Weaving Knowledge, Innovation, and Learning: A Transdisciplinary Pathway to Circular Bioeconomy Through BioBeo
Abstract
1. Introduction
A Note on the Understanding of Bioeconomy
2. Literature Review
2.1. Short Overview on Circular Economy
2.2. Circular Bioeconomy—A Closer Look
2.3. How Can We Link Circular Bioeconomy with Education?
3. Methods and Analysis
3.1. Scientific Reporting in Relation to Circular (Bio)Economy and Education
3.2. Bioeconomy Education
- ✓
- How can we think about/rethink bioeconomy-related education considering, gaps and challenges in current bioeconomy education programmes also?
- ✓
- How can we design bioeconomy curricula and meet the students’ needs at all levels of education from preschool to third level?
- ✓
- How do we ensure required skills for bioeconomy and/or the digital skills required for bioeconomy are embedded in education and in mainstream society?
- ✓
- What are the key competences needed by students for bioeconomy understanding and application?
- ✓
- How do we educate educators on the advancement of bioeconomy knowledge?
4. Results
4.1. Literature Analysis: Topics and Trends
4.1.1. Overview of Bioeconomics Research
4.1.2. Overview of the Circular Bioeconomy Research and Education and Their Correlation with the Sustainable Development Goals (SDGs)
4.2. Circular Bioeconomy: An Insight
4.2.1. Biomass as Renewable Source
4.2.2. Agri-Food Wastes Biorefinery and Circular Bioeconomy
Product | Substrate | Reference |
---|---|---|
Biocomposite board | Oil palm biomass | [43] |
Biodiesel | Food waste and municipal wastewater | [44] |
Waste cooking oil | [45,46] | |
Sweet sorghum bagasse | [47] | |
Agro-industrial co-products | [48] | |
Cheese whey | [49] | |
Sugarcane molasses | [50] | |
Bioethanol | Food waste | [51] |
Agricultural and crop residue (corn-cob, wheat straw, bark of cassava) | [52,53,54,55] | |
Sugarcane bagasse | [56,57] | |
Food residues (individually and blends: potatoes, processed foods, fruits) | [42] | |
Biohydrogen | Municipal food waste | [58] |
Vegetable waste | [59,60] | |
Kitchen wastewater | [61] | |
Food waste | [62] | |
Date byproduct | [63] | |
Biohythane | Food waste | [64,65,66] |
Corncob | [67] | |
Butiric acid | Wheat straw | [68] |
Furfural and hydroxymethylfurfural | Wheat straw Sugarcane bagasse | [69,70] |
Lactic acid | Citrus waste; coffee waste | [71,72] |
Phenolic compounds | Agro-wastes (coconut coir fibre, pineapple peel, pineapple crown leaves, kenaf bast fibre) | [73] |
Polyhydroxyalkanoates | Food waste based acidogenic effluent | [74] |
Polyhydroxybutyrate | Rice bran, corn wastes, rice straws | [75,76] |
Volatile fatty acids | Food waste | [77,78,79,80] |
Indicators of Sustainability
- -
- Techno-economic pillar, with reference to the assessment of process profitability and the costs of environmental impacts (i.e., human health, human welfare, environmental resources and global systems impacts;
- -
- Environmental pillar, with reference to the assessment of the entire or part of the product life cycle. The environmental impacts related to the production of a product are assessed by using LCA, its general framework being specified in ISO 14040:2006 [82];
- -
- Social pillar, with reference to various socioeconomic indicators found in relationship with human well-being, such as health, safety, employment, job satisfaction and social justice issues.
4.3. Bridging Industry and Bioeconomy Education
4.3.1. Transdisciplinary Curriculum Design
4.3.2. Industry–Academic Partnerships
4.3.3. Policy and Regulatory Frameworks
4.3.4. Lifelong Learning and Professional Development
4.3.5. Utilising Technology and Digital Tools
4.4. Educating Teachers in Bioeconomy
5. Discussion
5.1. The BioBeo Journey and Experience: Sustainable Knowledge, Innovation, and Learning
5.2. Circular Bioeconomy and the Sustainable Development Goals (SDGs)
5.3. Integration Societal Needs into Bioeconomy Education
6. Conclusions: Policy Implications and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BioBeo Horizon 2020 Project. Available online: https://www.biobeo.eu/ (accessed on 6 November 2023).
- AgroCycle Horizon 2020 Project. Available online: https://cordis.europa.eu/project/id/690142/reporting (accessed on 19 February 2024).
- Boger, J.; Jackson, P.; Mulvenna, M.; Sixsmith, J.; Sixsmith, A.; Mihailidis, A.; Kontos, P.; Miller Polgar, J.; Grigorovich, A.; Martin, S. Principles for fostering the transdisciplinary development of assistive technologies. Disabil. Rehabil.-Assist. Technol. 2017, 12, 480–490. [Google Scholar] [CrossRef]
- Grigorovich, A.; Fang, M.L.; Sixsmith, J.; Kontos, P. Defining and evaluating transdisciplinary research: Implications for aging and technology. Disabil. Rehabil. Assist. Technol. 2018, 14, 533–542. [Google Scholar] [CrossRef] [PubMed]
- de Schutter, L.; Giljum, S.; Häyhä, T.; Bruckner, M.; Naqvi, A.; Omann, I.; Stagl, S. Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System. Sustainability 2019, 11, 5705. [Google Scholar] [CrossRef]
- Fischer, C.; Radinger-Peer, V.; Krainer, L.; Penker, M. Communication tools and their support for integration in transdisciplinary research projects. Humanit. Soc. Sci. Commun. 2024, 11, 120. [Google Scholar] [CrossRef]
- Kalmár, É.; Stenfert, H. Science Communication as a design challenge in transdisciplinary collaborations. J. Sci. Commun. 2020, 19, C01. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Research and Innovation, A Sustainable Bioeconomy for Europe—Strengthening the Connection Between Economy, Society and the Environment—Updated Bioeconomy Strategy, Publications Office, 2018. Available online: https://op.europa.eu/en/publication-detail/-/publication/edace3e3-e189-11e8-b690-01aa75ed71a1/ (accessed on 16 September 2024).
- Report COM/2022/283: EU Bioeconomy Strategy Progress Report-European Bioeconomy Policy: Stocktaking and Future Developments. Available online: https://knowledge4policy.ec.europa.eu/publication/report-com2022283-eu-bioeconomy-strategy-progress-report-european-bioeconomy-policy_en (accessed on 15 June 2024).
- Waste Framework Directive. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en (accessed on 13 March 2024).
- White Paper-the European Bioeconomy in 2030. Delivering Sustainable Growth by addressing the Grand Societal Challenges. Available online: https://www.greenpolicyplatform.org/sites/default/files/downloads/resource/BECOTEPS_European%20Bioeconomy%20in%202030.pdf (accessed on 7 December 2023).
- Hakovirta, M.; Lucia, L. Informal STEM education will accelerate the bioeconomy. Nat. Biotechnol. 2019, 37, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Giurca, A.; Nichiforel, L.; Stancioiu, P.T.; Dragoi, M.; Dima, D.-P. Unlocking Romania’s Forest Based Bioeconomy Potential: Knowledge-Action-Gaps and the Way Forward. Land 2022, 11, 2001. [Google Scholar] [CrossRef]
- Gonçalves, M.A.A.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Value recovery from waste in the processing of buckwheat: Opportunities for a circular bioeconomy. Eng. Rep. 2023, 6, e12757. [Google Scholar] [CrossRef]
- Urmetzer, S.; Lask, J.; Vargas-Carpintero, R.; Pyka, A. Learning to change: Transformative knowledge for building a sustainable bioeconomy. Ecol. Econ. 2020, 167, 106435. [Google Scholar] [CrossRef]
- Paris, B.; Michas, D.; Balafoutis, A.T.; Nibbi, L.; Skvaril, J.; Li, H.; Pimentel, D.; da Silva, C.; Athanasopoulou, E.; Petropoulos, D.; et al. Review of the Current Practices of Bioeconomy Education and Training in the EU. Sustainability 2023, 15, 954. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation, Completing the Picture: How the Circular Economy Tackles Climate Change. Available online: https://www.ellenmacarthurfoundation.org/completing-the-picture (accessed on 22 November 2023).
- Patermann, C.; Aguilar, A. The origins of the bioeconomy in the European Union. New Biotechnol. 2018, 40 Pt A, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Knowledge-Based Bioeconomy. Available online: https://knowledge4policy.ec.europa.eu/glossary-item/knowledge-based-bioeconomy_en (accessed on 22 January 2025).
- Kircher, M.; Maurer, K.-H.; Herzberg, D. KBBE: The knowledge-based bioeconomy: Concept, status and future prospects. EFB Bioeconomy J. 2022, 2, 100034. [Google Scholar] [CrossRef]
- Socaciu, C. Bioeconomy and green economy: European strategies, action plans and impact on life quality. Bull. UASVM Food Sci. Technol. 2014, 71. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, M.G.A.; van Meijl, H.; Smeets, E.M.W.; Tabeau-Kowalska, E.W. Overview of the Systems Analysis Framework for the EU Bioeconomy. Deliverable 1.4 of the EU FP 7 SAT-BBE project Systems Analysis Tools Framework for the EU Bio-Based Economy Strategy (SAT BBE). (Report; No. Deliverable 1.4). LEI. 2014. Available online: https://edepot.wur.nl/303596 (accessed on 13 December 2024).
- Adamowicz, M. Bioeconomy—Concept, application and perspectives. Probl. Agric. Econ. 2017, 1, 29–49. [Google Scholar] [CrossRef]
- European Commission. The Bioeconomy Strategy. Available online: https://environment.ec.europa.eu/strategy/bioeconomy-strategy_en (accessed on 7 January 2025).
- Knowledge Centre for Bioeconomy. Available online: https://knowledge4policy.ec.europa.eu/bioeconomy_en (accessed on 17 November 2024).
- Porc, O.; Hark, N.; Carus, M.; Carrez, D. European Bioeconomy in Figures 2014–2021. Available online: https://renewable-carbon.eu/publications/product/european-bioeconomy-in-figures-2014-2021-pdf/ (accessed on 22 October 2024).
- Petrović, N.; Ćirović, M.; Martins, F.P. The Role of Higher Education in Transition to a Circular Economy: Journey on the “Yellow Brick Road” to Sustainability. In Sustainable Business Change; Obradović, V., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- EPALE: Electronic Platform for Adult Learning in Europe. Available online: https://epale.ec.europa.eu/en/blog/transition-circular-economy-role-education-youth-higher-education (accessed on 13 October 2024).
- VOSviewer Software. Available online: www.vosviewer.com (accessed on 17 September 2024).
- Roos, A.; Blomquist, M.; Bhatia, R.; Ekegren, R.; Rönnberg, J.; Torfgård, L.; Tunberg, M. The digitalisation of the Nordic bioeconomy and its effect on gender equality. Scand. J. For. Res. 2021, 36, 639–654. [Google Scholar] [CrossRef]
- Mesa, J.A.; Sierra-Fontalvo, L.; Ortegon, K.; Gonzalez-Quiroga, A. Advancing circular bioeconomy: A critical review and assessment of indicators. Sustain. Prod. Consum. 2024, 46, 324–342. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Tamers, P. Circular Bioeconomy Concepts—A Perspective. Front. Sustain. 2021, 2, 701509. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, M.; Ncibi, C. A Sustainable Bioeconomy: The Green Industry Revolution, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-55635-2. [Google Scholar]
- Ng, D.K.S.; Ng, K.S.; Ng, R.T.L. Integrated Biorefineries. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 299–314. ISBN 9780128047927. [Google Scholar] [CrossRef]
- Ubando, A.T.; Ng, E.A.S.; Chen, W.-H.; Culaba, A.B.; Kwon, E.E. Life cycle assessment of microalgal biorefinery: A state-of-the-art review. Bioresour. Technol. 2022, 360, 127615. [Google Scholar] [CrossRef] [PubMed]
- Volpato, M.V.; de Andrade Arruda Fernandes, I.; Junior, B.D.; Pedro, A.C.; Maciel, G.M.; Haminiuk, C.W.I. Waste from the food industry: Innovations in biorefineries for sustainable use of resources and generation of value. Bioresour. Technol. 2024, 413, 131447. [Google Scholar] [CrossRef] [PubMed]
- Ranjbari, M.; Esfandabadi, Z.S.; Quatraro, F.; Vatanparast, H.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Biomass and organic waste potentials towards implementing circular bioeconomy platforms: A systematic bibliometric analysis. Fuel 2022, 318, 123585. [Google Scholar] [CrossRef]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dahiya, S.; Kumar, N.A.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Bender, L.E.; Colvero, G.L.; da Luz Monteiro, E.; Rempel, A.; Colla, L.M. Utilization of food waste for bioethanol production in a circular bioeconomy approach. Biomass Conv. Bioref. 2024, 15, 8525–8541. [Google Scholar] [CrossRef]
- Mahmood, H.; Moniruzzaman, M.; Yusup, S.; Akil, H.M. Pretreatment of oil palm biomass with ionic liquids: A new approach for fabrication of green composite board. J. Clean. Prod. 2016, 126, 677–685. [Google Scholar] [CrossRef]
- Chi, Z.; Zheng, Y.; Jiang, A.; Chen, S. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl. Biochem. Biotechnol. 2011, 165, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, S.; Dimou, A.; Fakas, S.; Diamantopoulou, P.; Philippoussis, A.; Galiotou-Panayotou, M.; Aggelis, G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J. Appl. Microbiol. 2011, 110, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- El Bialy, H.; Gomaa, O.M.; Azab, K.S. Conversion of oil waste to valuable fatty acids using oleaginous yeast. World J. Microbiol. Biotechnol. 2011, 27, 2791–2798. [Google Scholar] [CrossRef]
- Liang, Y.N.; Tang, T.Y.; Siddaramu, T.; Choudhary, R.; Umagiliyage, A.L. Lipid production from sweet sorghum bagasse through yeast fermentation. Renew. Energ. 2012, 40, 130–136. [Google Scholar] [CrossRef]
- Mitra, D.; Leeuwen, J.V.; Lamsal, B. Heterotrophic/ mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 2012, 1, 40–48. [Google Scholar] [CrossRef]
- Castanha, R.F.; Mariano, A.P.; Morais, L.A.S.; Scramin, S.; Monteiro, R.T.R. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses. Braz. J. Microbiol. 2014, 45, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Papone, T.; Kookhunthod, S.; Paungbut, M.; Leesing, R. Producing of microbial oil by mixed culture of microalgae and oleaginous yeast using sugarcane molasses as carbon substrate. J. Clean Energy Technol. 2016, 4, 253–256. [Google Scholar] [CrossRef]
- Walker, K.; Vadlani, P.; Madl, R.; Ugorowski, P.; Hohn, K.L. Ethanol fermentation from food processing waste. Environ. Prog. Sustain. Energ. 2013, 32, 1280–1283. [Google Scholar] [CrossRef]
- Fermoso, F.G.; Serrano, A.; Alonso-Fariñas, B.; Fernández-Bolaños, J.; Borja, R.; Rodríguez-Gutiérrez, G. Valuable compound extraction, anaerobic digestion, and composting: A leading biorefinery approach for agricultural wastes. J. Agric. Food Chem. 2018, 66, 8451–8468. [Google Scholar] [CrossRef] [PubMed]
- Hermosilla, E.D.; Schalchli, H.; Diez, M.C. Biodegradation inducers to enhance wheat straw pretreatment by Gloeophyllum trabeum to second-generation ethanol production. Environ. Sci. Pollut. Res. 2020, 27, 8467–8480. [Google Scholar] [CrossRef] [PubMed]
- Aruwajoye, G.S.; Sewsynker-Sukai, Y.; Kana, E.B.G. Valorisation of cassava peels through simultaneous saccharification and ethanol production: Effect of prehydrolysis time, kinetic assessment and preliminary scale up. Fuel 2020, 278. [Google Scholar] [CrossRef]
- Rajesh, R.; Gummadi, S.N. Production of multienzymes, bioethanol, and acetic acid by novel Bacillus sp. PM06 from various lignocellulosic biomass. Biomass Convers. Biorefinery 2022, 13, 13949–13961. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Kumar, R.; Malyan, S.K.; Pugazhendhi, A. Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel 2019, 255, 115682. [Google Scholar] [CrossRef]
- Carvalho, D.J.; Moretti, R.R.; Colodette, J.L.; Bizzo, W.A. Assessment of the self-sustained energy generation of an integrated first and second generation ethanol production from sugarcane through the characterization of the hydrolysis process residues. Energ. Conver. Manag. 2020, 203, 112267. [Google Scholar] [CrossRef]
- Tawfik, A.; Salem, A.; El-Qelish, M. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste. Bioresour. Technol. 2011, 102, 8723–8726. [Google Scholar] [CrossRef] [PubMed]
- Marone, A.; Massini, G.; Patriarca, C.; Signorini, A.; Varrone, C.; Izzo, G. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. Int. J. Hydrogen Energ. 2012, 37, 5612–5622. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.; Lee, S.M.; Cha, J.; Lee, H.S.; Kang, S.G. Biohydrogen production from food waste using glucose-adapted hyperthermophilic archaeon. Waste Biomass Valorization 2023, 14, 2923–2930. [Google Scholar] [CrossRef]
- Tawfik, A.; El-Qelish, M. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor. Bioresour. Technol. 2012, 114, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, S.B.; Sarkar, O.; Venkata Mohan, S. Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: Evaluation with FW at variable organic loads. Int. J. Hydrogen Energy 2014, 39, 7587–7596. [Google Scholar] [CrossRef]
- Ben Yahmed, N.; Dauptain, K.; Lajnef, I.; Carrere, H.; Trably, E.; Smaali, I. New sustainable bioconversion concept of date by-products (Phoenix dactylifera L.) to biohydrogen, biogas and date-syrup. Int. J. Hydrogen Energy 2021, 46, 297–305. [Google Scholar] [CrossRef]
- Cavinato, C.; Giuliano, A.; Bolzonella, D.; Pavan, P.; Cecchi, F. Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience. Int. J. Hydrogen Energ. 2012, 37, 11549–11555. [Google Scholar] [CrossRef]
- Yeshanew, M.M.; Frunzo, L.; Pirozzi, F.; Lens, P.N.; Esposito, G. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 2016, 220, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, O.; Venkata Mohan, S. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane. Bioresour. Technol. 2017, 242, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, J.; Idris, A. Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation. Renew. Energy 2017, 114, 917–923. [Google Scholar] [CrossRef]
- Baroi, G.N.; Gavala, H.N.; Westermann, P.; Skiadas, I.V. Fermentative production of butyric acid from wheat straw: Economic evaluation. Ind. Crops Prod. 2017, 104, 68–80. [Google Scholar] [CrossRef]
- Prasad, S.; Malav, M.K.; Kumar, S.; Singh, A.; Pant, D.; Radhakrishnan, S. Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural (HMF). Bioresour. Technol. Rep. 2018, 4, 50–56. [Google Scholar] [CrossRef]
- Shao, Y.; Tsang, D.C.W.; Shen, D.; Zhou, Y.; Jin, Z.; Zhou, D.; Lu, W.; Long, Y. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction. Environ. Res. 2020, 184. [Google Scholar] [CrossRef] [PubMed]
- Aulitto, M.; Alfano, A.; Maresca, E.; Avolio, R.; Errico, M.E.; Gennaro, G.; Flora, C.; Monti, M.; Pirozzi, A.; Donsì, F.; et al. Thermophilic biocatalysts for one-step conversion of citrus waste into lactic acid. Appl. Microbiol. Biotechnol. 2024, 1081, 155. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.-C.; Kim, Y.Y.; Yang, J.E.; Lee, H.M.; Hwang, I.M.; Park, H.W.; Kim, H.M. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. Sci. Total Environ. 2024, 912, 169521. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.-L.; Hassan, O.; Md-Jahim, J.; Mustapha, W.A.W.; Maskat, M.Y. Fibrous agricultural biomass as a potential source for bioconversion to vanillic acid. Int. J. Polym. Sci. 2014, 2014, 509035. [Google Scholar] [CrossRef]
- Amulya, K.; Jukuri, S.; Venkata Mohan, S. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresour. Technol. 2015, 188, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Valentino, F.; Riccardi, C.; Campanari, S.; Pomata, D.; Majone, M. Fate of b-hexachlorocyclohexane in the mixed microbial cultures (MMCs) three-stage polyhydroxyalkanoates (PHA) production process from cheese whey. Bioresour. Technol. 2015, 192, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, R.Z.; Shaikh, S.S.; Wani, S.J.; Rehman, M.T.; Al Ajmi, M.F.; Haque, S.; El Enshasy, H.A. Production of biodegradable polymer from agro-wastes in Alcaligenes sp. and Pseudomonas sp. Molecules 2021, 26, 2443. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic digestion of FW for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Sarkar, O.; Swamy, Y.V.; Venkata Mohan, S. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 2015, 182, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, O.; Kumar, A.N.; Dahiya, S.; Krishna, K.V.; Yeruva, D.K.; Venkata Mohan, S. Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: Metagenomic profiling. RSC Adv. 2016, 6, 18641–18653. [Google Scholar] [CrossRef]
- Li, Y.; Su, D.; Feng, H.; Yan, F.; Liu, H.; Feng, L.; Liu, G. Anaerobic acidogenic fermentation of food waste for mixed-acid production. Energy Sources Part A Rec. Util. Environ. Eff. 2017, 39, 631–635. [Google Scholar] [CrossRef]
- Ioannidou, S.M.; Pateraki, C.; Ladakis, D.; Papapostolou, H.; Tsakona, M.; Vlysidis, A.; Kookos, I.K.; Koutinas, A. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresour. Technol. 2020, 307, 123093. [Google Scholar] [CrossRef] [PubMed]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Or-Ganization for Standardization (ISO): Geneva, Switzerland, 2006.
- D’Adamo, I.; Falcone, P.M.; Imbert, E.; Morone, P. A Socio-economic Indicator for EoL Strategies for Bio-based Products. Ecol. Econ. 2020, 178, 106794. [Google Scholar] [CrossRef]
- Ramos Huarachi, D.A.; Hluszko, C.; Ulloa, M.I.C.; Moretti, V.; Ramos Quispe, J.A.; Puglieri, F.N.; Francisco, A.C.d. Life Cycle Thinking for a Circular Bioeconomy: Current Development, Challenges, and Future Perspectives. Sustainability 2023, 15, 8543. [Google Scholar] [CrossRef]
- Robinson, M. Climate Justice: Hope, Resilience, and the Fight for a Sustainable Future; Bloomsbury Publishing: London, UK, 2018. [Google Scholar]
- European Commission. A Sustainable Bioeconomy for Europe. Knowledge for Policy, Bioeconomy Strategy. 2020. Available online: https://knowledge4policy.ec.europa.eu/home_en (accessed on 3 September 2024).
- European Commission. Promoting Education, Training and Skills Across the Bioeconomy. Available online: https://op.europa.eu/en/publication-detail/-/publication/da7a3790-330c-11ed-975d-01aa75ed71a1 (accessed on 10 September 2024).
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment. 2018. Available online: https://knowledge4policy.ec.europa.eu/publication/sustainable-bioeconomy-europe-strengthening-connection-between-economy-society_en (accessed on 21 November 2024).
- Aspelin, J. Relational Pedagogy: Understanding Teaching and Learning in a Relational World. Educ. Philos. Theory 2018, 50, 549–559. [Google Scholar]
- Lang, D.J.; Wiek, A.; Bergmann, M.; Stauffacher, M.; Martens, P.; Moll, P.; Thomas, C. Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustain. Sci. 2012, 7, 25–43. [Google Scholar] [CrossRef]
- Pohl, C.; Hadorn, G.H. Principles for Designing Transdisciplinary Research; Oekom Verlag: München, Germany, 2007. [Google Scholar]
- Wiek, A.; Withycombe, L.; Redman, C.L. Key competencies in sustainability: A reference framework for academic program development. Sustain. Sci. 2012, 6, 203–218. [Google Scholar] [CrossRef]
- Shiva, V. Earth Democracy: Justice, Sustainability, and Peace, 1st ed.; South End Press: London, UK, 2015. [Google Scholar]
- Plumwood, V. Environmental Culture: The Ecological Crisis of Reason, 1st ed.; Routledge: London, UK, 2002. [Google Scholar]
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five cornerstones of a global bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, P. Globalisation, Lifelong Learning and the Learning Society: Sociological Perspectives; Routledge: London, UK, 2009. [Google Scholar]
- Todd, S. Living in a Fragile World: Educating for Complexity and Responsibility in the Age of Global Warming. In Handbook of Public Pedagogy; Sandlin, J.A., Schultz, B.D., Burdick, J., Eds.; Routledge: London, UK, 2010; pp. 367–375. [Google Scholar]
- Froebel, M. The Education of Man; D. Appleton & Company: New York, NY, USA, 1887. [Google Scholar]
- Bugge, M.M.; Hansen, T.; Klitkou, A. What is the bioeconomy? A review of the literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef]
- Biesta, G.J.J. Good Education in an Age of Measurement: Ethics, Politics, Democracy, 1st ed.; Routledge: London, UK, 2010. [Google Scholar]
- Robinson, K. Out of Our Minds: Learning to Be Creative; Capstone Publishing: Edina, MN, USA, 2006. [Google Scholar]
- Freire, P. Pedagogy of the Oppressed; Continuum: New York, NY, USA, 1970. [Google Scholar]
- Shiva, V. Earth Democracy: Justice, Sustainability, and Peace; North Atlantic Books: Berkeley, CA, USA, 2016. [Google Scholar]
- Shiva, V. Staying Alive: Women, Ecology, and Development; Zed Books: London, UK, 1993. [Google Scholar]
- Plumwood, V. Feminism and the Mastery of Nature; Routledge: London, UK, 1993. [Google Scholar]
- Hooks, B. Teaching to Transgress: Education as the Practice of Freedom; Routledge: New York, NY, USA, 1994. [Google Scholar]
- Bioeconomy Education and Sustainability Teachers (BEST) Network. Available online: https://www.biobeo.eu/2025/04/09/bioeconomy-education-and-sustainability-teachers-best-network/ (accessed on 9 April 2025).
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Heimann, T. Bioeconomy and SDGs: Does the bioeconomy support the achievement of the SDGs? Earth’s Future 2019, 7, 43–57. [Google Scholar] [CrossRef]
- Bozzola, M.; McKinley, D. Transdisciplinary education for sustainability: Learning from nature to foster circular bioeconomy. J. Sustain. Sci. Educ. 2020, 9, 112–125. [Google Scholar]
- Ní Chléirigh, L. Loving Mother Earth: Exploring Education for Sustainable Development and the CIRCULAR economy Concept in an Irish Primary School Context. Ph.D. Thesis, National University of Ireland Maynooth, Kildare, Ireland, 2023; p. 74. [Google Scholar]
- Philp, J. The bioeconomy, the challenge of the century for policy makers. New Biotechnol. 2018, 40, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Hölsgens, R.; Wascher, E.; Bauer, C.; Boll, J.; Bund, S.; Dankwart-Kammoun, S.; Heese, I.; Schrot, K.; Schultze, J.; Tenambergen, R. Transdisciplinary Research along the Logic of Empowerment: Perspectives from Four Urban and Regional Transformation Projects. Sustainability 2023, 15, 4599. [Google Scholar] [CrossRef]
- BioBeo Blended Intensive Programme. Available online: https://www.maynoothuniversity.ie/froebel-department-primary-and-early-childhood-education/news/biobeo-blended-intensive-programme-bip-pioneering-circular-bioeconomy-education-across-europe (accessed on 17 June 2025).
- McCormick, K.; Kautto, N. The bioeconomy in Europe: An overview. Sustainability 2013, 5, 2589–2608. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lahtinen, K.; Korhonen, J.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Pfau, S.F.; Hagens, J.E.; Dankbaar, B.; Smits, A.J.M. Visions of sustainability in bioeconomy research. Sustainability 2014, 6, 1222–1249. [Google Scholar] [CrossRef]
- Shiva, V. Oneness vs. the 1%: Shattering Illusions, Seeding Freedom; Chelsea Green Publishing: White River Junction, VT, USA, 2020; p. 141. [Google Scholar]
- Todd, S. Toward an Imperfect Education: Facing Humanity, Rethinking Cosmopolitanism; Paradigm Publishers: Boulder, CO, USA, 2015. [Google Scholar]
SDG | Circular Economy | Bioeconomy | Circular Bioeconomy |
---|---|---|---|
01 No Poverty | 21 | 115 | 7 |
02 Zero Hunger | 439 | 348 | 160 |
03 Good Health and Well-Being | 468 | 608 | 197 |
04 Quality Education | 16 | 13 | 1 |
05 Gender Equality | 4 | 31 | - |
06 Clean Water and Sanitation | 1073 | 464 | 299 |
07 Affordable and Clean Energy | 753 | 1376 | 384 |
08 Decent Work and Economic Growth | 16 | 23 | 4 |
09 Industry Innovation and Infrastructure | 272 | 131 | 24 |
10 Reduced Inequality | 15 | 17 | - |
11 Sustainable Cities and Communities | 1070 | 151 | 83 |
12 Responsible Consumption and Production | 4928 | 1329 | 774 |
13 Climate Action | 1112 | 851 | 226 |
14 Life Below Water | 403 | 118 | 45 |
15 Life on Land | 135 | 489 | 60 |
16 Peace and Justice Strong Institutions | - | 6 | - |
17 Partnerships for the goals | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buruleanu, C.L.; Chléirigh, L.N.; Bhaird, M.N.a.; Curran, T.P.; Reinmuth, E.; Bîzoi, M. Weaving Knowledge, Innovation, and Learning: A Transdisciplinary Pathway to Circular Bioeconomy Through BioBeo. Sustainability 2025, 17, 6541. https://doi.org/10.3390/su17146541
Buruleanu CL, Chléirigh LN, Bhaird MNa, Curran TP, Reinmuth E, Bîzoi M. Weaving Knowledge, Innovation, and Learning: A Transdisciplinary Pathway to Circular Bioeconomy Through BioBeo. Sustainability. 2025; 17(14):6541. https://doi.org/10.3390/su17146541
Chicago/Turabian StyleBuruleanu, Claudia Lavinia, Laoise Ní Chléirigh, Máire Nic an Bhaird, Thomas P. Curran, Evelyn Reinmuth, and Mihai Bîzoi. 2025. "Weaving Knowledge, Innovation, and Learning: A Transdisciplinary Pathway to Circular Bioeconomy Through BioBeo" Sustainability 17, no. 14: 6541. https://doi.org/10.3390/su17146541
APA StyleBuruleanu, C. L., Chléirigh, L. N., Bhaird, M. N. a., Curran, T. P., Reinmuth, E., & Bîzoi, M. (2025). Weaving Knowledge, Innovation, and Learning: A Transdisciplinary Pathway to Circular Bioeconomy Through BioBeo. Sustainability, 17(14), 6541. https://doi.org/10.3390/su17146541