Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (691)

Search Parameters:
Keywords = agrifood systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 674 KiB  
Article
Oil Extraction Systems Influence the Techno-Functional and Nutritional Properties of Pistachio Processing By-Products
by Rito J. Mendoza-Pérez, Elena Álvarez-Olmedo, Ainhoa Vicente, Felicidad Ronda and Pedro A. Caballero
Foods 2025, 14(15), 2722; https://doi.org/10.3390/foods14152722 - 4 Aug 2025
Viewed by 42
Abstract
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) [...] Read more.
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) systems, combined with pretreatment at 25 °C and 60 °C. The extraction method significantly influenced flour’s characteristics, underscoring the need to tailor processing conditions to the specific technological requirements of each food application. HP-derived flours presented lighter colour, greater tocopherol content, and higher water absorption capacity (up to 2.75 g/g), suggesting preservation of hydrophilic proteins. SSP-derived flours showed higher concentration of protein (44 g/100 g), fibre (12 g/100 g), and minerals, and improved emulsifying properties, enhancing their suitability for emulsified products. Pretreatment at 25 °C enhanced functional properties such as swelling power (~7.0 g/g) and water absorption index (~5.7 g/g). The SSP system achieved the highest oil extraction yield, with no significant effect of pretreatment temperature. The oils extracted showed high levels of unsaturated fatty acids, particularly oleic acid (~48% of ω-9), highlighting their nutritional and industrial value. The findings support the valorisation of pistachio oil extraction by-products as functional food ingredients, offering a promising strategy for reducing food waste and promoting circular economy approaches in the agri-food sector. Full article
Show Figures

Figure 1

13 pages, 292 KiB  
Article
Molecular Detection of Multiple Antimicrobial Resistance Genes in Helicobacter pylori-Positive Gastric Samples from Patients Undergoing Upper Gastrointestinal Endoscopy with Gastric Biopsy in Algarve, Portugal
by Francisco Cortez Nunes, Catarina Aguieiras, Mauro Calhindro, Ricardo Louro, Bruno Peixe, Patrícia Queirós, Pedro Castelo-Branco and Teresa Letra Mateus
Antibiotics 2025, 14(8), 780; https://doi.org/10.3390/antibiotics14080780 - 1 Aug 2025
Viewed by 348
Abstract
Background/Objectives: Helicobacter pylori (H. pylori) is a common gastric pathogen linked to gastritis, gastroduodenal ulcers, and gastric cancer. Rising antimicrobial resistance (AMR) poses challenges for effective treatment and has prompted the WHO to classify H. pylori as a high-priority pathogen. [...] Read more.
Background/Objectives: Helicobacter pylori (H. pylori) is a common gastric pathogen linked to gastritis, gastroduodenal ulcers, and gastric cancer. Rising antimicrobial resistance (AMR) poses challenges for effective treatment and has prompted the WHO to classify H. pylori as a high-priority pathogen. This study aimed to detect the prevalence of AMR genes in H. pylori-positive gastric samples from patients in Algarve, Portugal, where regional data is scarce. Methods: Eighteen H. pylori-positive gastric biopsy samples from patients undergoing upper gastrointestinal endoscopy were analyzed. PCR and sequencing were used to identify genes associated with resistance to amoxicillin (Pbp1A), metronidazole (rdxA, frxA), tetracycline (16S rRNA mutation) and clarithromycin (23S rRNA). Sequence identity and homologies were verified using tBLASTx and the Comprehensive Antibiotic Resistance Database (CARD). Results: Out of the 18 H. pylori-positive samples, 16 (88.9%) contained at least one AMR gene. The most frequent genes were rdxA (83.3%) and frxA (66.7%) for metronidazole resistance, and the 16S rRNA mutation (66.7%) for tetracycline. Resistance to amoxicillin and clarithromycin was detected in 27.8% and 16.7% of cases, respectively. Most samples (72.2%) had multiple resistance genes. A significantly strong association was found between female sex and the presence of the rdxA gene (p = 0.043). Conclusions: The study reveals a high prevalence of H. pylori resistance genes in Algarve, particularly against metronidazole and tetracycline. These findings highlight the need for local surveillance and tailored treatment strategies. Further research with larger populations is warranted to assess regional resistance patterns and improve eradication efforts. Full article
Show Figures

Graphical abstract

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 191
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

19 pages, 17315 KiB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 - 31 Jul 2025
Viewed by 231
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

41 pages, 580 KiB  
Review
The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems
by Gerald C. Shurson
Sustainability 2025, 17(15), 6957; https://doi.org/10.3390/su17156957 - 31 Jul 2025
Viewed by 160
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. They cause additional health concerns in a circular bioeconomy and food system that recycles and reuses by-products and numerous types of waste materials. Uptake of PFAS by plants and food-producing animals ultimately leads to the consumption of PFAS-contaminated food that is associated with numerous adverse health and developmental effects in humans. Contaminated meat, milk, and eggs are some of the main sources of human PFAS exposure. Although there is no safe level of PFAS exposure, maximum tolerable PFAS consumption guidelines have been established for some countries. However, there is no international PFAS monitoring system, and there are no standardized international guidelines and mechanisms to prevent the consumption of PFAS-contaminated foods. Urgent action is needed to stop PFAS production except for critical uses, implementing effective water-purification treatments, preventing spreading sewage sludge on land and pastures used to produce food, and requiring marketers and manufacturers to use packaging that is free of PFAS. Full article
13 pages, 513 KiB  
Article
Impact of Dietary Inputs on Carbapenem Resistance Gene Dynamics and Microbial Safety During Bioconversion of Agri-Food Waste and Anaerobic Digestate by Hermetia illucens Larvae
by Andrea Marcelli, Alessio Ilari, Vesna Milanović, Ester Foppa Pedretti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Giorgia Rampanti, Andrea Osimani, Cristiana Garofalo and Lucia Aquilanti
Genes 2025, 16(8), 907; https://doi.org/10.3390/genes16080907 - 29 Jul 2025
Viewed by 192
Abstract
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of [...] Read more.
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of these genes and opportunistic pathogens, raises important safety concerns. This study aimed to assess the influence of different agri-food-based diets on Enterobacteriaceae loads and the CRG occurrence during the bioconversion process. Methods: Four experimental diets were formulated from agri-food residues and anaerobic digestate: Diet 1 (peas and chickpea waste), Diet 2 (peas and wheat waste), Diet 3 (onion and wheat waste), and Diet 4 (wheat waste and digestate). Enterobacteriaceae were quantified by viable counts, while five CRGs (blaKPC, blaNDM, blaOXA-48, blaVIM, and blaGES) were detected and quantified using quantitative PCRs (qPCRs). Analyses were performed on individual substrates, formulated diets, larvae (before and after bioconversion), and frass. Results: Plant-based diets sustained moderate Enterobacteriaceae loads. In contrast, the digestate-based diet led to a significant increase in Enterobacteriaceae in both the frass and mature larvae. CRGs were detected only in legume-based diets: blaVIM and blaGES were found in both mature larvae and frass, while blaOXA-48 and blaKPC were found exclusively in either larvae or frass. No CRGs were detected in onion- or digestate-based diets nor in young larvae or diet inputs. Conclusions: The findings suggest that the diet composition may influence the proliferation of Enterobacteriaceae and the persistence of CRGs. Careful substrate selection and process monitoring are essential to minimize antimicrobial resistance risks in insect-based bioconversion systems. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1072 KiB  
Article
Complexity of Supply Chains Using Shannon Entropy: Strategic Relationship with Competitive Priorities
by Miguel Afonso Sellitto, Ismael Cristofer Baierle and Marta Rinaldi
Appl. Syst. Innov. 2025, 8(4), 105; https://doi.org/10.3390/asi8040105 - 29 Jul 2025
Viewed by 232
Abstract
Entropy is a foundational concept across scientific domains, playing a role in understanding disorder, randomness, and uncertainty within systems. This study applies Shannon’s entropy in information theory to evaluate and manage complexity in industrial supply chain management. The purpose of the study is [...] Read more.
Entropy is a foundational concept across scientific domains, playing a role in understanding disorder, randomness, and uncertainty within systems. This study applies Shannon’s entropy in information theory to evaluate and manage complexity in industrial supply chain management. The purpose of the study is to propose a quantitative modeling method, employing Shannon’s entropy model as a proxy to assess the complexity in SCs. The underlying assumption is that information entropy serves as a proxy for the complexity of the SC. The research method is quantitative modeling, which is applied to four focal companies from the agrifood and metalworking industries in Southern Brazil. The results showed that companies prioritizing cost and quality exhibit lower complexity compared to those emphasizing flexibility and dependability. Additionally, information flows related to specially engineered products and deliveries show significant differences in average entropies, indicating that organizational complexities vary according to competitive priorities. The implications of this suggest that a focus on cost and quality in SCM may lead to lower complexity, in opposition to a focus on flexibility and dependability, influencing strategic decision making in industrial contexts. This research introduces the novel application of information entropy to assess and control complexity within industrial SCs. Future studies can explore and validate these insights, contributing to the evolving field of supply chain management. Full article
Show Figures

Figure 1

28 pages, 1387 KiB  
Article
Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance
by Edward Haynes, Roy Macarthur, Marc Kennedy, Chris Conyers, Hollie Pufal, Sam McGreig and John Walshaw
Microorganisms 2025, 13(8), 1766; https://doi.org/10.3390/microorganisms13081766 - 29 Jul 2025
Viewed by 144
Abstract
Antimicrobial Resistance (AMR), i.e., the evolution of microbes to become resistant to chemicals used to control them, is a global public health concern that can make bacterial diseases untreatable. Inputs including antibiotics, metals, and biocides can create an environment in the agrifood chain [...] Read more.
Antimicrobial Resistance (AMR), i.e., the evolution of microbes to become resistant to chemicals used to control them, is a global public health concern that can make bacterial diseases untreatable. Inputs including antibiotics, metals, and biocides can create an environment in the agrifood chain that selects for AMR. Consumption of food represents a potential exposure route to AMR microbes and AMR genes (ARGs), which may be present in viable bacteria or on free DNA. Ready-to-eat (RTE) foods are of particular interest because they are eaten without further cooking, so AMR bacteria or ARGs that are present may be consumed intact. They also represent varied production systems (fresh produce, cooked meat, dairy, etc.). An evidence gap exists regarding the diversity and consumption of ARGs in RTE food, which this study begins to address. We sampled 1001 RTE products at retail sale in the UK, in proportion to their consumption by the UK population, using National Diet and Nutrition Survey data. Bacterial DNA content of sample extracts was assessed by 16S metabarcoding, and 256 samples were selected for metagenomic sequencing for identification of ARGs based on consumption and likely bacterial DNA content. A total of 477 unique ARGs were identified in the samples, including ARGs that may be involved in resistance to important antibiotics, such as colistin, fluoroquinolones, and carbapenems, although phenotypic AMR was not measured. Based on the incidence of ARGs in food types, ARGs are estimated to be present in a high proportion of average diets. ARGs were detected on almost all RTE food types tested (48 of 52), and some efflux pump genes are consumed in 97% of UK diets. Full article
Show Figures

Figure 1

12 pages, 615 KiB  
Article
Saliva Immunoglobulin Concentrations Are Associated with Colostrum Intake and with Serum Concentrations in Newborn Calves
by Flávio G. Silva, Elsa Lamy, Paulo Infante, Cristina Conceição, Joaquim L. Cerqueira, Joana M. Ramalho, Marta González-Cabrera, Pedro Caetano, Luís Martins, Severiano R. Silva, Alfredo Pereira and Lorenzo E. Hernández-Castellano
Animals 2025, 15(15), 2224; https://doi.org/10.3390/ani15152224 - 28 Jul 2025
Viewed by 171
Abstract
The transfer of passive immunity (TPI) is vital for newborn calf health and is typically assessed through blood sampling to measure serum or plasma IgG or total protein levels. Saliva offers a less invasive alternative. This study evaluated the potential of saliva for [...] Read more.
The transfer of passive immunity (TPI) is vital for newborn calf health and is typically assessed through blood sampling to measure serum or plasma IgG or total protein levels. Saliva offers a less invasive alternative. This study evaluated the potential of saliva for assessing TPI. Saliva and serum samples were collected from 20 calves at birth and on days 1, 2, and 7 of life to measure IgG, IgA, IgM, and total protein concentrations. Colostrum fed to the calves was also analyzed for gross composition and immunoglobulin content. Colostrum intake and composition were associated with saliva IgG (R2 = 0.48; p = 0.019), saliva IgM (R2 = 0.73; p = 0.02), and saliva total protein (R2 = 0.41; p = 0.043). Serum IgG and IgA levels were predicted by saliva IgG (p < 0.001; R2 = 0.33) and IgA (p < 0.001; R2 = 0.13), respectively, though predictive accuracy varied by calf age (IgG: p < 0.001; R2 = 0.40; IgA: p < 0.001; R2 = 0.91). In conclusion, the results suggest that both saliva IgG and IgA concentrations could be used to predict IgG and IgA serum concentrations. Nevertheless, further studies are still needed to clarify the best time for sample collection. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

26 pages, 2227 KiB  
Article
Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production
by Madison D. Horgan, Christopher L. Cummings, Jennifer Kuzma, Michael Dahlstrom, Ilaria Cimadori, Maude Cuchiara, Colin Larter, Nick Loschin and Khara D. Grieger
Sustainability 2025, 17(15), 6795; https://doi.org/10.3390/su17156795 - 25 Jul 2025
Viewed by 471
Abstract
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the [...] Read more.
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the sustainability of these technologies is not defined by technical performance alone; it hinges on how they are perceived by key stakeholders and how well they align with broader societal values. This study addresses the critical question of how expert stakeholders evaluate the sustainability of GE and nano-based food and agriculture (agrifood) products. Using a multi-method online platform, we engaged 42 experts across academia, government, industry, and NGOs in the United States to assess six real-world case studies—three using GE and three using nano—across ten different dimensions of sustainability. We show that nano-based products were consistently rated more favorably than their GE counterparts in terms of environmental, economic, and social sustainability, as well as across ethical and societal dimensions. Like prior studies, our results reveal that stakeholders see meaningful distinctions between nanotechnology and biotechnology, likely due to underlying value-based concerns about animal welfare, perceived naturalness, or corporate control of agrifood systems. The fruit coating and flu vaccine—both nano-enabled—received the most positive ratings, while GE mustard greens and salmon were the most polarizing. These results underscore the importance of incorporating stakeholder perspectives in technology assessment and innovation governance. These results also suggest that responsible innovation efforts in agrifood systems should prioritize communication, addressing meaningful societal needs, and the contextual understanding of societal values to build trust and legitimacy. Full article
(This article belongs to the Special Issue Food Science and Engineering for Sustainability)
Show Figures

Figure 1

16 pages, 718 KiB  
Proceeding Paper
Strategic Pathways for Applying Food Processing Principles in the Implementation of Nutrition-Smart and Nutrition-Sensitive Agriculture in West Africa
by Sedo Eudes L. Anihouvi, Kyky Komla Ganyo, G. Esaïe Kpadonou, Rebeca Edoh, Caroline Makamto Sobgui and Niéyidouba Lamien
Proceedings 2025, 118(1), 18; https://doi.org/10.3390/proceedings2025118018 - 25 Jul 2025
Viewed by 269
Abstract
West Africa faces persistent food and nutrition insecurity despite agricultural efforts, exacerbated by population growth, climate change, and socio-economic vulnerabilities. This study argues that integrating food processing principles with nutrition-sensitive agriculture (NSA) and nutrition-smart agriculture (NSmartAg) offers a transformative solution for human health. [...] Read more.
West Africa faces persistent food and nutrition insecurity despite agricultural efforts, exacerbated by population growth, climate change, and socio-economic vulnerabilities. This study argues that integrating food processing principles with nutrition-sensitive agriculture (NSA) and nutrition-smart agriculture (NSmartAg) offers a transformative solution for human health. Therefore, we delineate these interconnected concepts and highlight their synergistic potential for a nutrition-focused food system. Likewise, critical analysis of key regional challenges, including infrastructural weaknesses, policy gaps, and gender inequities, was made prior to identifying significant opportunities for leveraging food processing as a strategic entry point to accelerate the implementation of NSA and NSmartAg. Based on these insights, six strategic pathways are proposed to achieve this objective: (i) integrating food processing into policies; (ii) investing in interdisciplinary R&D that puts nutrition and health benefits at the forefront of desired outcomes along with others; (iii) strengthening farmer and food processor capacities; (iv) improving agri-food infrastructure; (v) fostering multi-sectoral collaboration; and (vi) prioritizing youth engagement and market development. By adopting these integrated strategies, West African countries can build more resilient, equitable, and nutrition-centered food systems, ultimately improving public health outcomes and fostering sustainable regional development. Full article
Show Figures

Figure 1

20 pages, 4182 KiB  
Article
Beyond White-Nose Syndrome: Mitochondrial Rearrangements and Functional Genomics of Pseudogymnoascus destructans
by Ilia V. Popov, Svetoslav D. Todorov, Michael L. Chikindas, Koen Venema, Alexey M. Ermakov and Igor V. Popov
J. Fungi 2025, 11(8), 550; https://doi.org/10.3390/jof11080550 - 24 Jul 2025
Viewed by 470
Abstract
White-Nose Syndrome (WNS) has devastated insectivorous bat populations, particularly in North America, leading to severe ecological and economic consequences. Despite extensive research, many aspects of the evolutionary history, mitochondrial genome organization, and metabolic adaptations of its etiological agent, Pseudogymnoascus destructans, remain unexplored. [...] Read more.
White-Nose Syndrome (WNS) has devastated insectivorous bat populations, particularly in North America, leading to severe ecological and economic consequences. Despite extensive research, many aspects of the evolutionary history, mitochondrial genome organization, and metabolic adaptations of its etiological agent, Pseudogymnoascus destructans, remain unexplored. Here, we present a multi-scale genomic analysis integrating pangenome reconstruction, phylogenetic inference, Bayesian divergence dating, comparative mitochondrial genomics, and refined functional annotation. We show that P. destructans exhibits extensive mitochondrial genome rearrangements absent in its nonpathogenic relatives from the Leotiomycetes class, suggesting a potential link between mitochondrial evolution and pathogenic adaptation. Our divergence dating analysis reveals that P. destructans separated from its Antarctic relatives approximately 141 million years ago, before adapting to bat hibernacula in the Northern Hemisphere. Additionally, our refined functional annotation significantly expands the known functional landscape of P. destructans, revealing an extensive repertoire of previously uncharacterized proteins involved in carbohydrate metabolism and secondary metabolite biosynthesis—key processes that likely contribute to its pathogenic success. By providing new insights into the genomic basis of P. destructans adaptation and pathogenicity, our study refines the evolutionary framework of this fungal pathogen and creates the foundation for future research on WNS mitigation strategies. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Ecology of Ascomycota, 2nd Edition)
Show Figures

Figure 1

11 pages, 263 KiB  
Article
Prevalence and Diagnostic Comparison of Helicobacter pylori and Non-Helicobacter pylori Helicobacter Infections in Patients Undergoing Upper Gastrointestinal Endoscopy with Gastric Biopsy in Algarve, Portugal
by Francisco Cortez Nunes, Teresa Letra Mateus, Catarina Aguieiras, Ricardo Louro, Bruno Peixe, Mauro Calhindro, Patrícia Queirós and Pedro Castelo-Branco
Microorganisms 2025, 13(7), 1684; https://doi.org/10.3390/microorganisms13071684 - 17 Jul 2025
Viewed by 1083
Abstract
H. pylori infects over half of the global population and is associated with various gastric and extra-gastric diseases. Other species, such as zoonotic non-Helicobacter pylori Helicobacters (NHPHs), have shown similar associations with gastritis and MALT lymphoma and H. pylori-negative cases with [...] Read more.
H. pylori infects over half of the global population and is associated with various gastric and extra-gastric diseases. Other species, such as zoonotic non-Helicobacter pylori Helicobacters (NHPHs), have shown similar associations with gastritis and MALT lymphoma and H. pylori-negative cases with gastric disease have been identified, including gastric MALT lymphoma, chronic gastritis, and gastroduodenal ulcers. Accurate identification of these species is of great relevance but remains challenging using conventional diagnostic methods. This cross-sectional study aimed to determine the prevalence of H. pylori and NHPH infections, comparing standard histological protocols with molecular techniques. Between December 2024 and February 2025, 54 adult patients undergoing upper gastrointestinal endoscopy (UGE) with gastric biopsy in three hospitals in Algarve, Portugal were recruited. Endoscopic assessment was performed, and gastric biopsies were collected for histological and molecular analysis. DNA was extracted from antral biopsies and analyzed by conventional PCR to detect H. pylori and NHPH. H. pylori diagnostic techniques were compared, descriptive plus statistical analysis was performed, and p-values < 0.05 were considered to be statistically significant. Fifty-four patients were included in the study, with 51.9% of them presenting symptoms. Endoscopic gastritis was observed in 66.7% of patients, while histological gastritis was present in 88.9%, with statistically significant differences between the two diagnostic techniques (p = 0.004). Helicobacter spp. were identified in 44.4% (24/54) of the patients. H. pylori was detected in 42.6% of the patients by Modified Giemsa stain and in 33.3% by PCR. H. bizzozeronii was found in 35.9% of the patients, with 22.2% showing mixed infections. This study reveals a significant prevalence of Helicobacter spp. in patients from the Algarve region, with both H. pylori and zoonotic H. bizzozeronii detected. This is the first report of H. bizzozeronii DNA detection in gastric biopsies via PCR from patients undergoing UGE in Portugal, highlighting the need to consider NHPH in clinical diagnosis. It is important to include molecular methods in routine diagnostics and the need for broader studies to assess regional and national trends in Helicobacter infections besides H. pylori. Full article
(This article belongs to the Section Public Health Microbiology)
31 pages, 1761 KiB  
Review
Weaving Knowledge, Innovation, and Learning: A Transdisciplinary Pathway to Circular Bioeconomy Through BioBeo
by Claudia Lavinia Buruleanu, Laoise Ní Chléirigh, Máire Nic an Bhaird, Thomas P. Curran, Evelyn Reinmuth and Mihai Bîzoi
Sustainability 2025, 17(14), 6541; https://doi.org/10.3390/su17146541 - 17 Jul 2025
Viewed by 393
Abstract
The bioeconomy represents a new way of life for people, but also a responsibility towards the future of the planet. Generating a significant socio-economic impact, it could be viewed as a key element of sustainable development, as the current and future solution for [...] Read more.
The bioeconomy represents a new way of life for people, but also a responsibility towards the future of the planet. Generating a significant socio-economic impact, it could be viewed as a key element of sustainable development, as the current and future solution for economic processes, based on new development models compelled by climate changes and the economy’s resilience to potential crises. In this context, the paper presents in its first part the Circular Economy description and the Circular Bioeconomy discussion from an interdisciplinary perspective. The second part of the paper aims to explore education as a tool for facilitating systemic changes supporting a real transition to a sustainable bioeconomy. The key aspects discussed refer to the following: (1) European policies, strategies, and action plans for bioeconomy; (2) Circular Economy as a solution for sustainable food systems; (3) main requirements and challenges for developing a (Circular) Bioeconomy, including indicators of sustainability; (4) the links between Circular Bioeconomy and the Sustainable Development Goals; (5) possibilities for integrating the agri-food industry’s needs into bioeconomy education; and (6) pathways for teach bioeconomy concepts effectively. Full article
Show Figures

Figure 1

24 pages, 911 KiB  
Article
Integrated Process-Oriented Approach for Digital Authentication of Honey in Food Quality and Safety Systems—A Case Study from a Research and Development Project
by Joanna Katarzyna Banach, Przemysław Rujna and Bartosz Lewandowski
Appl. Sci. 2025, 15(14), 7850; https://doi.org/10.3390/app15147850 - 14 Jul 2025
Viewed by 333
Abstract
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical [...] Read more.
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical analyses. This study presents an integrated, process-oriented approach for digital honey authentication, building on initial findings from an interdisciplinary research and development project. The approach includes the creation of a comprehensive digital pollen database and the application of AI-driven image segmentation and classification methods. The developed system is designed to support decision-making processes in quality assessment and VACCP (Vulnerability Assessment and Critical Control Points) risk evaluation, enhancing the operational resilience of honey supply chains against fraudulent practices. This study aligns with current trends in the digitization of food quality management and the use of Industry 4.0 technologies in the agri-food sector, demonstrating the practical feasibility of integrating AI-supported palynological analysis into industrial workflows. The results indicate that the proposed approach can significantly improve the accuracy and efficiency of honey authenticity assessments, supporting the integrity and transparency of global honey markets. Full article
(This article belongs to the Special Issue Advances in Safety Detection and Quality Control of Food)
Show Figures

Figure 1

Back to TopTop