Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (874)

Search Parameters:
Keywords = airborne Lidar data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20718 KB  
Article
PSLRC-Net: A PolInSAR and Spaceborne LiDAR Fusion Method for High-Precision DEM Inversion in Forested Areas
by Xiaoshuai Li, Huihua Hu, Xiaolei Lv and Zenghui Huang
Remote Sens. 2025, 17(19), 3387; https://doi.org/10.3390/rs17193387 - 9 Oct 2025
Viewed by 222
Abstract
The Digital Elevation Model (DEM) is widely used in fields such as geoscience and environmental management. However, the existing DEMs struggle to meet the current requirements for timeliness and accuracy, especially in forested areas where vegetation cover can lead to overestimation of elevation. [...] Read more.
The Digital Elevation Model (DEM) is widely used in fields such as geoscience and environmental management. However, the existing DEMs struggle to meet the current requirements for timeliness and accuracy, especially in forested areas where vegetation cover can lead to overestimation of elevation. To address this issue, this paper proposes a PolInSAR and Spaceborne LiDAR Regression/Classification Network (PSLRC-Net) for refining external DEMs. Additionally, a forest/non-forest classification labeling method for spaceborne LiDAR footprints is introduced to provide labeled data for the classification branch during the training phase. PSLRC-Net adopts a multi-task learning framework and uses an expert selection mechanism based on a gating network to provide targeted support for the regression and classification branches. The regression branch consists of two task towers, and their outputs are weighted and fused by the output of the classification branch. This approach directs the regression branch to focus on the feature differences between forested and non-forested areas, resulting in more accurate elevation predictions. The network was trained on SAOCOM data from two sites, and the fitting results are evaluated for accuracy using an airborne LiDAR-derived DEM. Compared to different DEM datasets, the RMSE decreased by 51.7–64.6% and 51.9–63.7% at the two sites, while the MAE decreased by 55.5–66.8% and 55.5–68.6%. The experimental results confirm the validity of the model and demonstrate the potential of spaceborne LiDAR fusion with spaceborne PolInSAR to improve DEM accuracy. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

22 pages, 6748 KB  
Article
Spatial Analysis of Bathymetric Data from UAV Photogrammetry and ALS LiDAR: Shallow-Water Depth Estimation and Shoreline Extraction
by Oktawia Specht
Remote Sens. 2025, 17(17), 3115; https://doi.org/10.3390/rs17173115 - 7 Sep 2025
Viewed by 894
Abstract
The shoreline and seabed topography are key components of the coastal zone and are essential for hydrographic surveys, shoreline process modelling, and coastal infrastructure management. The development of unmanned aerial vehicles (UAVs) and optoelectronic sensors, such as photogrammetric cameras and airborne laser scanning [...] Read more.
The shoreline and seabed topography are key components of the coastal zone and are essential for hydrographic surveys, shoreline process modelling, and coastal infrastructure management. The development of unmanned aerial vehicles (UAVs) and optoelectronic sensors, such as photogrammetric cameras and airborne laser scanning (ALS) using light detection and ranging (LiDAR) technology, has enabled the acquisition of high-resolution bathymetric data with greater accuracy and efficiency than traditional methods using echo sounders on manned vessels. This article presents a spatial analysis of bathymetric data obtained from UAV photogrammetry and ALS LiDAR, focusing on shallow-water depth estimation and shoreline extraction. The study area is Lake Kłodno, an inland waterbody with moderate ecological status. Aerial imagery from the photogrammetric camera was used to model the lake bottom in shallow areas, while the LiDAR point cloud acquired through ALS was used to determine the shoreline. Spatial analysis of support vector regression (SVR)-based bathymetric data showed effective depth estimation down to 1 m, with a reported standard deviation of 0.11 m and accuracy of 0.22 m at the 95% confidence, as reported in previous studies. However, only 44.5% of 1 × 1 m grid cells met the minimum point density threshold recommended by the National Oceanic and Atmospheric Administration (NOAA) (≥5 pts/m2), while 43.7% contained no data. In contrast, ALS LiDAR provided higher and more consistent shoreline coverage, with an average density of 63.26 pts/m2, despite 27.6% of grid cells being empty. The modified shoreline extraction method applied to the ALS data achieved a mean positional accuracy of 1.24 m and 3.36 m at the 95% confidence level. The results show that UAV photogrammetry and ALS laser scanning possess distinct yet complementary strengths, making their combined use beneficial for producing more accurate and reliable maps of shallow waters and shorelines. Full article
Show Figures

Figure 1

23 pages, 7451 KB  
Article
Comparing Machine Learning and Statistical Models for Remote Sensing-Based Forest Aboveground Biomass Estimations
by Shashika Himandi Gardeye Lamahewage, Chandi Witharana, Rachel Riemann, Robert Fahey and Thomas Worthley
Forests 2025, 16(9), 1430; https://doi.org/10.3390/f16091430 - 7 Sep 2025
Viewed by 714
Abstract
Understanding the distribution of forest aboveground biomass (AGB) is pivotal for carbon monitoring. Field-based inventorying is time-consuming and costly for large-area AGB estimations. The integration of multimodal remote sensing (RS) observations with single-year, field-based forest inventory analysis (FIA) data has the potential to [...] Read more.
Understanding the distribution of forest aboveground biomass (AGB) is pivotal for carbon monitoring. Field-based inventorying is time-consuming and costly for large-area AGB estimations. The integration of multimodal remote sensing (RS) observations with single-year, field-based forest inventory analysis (FIA) data has the potential to improve the efficiency of large-scale AGB modeling and carbon monitoring initiatives. Our main objective was to systematically compare the AGB prediction accuracies of machine learning algorithms (e.g., random forest (RF) and support vector machine (SVM)) with those of conventional statistical methods (e.g., multiple linear regression (MLR)) using multimodal RS variables as predictors. We implemented a method combining AGB estimates of actual FIA subplot locations with airborne LiDAR, National Agriculture Imagery Program (NAIP) aerial imagery, and Sentinel-2 satellite images for model training, validation, and testing. The hyperparameter-tuned RF model produced a root mean square error (RMSE) of 27.19 Mgha−1 and an R2 of 0.41, which outperformed the evaluation metrics of SVM and MLR models. Among the 28 most important explanatory variables used to build the best RF model, 68% of variables were derived from the LiDAR height data. The hyperparameter-tuned linear SVM model exhibited an R2 of 0.10 and an RMSE of 32.17 Mgha−1. Additionally, we developed an MLR using eight explanatory variables, which yielded an RMSE of 22.59 Mgha−1 and an R2 of 0.22. The linear ensemble model, which was developed using the predictions of all three models, yielded an R2 of 0.79. Our results suggested that more field data are required to better generalize the ensemble model. Overall, our findings highlight the importance of variable selection methods, the hyperparameter tuning of ML algorithms, and the integration of multimodal RS data in improving large-area AGB prediction models. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

24 pages, 5793 KB  
Article
Comparative Assessment of Planar Density and Stereoscopic Density for Estimating Grassland Aboveground Fresh Biomass Across Growing Season
by Cong Xu, Jinchen Wu, Yuqing Liang, Pengyu Zhu, Siyang Wang, Fangming Wu, Wei Liu, Xin Mei, Zhaoju Zheng, Yuan Zeng, Yujin Zhao, Bingfang Wu and Dan Zhao
Remote Sens. 2025, 17(17), 3038; https://doi.org/10.3390/rs17173038 - 1 Sep 2025
Viewed by 859
Abstract
Grassland aboveground biomass (AGB) serves as a critical indicator of ecosystem productivity and carbon cycling, playing a pivotal role in ecosystem functioning. The advances in hyperspectral and terrestrial Light Detection and Ranging (LiDAR) data have provided new opportunities for grassland AGB monitoring, but [...] Read more.
Grassland aboveground biomass (AGB) serves as a critical indicator of ecosystem productivity and carbon cycling, playing a pivotal role in ecosystem functioning. The advances in hyperspectral and terrestrial Light Detection and Ranging (LiDAR) data have provided new opportunities for grassland AGB monitoring, but current research remains predominantly focused on data-driven machine learning models. The black-box nature of such approaches resulted in a lack of clear interpretation regarding the coupling relationships between these two data types in grassland AGB estimation. For grassland aboveground fresh biomass, the theoretical estimation can be decomposed into either the product of planar density (PD) and plot area or the product of stereoscopic density (SD) and grassland community volume. Based on this theory, our study developed a semi-mechanistic remote sensing model for grassland AGB estimation by integrating hyperspectral-derived biomass density with extracted structural parameters from terrestrial LiDAR. Initially, we built hyperspectral estimation models for both PD and SD of grassland fresh AGB using PLSR. Subsequently, by integrating the inversion results with grassland quadrat area and community volume measurements, respectively, we achieved quadrat-scale remote sensing estimation of grassland AGB. Finally, we conducted comparative accuracy assessments of both methods across different phenological stages to evaluate their performance differences. Our results demonstrated that SD, which incorporated structural features, could be more precisely estimated (R2 = 0.90, nRMSE = 7.92%, Bias% = 0.01%) based on hyperspectral data compared to PD (R2 = 0.79, nRMSE = 10.19%, Bias% = −7.25%), with significant differences observed in their respective responsive spectral bands. PD showed greater sensitivity to shortwave infrared regions, while SD exhibited stronger associations with visible, red-edge, and near-infrared bands. Although both methods achieved comparable overall AGB estimation accuracy (PD-based: R2 = 0.79, nRMSE = 10.19%, Bias% = −7.25%; SD-based: R2 = 0.82, nRMSE = 10.58%, Bias% = 1.86%), the SD-based approach effectively mitigated the underestimation of high biomass values caused by spectral saturation effects and also demonstrated superior and more stable performance across different growth periods (R2 > 0.6). This work provided concrete physical meaning to the integration of hyperspectral and LiDAR data for grassland AGB monitoring and further suggested the potential of multi-source remote sensing data fusion in estimating grassland AGB. The findings offered theoretical foundations for developing large-scale grassland AGB monitoring models using airborne and spaceborne remote sensing platforms. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Remote Sensing for Vegetation Monitoring)
Show Figures

Figure 1

22 pages, 5526 KB  
Article
Coarse-to-Fine Denoising for Micro-Pulse Photon-Counting LiDAR Data: A Multi-Stage Adaptive Framework
by Zhaodong Chen, Chengdong Zhang, Xing Wang, Rongwei Fan, Zhiwei Dong, Lansong Cao and Deying Chen
Remote Sens. 2025, 17(17), 2931; https://doi.org/10.3390/rs17172931 - 23 Aug 2025
Viewed by 635
Abstract
Micro-pulse photon-counting LiDAR has difficulty accurately extracting geophysical information in strong-noise environments, with solar noise interference being a key limiting factor. This study proposes a hierarchical coarse-to-fine denoising framework, combining grid-based pre-filtering with an optimized horizontal and vertical recursive division method using Otsu’s [...] Read more.
Micro-pulse photon-counting LiDAR has difficulty accurately extracting geophysical information in strong-noise environments, with solar noise interference being a key limiting factor. This study proposes a hierarchical coarse-to-fine denoising framework, combining grid-based pre-filtering with an optimized horizontal and vertical recursive division method using Otsu’s method to achieve high time efficiency and denoising accuracy. First, an adaptive meshing strategy is employed to remove most of the noise in the data while retaining more than 99.1% of the signal. Subsequently, an alternating horizontal and vertical recursive division algorithm with automatically selected parameters is applied for denoising; the method was validated on ICESat-2 ATL03 data, GlobeLand30 V2020 data, and USGS 3DEP airborne radar data, where the method achieved a classification accuracy of more than 91.2%, with a several-fold reduction in runtime compared to traditional clustering methods. The framework demonstrates high efficiency, robustness, and computational scalability across diverse terrains, including polar, forest, and plains. It can contribute to geographic mapping, environmental protection, and ecological monitoring. Full article
Show Figures

Figure 1

23 pages, 2533 KB  
Article
Modeling Primary Production in Temperate Forests Using Three-Dimensional Canopy Structural Complexity Metrics Derived from Airborne LiDAR Data
by Tahrir Siddiqui, Brandon Alveshere, Christopher Gough, Jan van Aardt and Keith Krause
Remote Sens. 2025, 17(16), 2817; https://doi.org/10.3390/rs17162817 - 14 Aug 2025
Viewed by 600
Abstract
Accurate and scalable estimation of forest production is essential for quantifying carbon sequestration, forecasting timber yields, and guiding climate change mitigation strategies. While prior studies established a positive linkage between net primary production (NPP) and canopy structural complexity (CSC) metrics derived from terrestrial [...] Read more.
Accurate and scalable estimation of forest production is essential for quantifying carbon sequestration, forecasting timber yields, and guiding climate change mitigation strategies. While prior studies established a positive linkage between net primary production (NPP) and canopy structural complexity (CSC) metrics derived from terrestrial LiDAR, the spatial coverage of ground-based surveys is limited. Airborne laser scanning (ALS) could offer a rapid and spatially extensive alternative to terrestrial scanning, but the predictive capacity of ALS-derived CSC metrics for estimating forest production remains insufficiently explored. To address this gap, we derived a suite of three-dimensional (3D) CSC metrics from small-footprint, high-density ALS data collected by the National Ecological Observatory Network’s Airborne Observation Platform. We evaluated relationships between CSC metrics and the NPP of plots nested within seven deciduous and evergreen temperate forests. Optimal metric combinations for predicting NPP within and across forest types were identified using partial least squares regression coupled with recursive feature elimination. ALS-derived CSC metrics explained 77% (RMSE = 11%) and 76% (RMSE = 13%) of the variance in deciduous and evergreen forest plot NPP, respectively. Our findings demonstrate that 3D CSC metrics derived from high-density ALS are robust predictors of plot-level NPP, offering performance comparable to terrestrial scanners while enabling greater scalability and more efficient data acquisition. Full article
(This article belongs to the Special Issue Digital Modeling for Sustainable Forest Management)
Show Figures

Graphical abstract

31 pages, 5985 KB  
Article
Comparing Terrestrial and Mobile Laser Scanning Approaches for Multi-Layer Fuel Load Prediction in the Western United States
by Eugênia Kelly Luciano Batista, Andrew T. Hudak, Jeff W. Atkins, Eben North Broadbent, Kody Melissa Brock, Michael J. Campbell, Nuria Sánchez-López, Monique Bohora Schlickmann, Francisco Mauro, Andres Susaeta, Eric Rowell, Caio Hamamura, Ana Paula Dalla Corte, Inga La Puma, Russell A. Parsons, Benjamin C. Bright, Jason Vogel, Inacio Thomaz Bueno, Gabriel Maximo da Silva, Carine Klauberg, Jinyi Xia, Jessie F. Eastburn, Kleydson Diego Rocha and Carlos Alberto Silvaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(16), 2757; https://doi.org/10.3390/rs17162757 - 8 Aug 2025
Viewed by 772
Abstract
Effective estimation of fuel load is critical for mitigating wildfire risks. Here, we evaluate the performance of mobile laser scanning (MLS) and terrestrial laser scanning (TLS) to estimate fuel loads across multiple vegetation layers. Data were collected in two forest regions: the North [...] Read more.
Effective estimation of fuel load is critical for mitigating wildfire risks. Here, we evaluate the performance of mobile laser scanning (MLS) and terrestrial laser scanning (TLS) to estimate fuel loads across multiple vegetation layers. Data were collected in two forest regions: the North Kaibab (NK) Plateau in Arizona and Monroe Mountain (MM) in Utah. We used random forest models to predict vegetation attributes, evaluating the performance of full models and transferred models using R2, RMSE, and bias. The MLS consistently outperformed the TLS system, particularly for canopy-related attributes and woody biomass components. However, the TLS system showed potential for capturing canopy structure attributes, while offering advantages like operational simplicity, low equipment demands, and ease of deployment in the field, making it a cost-effective alternative for managers without access to more complex and expensive mobile or airborne systems. Our results show that model transferability between NK and MM is highly variable depending on the fuel attributes. Attributes related to canopy biomass showed better transferability, with small losses in predictive accuracy when models were transferred between the two sites. Conversely, surface fuel attributes showed more significant challenges for model transferability, given the difficulty of laser penetration in the lower vegetation layers. In general, models trained in NK and validated in MM consistently outperformed those trained in MM and transferred to NK. This may suggest that the NK plots captured a broader complexity of vegetation structure and environmental conditions from which models learned better and were able to generalize to MM. This study highlights the potential of ground-based LiDAR technologies in providing detailed information and important insights into fire risk and forest structure. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

34 pages, 2523 KB  
Technical Note
A Technical Note on AI-Driven Archaeological Object Detection in Airborne LiDAR Derivative Data, with CNN as the Leading Technique
by Reyhaneh Zeynali, Emanuele Mandanici and Gabriele Bitelli
Remote Sens. 2025, 17(15), 2733; https://doi.org/10.3390/rs17152733 - 7 Aug 2025
Viewed by 1821
Abstract
Archaeological research fundamentally relies on detecting features to uncover hidden historical information. Airborne (aerial) LiDAR technology has significantly advanced this field by providing high-resolution 3D terrain maps that enable the identification of ancient structures and landscapes with improved accuracy and efficiency. This technical [...] Read more.
Archaeological research fundamentally relies on detecting features to uncover hidden historical information. Airborne (aerial) LiDAR technology has significantly advanced this field by providing high-resolution 3D terrain maps that enable the identification of ancient structures and landscapes with improved accuracy and efficiency. This technical note comprehensively reviews 45 recent studies to critically examine the integration of Machine Learning (ML) and Deep Learning (DL) techniques, particularly Convolutional Neural Networks (CNNs), with airborne LiDAR derivatives for automated archaeological feature detection. The review highlights the transformative potential of these approaches, revealing their capability to automate feature detection and classification, thus enhancing efficiency and accuracy in archaeological research. CNN-based methods, employed in 32 of the reviewed studies, consistently demonstrate high accuracy across diverse archaeological features. For example, ancient city walls were delineated with 94.12% precision using U-Net, Maya settlements with 95% accuracy using VGG-19, and with an IoU of around 80% using YOLOv8, and shipwrecks with a 92% F1-score using YOLOv3 aided by transfer learning. Furthermore, traditional ML techniques like random forest proved effective in tasks such as identifying burial mounds with 96% accuracy and ancient canals. Despite these significant advancements, the application of ML/DL in archaeology faces critical challenges, including the scarcity of large, labeled archaeological datasets, the prevalence of false positives due to morphological similarities with natural or modern features, and the lack of standardized evaluation metrics across studies. This note underscores the transformative potential of LiDAR and ML/DL integration and emphasizes the crucial need for continued interdisciplinary collaboration to address these limitations and advance the preservation of cultural heritage. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Cultural Heritage Research II)
Show Figures

Figure 1

21 pages, 7718 KB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 - 6 Aug 2025
Viewed by 1064
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

19 pages, 8766 KB  
Article
Fusion of Airborne, SLAM-Based, and iPhone LiDAR for Accurate Forest Road Mapping in Harvesting Areas
by Evangelia Siafali, Vasilis Polychronos and Petros A. Tsioras
Land 2025, 14(8), 1553; https://doi.org/10.3390/land14081553 - 28 Jul 2025
Cited by 1 | Viewed by 1519
Abstract
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and [...] Read more.
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and ensure accurate and efficient data collection and mapping. Airborne data were collected using the DJI Matrice 300 RTK UAV equipped with a Zenmuse L2 LiDAR sensor, which achieved a high point density of 285 points/m2 at an altitude of 80 m. Ground-level data were collected using the BLK2GO handheld laser scanner (HPLS) with SLAM methods (LiDAR SLAM, Visual SLAM, Inertial Measurement Unit) and the iPhone 13 Pro Max LiDAR. Data processing included generating DEMs, DSMs, and True Digital Orthophotos (TDOMs) via DJI Terra, LiDAR360 V8, and Cyclone REGISTER 360 PLUS, with additional processing and merging using CloudCompare V2 and ArcGIS Pro 3.4.0. The pairwise comparison analysis between ALS data and each alternative method revealed notable differences in elevation, highlighting discrepancies between methods. ALS + iPhone demonstrated the smallest deviation from ALS (MAE = 0.011, RMSE = 0.011, RE = 0.003%) and HPLS the larger deviation from ALS (MAE = 0.507, RMSE = 0.542, RE = 0.123%). The findings highlight the potential of fusing point clouds from diverse platforms to enhance forest road mapping accuracy. However, the selection of technology should consider trade-offs among accuracy, cost, and operational constraints. Mobile LiDAR solutions, particularly the iPhone, offer promising low-cost alternatives for certain applications. Future research should explore real-time fusion workflows and strategies to improve the cost-effectiveness and scalability of multisensor approaches for forest road monitoring. Full article
Show Figures

Figure 1

31 pages, 20437 KB  
Article
Satellite-Derived Bathymetry Using Sentinel-2 and Airborne Hyperspectral Data: A Deep Learning Approach with Adaptive Interpolation
by Seung-Jun Lee, Han-Saem Kim, Hong-Sik Yun and Sang-Hoon Lee
Remote Sens. 2025, 17(15), 2594; https://doi.org/10.3390/rs17152594 - 25 Jul 2025
Viewed by 1308
Abstract
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between [...] Read more.
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between Sentinel-2 (10 m) and LiDAR reference data (1 m), three interpolation methods—Inverse Distance Weighting (IDW), Natural Neighbor (NN), and Spline—were employed to resample spectral reflectance data to a 1 m grid. Two spectral input configurations were evaluated: the log-ratio of Bands 2 and 3, and raw RGB composite reflectance (Bands 2, 3, and 4). A Fully Convolutional Neural Network (FCNN) was trained under each configuration and validated using LiDAR-based depth. The RGB + NN combination yielded the best performance, achieving an RMSE of 1.2320 m, MAE of 0.9381 m, bias of +0.0315 m, and R2 of 0.6261, while the log-ratio + IDW configuration showed lower accuracy. Visual and statistical analyses confirmed the advantage of the RGB + NN approach in preserving spatial continuity and spectral-depth relationships. This study demonstrates that both interpolation strategy and input configuration critically affect SDB model accuracy and generalizability. The integration of spatially adaptive interpolation with airborne hyperspectral reference data represents a scalable and efficient solution for high-resolution coastal bathymetry mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

25 pages, 27165 KB  
Article
Reverse-Engineering of the Japanese Defense Tactics During 1941–1945 Occupation Period in Hong Kong Through 21st-Century Geospatial Technologies
by Chun-Hei Lam, Chun-Ho Pun, Wallace-Wai-Lok Lai, Chi-Man Kwong and Craig Mitchell
Heritage 2025, 8(8), 294; https://doi.org/10.3390/heritage8080294 - 22 Jul 2025
Cited by 1 | Viewed by 568 | Correction
Abstract
Hundreds of Japanese features of war (field positions, tunnels, and fortifications) were constructed in Hong Kong during World War II. However, most of them were poorly documented and were left unknown but still in relatively good condition because of their durable design, workmanship, [...] Read more.
Hundreds of Japanese features of war (field positions, tunnels, and fortifications) were constructed in Hong Kong during World War II. However, most of them were poorly documented and were left unknown but still in relatively good condition because of their durable design, workmanship, and remoteness. These features of war form parts of Hong Kong’s brutal history. Conservation, at least in digital form, is worth considering. With the authors coming from multidisciplinary and varied backgrounds, this paper aims to explore these features using a scientific workflow. First, we reviewed the surviving archival sources of the Imperial Japanese Army and Navy. Second, airborne LiDAR data were used to form territory digital terrain models (DTM) based on the Red Relief Image Map (RRIM) for identifying suspected locations. Third, field expeditions of searching for features of war were conducted through guidance of Global Navigation Satellite System—Real-Time Kinetics (GNSS-RTK). Fourth, the found features were 3D-laser scanned to generate mesh models as a digital archive and validate the findings of DTM-RRIM. This study represents a reverse-engineering effort to reconstruct the planned Japanese defense tactics of guerilla fight and Kamikaze grottos that were never used in Hong Kong. Full article
Show Figures

Figure 1

25 pages, 8409 KB  
Article
Airborne Lidar Refines Georeferencing Austro-Hungarian Maps from the First and Second Military Surveys
by Tibor Lieskovský, Tadeáš Kotleba, Jakub Šperka and Renata Ďuračiová
ISPRS Int. J. Geo-Inf. 2025, 14(7), 274; https://doi.org/10.3390/ijgi14070274 - 15 Jul 2025
Viewed by 1019
Abstract
This paper explores ways to improve the coordinate transformation of maps from the First and Second Military Surveys of the Austro-Hungarian Monarchy using airborne laser scanning (ALS) data. The paper analyses the current positional accuracy of georeferenced maps from the first two military [...] Read more.
This paper explores ways to improve the coordinate transformation of maps from the First and Second Military Surveys of the Austro-Hungarian Monarchy using airborne laser scanning (ALS) data. The paper analyses the current positional accuracy of georeferenced maps from the first two military mappings from available spatial data sources. Several areas of interest with different terrain ruggedness (plain, undulated terrain, mountains) were selected for analysis to investigate whether terrain ruggedness has an impact on the accuracy of these maps. The next part of the paper deals with the georeferencing of military mapping maps using current, mid-20th-century maps and ALS data using affine and second-degree polynomial transformations. The paper concludes with a statistical analysis and evaluation of the potential of ALS data for solving this type of problem. The results obtained in the paper indicate that ALS data can be a suitable source for finding control points to transform early topographic maps. Full article
Show Figures

Figure 1

22 pages, 9940 KB  
Article
Developing a Novel Method for Vegetation Mapping in Temperate Forests Using Airborne LiDAR and Hyperspectral Imaging
by Nam Shin Kim and Chi Hong Lim
Forests 2025, 16(7), 1158; https://doi.org/10.3390/f16071158 - 14 Jul 2025
Viewed by 510
Abstract
This study advances vegetation and forest mapping in temperate mixed forests by integrating airborne hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data, overcoming the limitations of conventional multispectral imaging. Employing a Digital Canopy Height Model (DCHM) derived from LiDAR, our approach [...] Read more.
This study advances vegetation and forest mapping in temperate mixed forests by integrating airborne hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data, overcoming the limitations of conventional multispectral imaging. Employing a Digital Canopy Height Model (DCHM) derived from LiDAR, our approach integrates these structural metrics with hyperspectral spectral information, alongside detailed remote sensing data extraction. Through machine learning-based clustering, which combines both structural and spectral features, we successfully classified eight specific tree species, community boundaries, identified dominant species, and quantified their abundance, contributing to precise vegetation and forest type mapping based on predominant species and detailed attributes such as diameter at breast height, age, and canopy density. Field validation indicated the methodology’s high mapping precision, achieving overall accuracies of approximately 98.0% for individual species identification and 93.1% for community-level mapping. Demonstrating robust performance compared to conventional methods, this novel approach offers a valuable foundation for National Forest Ecology Inventory development and significantly enhances ecological research and forest management practices by providing new insights for improving our understanding and management of forest ecosystems and various forestry applications. Full article
Show Figures

Figure 1

25 pages, 12949 KB  
Article
Enhanced Landslide Visualization and Trace Identification Using LiDAR-Derived DEM
by Jie Lv, Chengzhuo Lu, Minjun Ye, Yuting Long, Wenbing Li and Minglong Yang
Sensors 2025, 25(14), 4391; https://doi.org/10.3390/s25144391 - 14 Jul 2025
Viewed by 823
Abstract
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR [...] Read more.
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR technology. Firstly, a high-precision LiDAR-DEM is constructed using preprocessed LiDAR point cloud data, and visual images are generated using visualization methods, including hillshade, slope, openness, and Sky View Factor (SVF). Secondly, pixel-level image fusion methods are applied to the visual images to obtain enhanced display images of the landslide terrain. Finally, a threshold is determined through a fractal model, and the Mean-Shift algorithm is utilized for clustering and denoising to extract landslide traces. The results indicate that employing pixel-level image fusion technology, which combines the advantageous features of multiple terrain visualization images, effectively enhances the display of landslide micro-topography. Moreover, based on the enhanced display images, the fractal model and the Mean-Shift algorithm are applied for denoising to extract landslide traces. Compared to orthophotos, this method can effectively and accurately extract landslide traces. The findings of this study provide valuable references for the enhanced display and trace recognition of landslide terrain in densely vegetated areas within complex mountainous areas, thereby providing technical support for emergency investigations of landslide disasters. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

Back to TopTop