularly within the textile industry, and the associated potential health risks linked to the inhalation and ingestion of microplastic particles. Microplastics, defined as plastic particles smaller than five millimeters, are increasingly found not only [...] Read more.
This paper addresses the growing concern surrounding microplastic pollution, particularly within the textile industry, and the associated potential health risks linked to the inhalation and ingestion of microplastic particles. Microplastics, defined as plastic particles smaller than five millimeters, are increasingly found not only in aquatic environments, but also in soils, air, and food. Although research on the health impacts of microplastics is still emerging, early studies indicate that these particles could contribute to health issues, including oxidative stress, inflammation, and cardiovascular diseases. Notably, individuals with higher concentrations of plastics in arterial plaques are more susceptible to heart attacks and strokes. In the textile industry, synthetic fibers such as polyester, nylon, and acrylic release microplastics into the air during production. The paper discusses a study conducted in a textile company that processes polyester yarns, where airborne microplastic concentrations were measured at various locations throughout the day. Particle sizes ranging from 0.3 nm to 10 nm were analyzed, revealing the presence of polyester polymers in the particulate matter. These findings underscore the widespread nature of microplastic pollution, particularly in industrial settings, and raise concerns about the health risks associated with prolonged exposure to airborne microplastics. While further research is necessary to fully understand the extent of these health impacts, preliminary data suggest a troubling link between microplastic inhalation and cardiovascular conditions. Full article
Show Figures

Figure 1

19 pages, 2577 KiB  
Article
Rainfall and High Humidity Influence the Seasonal Dynamics of Spores of Glomerellaceae and Botryosphaeriaceae Genera in Avocado Orchards and Their Fruit Rot Association
by Lorena Tapia, Diyanira Castillo-Novales, Natalia Riquelme, Ana Luisa Valencia, Alejandra Larach, Ricardo Cautín and Ximena Besoain
Agronomy 2025, 15(6), 1453; https://doi.org/10.3390/agronomy15061453 - 14 Jun 2025
Viewed by 510
Abstract
Avocado, a fruit consumed worldwide and essential for countries like Mexico and Chile, faces significant postharvest challenges, particularly during prolonged storage and transportation periods, where Botryosphaeriaceae and Glomerellaceae genera cause fruit rots that can generate substantial economic losses. This study investigated three Hass [...] Read more.
Avocado, a fruit consumed worldwide and essential for countries like Mexico and Chile, faces significant postharvest challenges, particularly during prolonged storage and transportation periods, where Botryosphaeriaceae and Glomerellaceae genera cause fruit rots that can generate substantial economic losses. This study investigated three Hass avocado orchards in the Valparaíso region of Chile to identify spore dispersion peaks, analyze the aerial dynamics of fungal inoculum, and evaluate the association with climatic conditions, as well as the incidence (I) and damage index (DI) of fruit rots. Spore traps were installed in symptomatic trees and monitored weekly over 13 months. Meteorological data were collected in parallel. Fruits from these orchards were sampled to evaluate postharvest rots, physiological maturity, and disease severity using molecular techniques, including DNA sequencing and phylogenetic analysis of isolated pathogens. The results revealed that spore peaks for both fungal families were closely associated with increased rainfall and high relative humidity, particularly from June to mid-September (winter season). The Santo Domingo orchard exhibited the highest disease pressure, with stem-end rot reaching an I of 44% and a DI of 17.25%, and anthracnose reaching an I of 23% and a DI of 12.25%. This study provides the first long-term, field-based evidence of airborne spore dynamics of Botryosphaeriaceae and Glomerellaceae in Chilean avocado orchards and their statistical relationship with environmental variables. These findings highlight the potential of incorporating climatic indicators—such as rainfall thresholds and humidity levels—into monitoring and early-warning systems to optimize fungicide application timing, reduce unnecessary chemical use, and improve postharvest disease management in avocado production. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

24 pages, 2765 KiB  
Article
Quantitative Assessment of Soldering-Induced PM2.5 Exposure Using a Distributed Sensor Network in Instructional Laboratory Settings
by Ian M. Kinsella, Anna N. Petrbokova, Rongjie Yang, Zheng Liu, Gokul Nathan, Nicklaus Thompson, Alexander V. Mamishev and Sep Makhsous
Air 2025, 3(2), 16; https://doi.org/10.3390/air3020016 - 4 Jun 2025
Viewed by 678
Abstract
Soldering is a common engineering practice that releases airborne particulate matter (PM), contributing to significant long-term respiratory risk. The health impact of this exposure is significant, with up to 22% of soldering workers worldwide being diagnosed with conditions such as occupational asthma, restrictive [...] Read more.
Soldering is a common engineering practice that releases airborne particulate matter (PM), contributing to significant long-term respiratory risk. The health impact of this exposure is significant, with up to 22% of soldering workers worldwide being diagnosed with conditions such as occupational asthma, restrictive lung disease, and bronchial obstruction. Studies have reported that soldering can produce PM2.5 concentrations up to 10 times higher than the U.S. Environmental Protection Agency’s (EPA) 24 h exposure limit of 35.0 μg/m3—posing significant respiratory and cognitive health risks under chronic exposure. These hazards remain underappreciated by novice engineers in academic and entry-level industrial environments, where safety practices are often informal or inconsistently applied. Air purification systems offer a mitigation approach; however, performance varies significantly with model and placement, and independent validation is limited. This study uses an indoor air quality monitoring system consisting of six AeroSpec sensors to measure PM2.5–10 concentrations during soldering sessions conducted with and without commercial air purifiers. Tests were conducted with and without a selection of commercial air purifiers, and measurements were recorded under consistent spatial and temporal conditions. Datasets were analyzed to evaluate purifier effectiveness and the influence of placement on pollutant distribution. The findings provide independent validation of air purifier capabilities and offer evidence-based suggestions for minimizing particulate exposure and improving safety in laboratory soldering environments. Full article
Show Figures

Figure 1

26 pages, 878 KiB  
Review
Airborne Cyanobacterial Toxins and Their Links to Neurodegenerative Diseases
by Zachary James Morris, Elijah W. Stommel and James Spencer Metcalf
Molecules 2025, 30(11), 2320; https://doi.org/10.3390/molecules30112320 - 26 May 2025
Cited by 2 | Viewed by 1087
Abstract
Cyanobacteria can produce a wide range of toxins which have acute and chronic adverse health effects. Affecting a variety of mammalian systems, they are generally characterized according to their mode of action and the organs affected. Cyanobacterial neurotoxins are one cyanotoxin class that [...] Read more.
Cyanobacteria can produce a wide range of toxins which have acute and chronic adverse health effects. Affecting a variety of mammalian systems, they are generally characterized according to their mode of action and the organs affected. Cyanobacterial neurotoxins are one cyanotoxin class that can negatively affect human health, and representatives of other cyanotoxins classes are increasingly showing neurotoxic effects. Of the various human exposure routes to cyanobacterial toxins, the significance of the airborne and inhalation route requires much greater clarity and understanding. People may be exposed to mixtures of cyanobacterial neurotoxins through the inhalation of sprays and dust, along with the potential to directly enter the central nervous system when crossing the blood-brain barrier. This review aims to summarize the current state of knowledge concerning airborne cyanobacterial neurotoxins, research gaps, health effects, and the need for management practices to protect human and animal health. Full article
Show Figures

Figure 1

Back to TopTop